Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study-Area Description
2.2. General Species Characteristics
2.3. Sampling and Analytical Method
3. Results and Discussion
Effect of As, Cr, Mo, and Sb on Human Health
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Varrica, D.; Tamburo, E.; Vultaggio, M.; Di Carlo, I. ATR–FTIR Spectral analysis and soluble components of PM10 and PM2.5 particulate matter over the urban area of Palermo (Italy) during normal days and saharan events. Int. J. Environ. Res. Public Health 2019, 16, 2507. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Santos, R.S.; Sanches, F.A.C.R.A.; Leitão, R.G.; Leitão, C.C.G.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T. Multielemental analysis in Nerium Oleander L. leaves as a way of assessing the levels of urban air pollution by heavy metals. Appl. Radiat. Isotopes 2019, 152, 18–24. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Michael Brauer, M.; Boys, B.L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Bing, H.; Wu, Y.; Li, J.; Xiang, Z.; Luo, X.; Zhou, J.; Sun, H.; Zhang, G. Biomonitoring trace element contamination impacted by atmospheric deposition in China’s remote mountains. Atmos. Res. 2019, 224, 30–41. [Google Scholar] [CrossRef]
- Liu, M.; Xue, X.; Zhou, B.; Zhang, Y.; Baijun, S.; Chen, J.; Li, X. Population susceptibility differences and effects of air pollution on cardiovascular mortality: Epidemiological evidence from a time-series study. Environ. Sci. Pollut. Res. 2019, 26, 15943–15952. [Google Scholar] [CrossRef] [PubMed]
- Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 2016, 21, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.A.; Siscovick, D.S.; Sheppard, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to costituents of fine particulate air pollution and incidence of cardiovascular events in women. New Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A.; Brook, R.; Pope, A. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewsky, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Alfani, A.; Baldantoni, D.; Maisto, G.; Bartoli, G.; Virzo De Santo, A. Temporal and spatial variation in C, N, S and trace element contents in the leaves of Quercus ilex within the urban area of Naples. Environ. Pollut. 2000, 109, 119–129. [Google Scholar] [CrossRef]
- Norouzi, S.; Khademi, H.; Faz Cano, A. Using plane tree leaves for biomonitoring of dust borne heavy metals: A case study from Isfahan, Central Iran. Ecol. Indicat. 2015, 57, 64–73. [Google Scholar] [CrossRef]
- Vázquez, S.; Martín, A.; García, M.; Españo, C.; Navarro, E. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities. Environ. Sci. Pollut. Control. Ser. 2016, 23, 7582–7594. [Google Scholar] [CrossRef]
- Urošević, M.A.; Vuković, G.; Tomašević, M. Biomonitoring of air pollution using mosses and lichens, a passive and active approach, state of the art research and perspectives. In Air, Water and Soil Pollution Science and Technology; Nova Science: Hauppauge, NY, USA, 2016. [Google Scholar]
- Giordano, S.; Adamo, P.; Spagnuolo, V.; Tretiach, M.; Bargagli, R. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: Towards a harmonization of the moss-bag technique. Chemosphere 2013, 90, 292–299. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Liu, C.; Fang, Y. Using moss to assess airborne heavy metal pollution in Taizhou, China. Int. J. Environ. Res. Public Health 2017, 14, 430. [Google Scholar] [CrossRef]
- Dongarrà, G.; Varrica, D. The presence of heavy metals in air particulate at Vulcano island (Italy). Sci. Total Environ. 1998, 212, 1–9. [Google Scholar] [CrossRef]
- Varrica, D.; Aiuppa, A.; Dongarrà, G. Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily). Environ. Pollut. 2000, 108, 153–162. [Google Scholar] [CrossRef]
- Fuga, A.; Saiki, M.; Marcelli, M.P.; Saldiva, N.H. Atmospheric pollutants monitoring by analysis of epiphytic lichens. Environ. Pollut. 2008, 151, 334–340. [Google Scholar] [CrossRef]
- Aprile, G.G.; Salvatore, M.D.; Carratù, G.; Mingo, A.; Carafa, A.M. Comparison of the suitability of two lichen species and one higher plant for monitoring airborne heavy metals. Environ. Monit. Assess. 2010, 162, 291–299. [Google Scholar] [CrossRef]
- Alaimo, M.G.; Dongarrà, G.; Melati, M.R.; Monna, F.; Varrica, D. Recognition of environmental trace metal contamination using pine needles as bioindicators: The urban area of Palermo (Italy). Environ. Geol. 2000, 39, 914–924. [Google Scholar] [CrossRef]
- Dongarrà, G.; Sabatino, G.; Triscari, M.; Varrica, D. The effects of anthropogenic particulate emissions on roadway dust and Nerium oleander leaves in Messina (Sicily, Italy). J. Environ. Monit. 2003, 5, 766–773. [Google Scholar] [CrossRef]
- Bosco, M.L.; Varrica, D.; Dongarrà, G. Case-study: Inorganic pollutants associated with particulate matter from an area near a petrochemical plant (Gela, Italy). Environ. Res. 2005, 99, 18–30. [Google Scholar] [CrossRef]
- Ernst, W.H.O. The use of higher plants as bioindicators. In Bioindicators and Biomonitors: Principles, Concepts and Applications; Markert, B.A., Breure, A.M., Zechmeister, H.G., Eds.; Elsevier Science: Kidlington, UK, 2003. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001; p. 548. [Google Scholar]
- Alfani, A.; Maisto, G.; Iovieno, P.; Rutigliano, F.A.; Bartoli, G. Leaf contamination by atmospheric pollutants as assessed by elemental analysis of leaf tissue, leaf surface deposit and soil. J. Plant. Physiol. 1996, 148, 243–248. [Google Scholar] [CrossRef]
- Monaci, F.; Bargagli, R. Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Poll. 1997, 100, 89–98. [Google Scholar] [CrossRef]
- Monaci, F.; Moni, F.; Lanciotti, E.; Grechi, D.; Bargagli, R. Biomonitoring of airborne metals in urban environments: New tracers of vehicle emission, in place of lead. Environ. Pollut. 2000, 107, 321–327. [Google Scholar] [CrossRef]
- Mingorance, M.D.; Rossini Oliva, S. Heavy metals content in N. Oleander leaves as urban pollution assessment. Environ. Monitoring Assess. 2006, 119, 57–68. [Google Scholar] [CrossRef]
- Fernandez Espinosa, A.J.; Rossini Oliva, S. The composition and relationships on Nerium Oleander L. and Lantana camara L. Chemosphere 2006, 62, 1665–1672. [Google Scholar] [CrossRef]
- Dongarrà, G.; Varrica, D.; Sabatino, G. Occurrence of Platinum, Palladium and Gold in pine needles of Pinus pinea L. from the city of Palermo (Italy). App. Geochem. 2003, 18, 109–116. [Google Scholar] [CrossRef]
- Lehndorff, E.; Schwark, L. Biomonitoring of air quality in the Cologne conturbation using pine needles as a passive sampler—Part III: Major and trace elements. Atmos. Environ. 2010, 44, 2822–2829. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Sevik, H.; Çetin, M. The use of perennial needles as biomonitors for recently accumulated heavy metals. Land. Ecol. Eng. 2018, 14, 115–120. [Google Scholar] [CrossRef]
- Rautio, P.; Huttunen, S.; Kukkola, E.; Peura, R.; Lamppu, J. Deposited particles, element concentrations and needles injuries on Scots pines along an industrial pollution transect in northern Europe. Environ. Pollut. 1998, 103, 81–89. [Google Scholar] [CrossRef]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef]
- Guzman-Morales, J.; Morton-Bermea, O.; Hernandez-Alvarez, E.; Rodriguez-Salazar, M.T.; Garcia-Arreola, M.E.; Tapia-Cruz, V. Assessment of atmospheric metal pollution in the urban area of Mexico city, using Ficus benjamina as biomonitor. Bull. Environ. Contam. Toxicol. 2011, 86, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Rossini Oliva, S.; Rautio, P. Spatiotemporal patterns in foliar element concentrations in Ficus microcarpa L.f. growing in an urban area: Implications for biomonitoring studies. Ecol. Indic. 2005, 5, 97–107. [Google Scholar] [CrossRef]
- Abate, B.; Catalano, R.; Renda, P.M. Schema geologico dei Monti di Palermo. Boll. Soc. Geol. It 1978, 97, 807–819. [Google Scholar]
- Bellanca, A.; Hauser, S.; Neri, R.; Palumbo, B. Mineralogy and geochemistry of Terra Rossa soils, western Sicily: Insights into heavy metals fractionation and mobility. Sci. Total Environ. 1996, 193, 57–67. [Google Scholar] [CrossRef]
- Borzì, A. Diagnosi di specie nuove o critiche. Boll. R. Orto Bot. Palermo 1897, 1, 43–50. [Google Scholar]
- Borzì, A. Le specie di Ficus viventi a plenaria nel R. Orto Botanico di Palermo. Boll. R. Orto Bot. Palermo 1897, 1, 156–161. [Google Scholar]
- Fici, S.; Raimondo, F.M. On the real identity of Ficus Magnolioides. Curtis’s Bot. Mag. 1996, 13, 105–107. [Google Scholar] [CrossRef]
- Aquila, G.; Speciale, M. Studio dendrometrico e distributive degli esemplari monumentali di Ficus magnolioides (Moraceae, Magnoliophyta) censiti in Sicilia. Quad. Bot. Amb. Appl. 2001, 12, 13–44. [Google Scholar]
- Cressie, N.A.C. Statistics for Spatial Data; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Statsoft Inc. Statistica (Data Analysis Software System). 2001. Available online: www.statsoft.com (accessed on 30 January 2020).
- Dongarrà, G.; Manno, E.; Varrica, D.; Vultaggio, M. Mass levels, crustal component and trace elements in PM10 in Palermo, Italy. Atmos. Environ. 2007, 41, 7977–7986. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D.; Vultaggio, M.; Lombardo, M. Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos. Environ. 2010, 44, 5244–5257. [Google Scholar] [CrossRef]
- Allen, S.E.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C. Chemical Analysis of Ecological Materials; Blackwell Scientific Publications: Oxford, UK, 1974. [Google Scholar]
- Varrica, D.; Dongarrà, G.; Sabatino, G.; Monna, F. Inorganic geochemistry of roadway dust from the metropolitan area of Palermo (Italy). Environ. Geol. 2003, 44, 222–230. [Google Scholar] [CrossRef]
- Farago, M.E. Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity; VCH: Weinheim, Germany, 1994. [Google Scholar]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- von Uexküll, O.; Skerving, S.; Doyle, R.; Braungart, M. Antimony in brake pads-a carcinogenic component? J. Clean. Prod. 2005, 13, 19–31. [Google Scholar] [CrossRef]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New metal emission patterns in road traffic environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef]
- Salma, I.; Maenhaut, W. Changes in elemental composition and mass of atmospheric aerosol pollution between 1996 and 2002 in a Central European city. Environ. Pollut. 2006, 143, 479–488. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D. Possible markers of traffic-related emissions. Environ. Monit. Assess 2009, 154, 117–125. [Google Scholar]
- Varrica, D.; Bardelli, F.; Dongarrà, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Goering, P.L. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 1993, 14, 45. [Google Scholar] [PubMed]
- Menzel, D.B. The toxicity of higher pollution in experimental animals and humans: The role of oxidative stresses. Toxicol. Lett. 1994, 72, 269. [Google Scholar] [CrossRef]
- Dopp, E.; von Recklinghausen, U.; Diaz-Bone, R.; Hirner, A.V.; Rettenmeier, A.W. Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methlylating and non -methylating cells. Environ. Res. 2010, 110, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Styblo, M.; Del Razo, L.M.; Vega, L.; Germolec, D.R.; LeCluyse, E.L.; Hamilton, G.A.; Reed, W.; Wang, C.; Cullen, W.R.; Thomas, D.J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Styblo, M.; Drobna, Z.; Jaspers, I.; Lin, S.; Thomas, D.J. The role of biomethylation in toxicity and carcinogenicity of arsenic: A research update. Environ. Health Perspect. 2002, 110, 767–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Arsenic; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007. [Google Scholar]
- Kirti, S.; Sreemoyee, C.; Bhumika, J. Chromium Toxicity and its Health Hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chromium; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2012. [Google Scholar]
- Vyskocil, A.; Viau, C. Assessment of molybdenum toxicity in humans. J. Appl. Toxicol. 1999, 19, 185–192. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Molybdenum. (Draft for Public Comment); Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2017. [Google Scholar]
- Krachler, M.; Emons, H. Speciation analysis of antimony by high-performance liquid chromatography inductively coupled plasma mass spectrometry using ultrasonic nebulization. Anal. Chim. Acta 2001, 429, 125–133. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Antimony; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2019. [Google Scholar]
Samples | Location | Characteristics |
---|---|---|
FC1 | Urb | urban road exposed to heavy traffic, composed of cars and urban buses |
FC2 | Urb | urban road characterized by lower traffic density |
FC3 | Urb | large square exposed to traffic mainly composed of cars and urban buses |
FC4 | Urb | urban road characterized by lower traffic density |
FC5 | Urb | urban road characterized by lower traffic density |
FC6 | Urb | urban road characterized by lower traffic density |
FC7 | Urb | urban road characterized by lower traffic density |
FC8 | Urb | urban road exposed to medium amount of traffic of cars |
FC9 | Urb | urban road exposed to medium amount of traffic of cars |
FC10 | Urb | urban road exposed to medium amount of traffic of cars |
FC11 | Urb | urban road exposed to medium amount of traffic of cars |
FC12 | Urb | urban road exposed to heavy traffic, composed of cars, heavy-duty vehicles and urban and extra-urban buses |
FC13 | Urb | urban road exposed to heavy traffic, composed of cars and urban buses |
FC14 | Urb | urban road exposed to high traffic flow, composed of cars, heavy-duty vehicles and urban and extra-urban buses |
FC15 | Urb | urban road exposed to heavy traffic, composed of cars and urban and extra-urban buses |
FC16 | Urb | urban road exposed to medium amount of traffic of cars |
FC17 | Urb | urban road exposed to medium amount of traffic of cars |
FC18 | Urb | urban road exposed to high traffic flow, composed of cars, heavy-duty vehicles and urban buses |
FC19 | Urb | urban road exposed to medium amount of traffic of cars |
FC20 | Urb | urban road exposed to high traffic flow, composed of cars, heavy-duty vehicles and urban and extra-urban buses |
FC21 | Urb | a little square in front of the railway station, exposed to heavy traffic, composed of cars and urban and extra-urban buses |
FC22 | Urb | urban road exposed to heavy traffic, composed of cars and urban buses |
FC23 | Urb | large square in front of the sea exposed to heavy traffic by cars, urban and extra-urban buses |
FC24 | Urb | urban road exposed to heavy traffic composed of cars, urban and extra-urban buses |
FC25 | Urb | urban road exposed to high traffic flow, composed of cars, heavy-duty vehicles and urban and extra-urban buses |
FC26 | CG | urban garden without any direct influence of vehicular traffic |
FC27 | CG | urban garden without any direct influence of vehicular traffic |
FC28 | CG | urban garden without any direct influence of vehicular traffic |
FC29 | CG | urban garden without any direct influence of vehicular traffic |
FC30 | CG | urban garden without any direct influence of vehicular traffic |
FC31 | CG | urban garden without any direct influence of vehicular traffic |
FC32 | CG | urban garden without any direct influence of vehicular traffic |
FC33 | CG | urban garden without any direct influence of vehicular traffic |
FC34 | CG | urban garden without any direct influence of vehicular traffic |
FC35 | CG | urban garden without any direct influence of vehicular traffic |
FC36 | CG | urban garden without any direct influence of vehicular traffic |
FC37 | CG | urban garden without any direct influence of vehicular traffic |
FC38 | CG | urban garden without any direct influence of vehicular traffic |
FC39 | CG | urban garden without any direct influence of vehicular traffic |
N | Mean ± Std | Median | Minimum | Maximum | Skewness | Kurtosis | MAD | N | URB | N | CG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | 39 | 21,506 ± 4195 | 21,400 | 9850 | 30,350 | −0.27 | 0.85 | 2700 | 25 | 21,748 ± 3733 | 14 | 21,075 ± 5039 |
K | 39 | 17,897 ± 4134 | 17,800 | 10,100 | 26,700 | 0.19 | −0.64 | 3150 | 25 | 17,220 ± 3582 | 14 | 19,107 ± 4879 |
Mg | 39 | 8239 ± 1496 | 7900 | 5700 | 12,000 | 0.64 | 0.10 | 800 | 25 | 8238 ± 1470 | 14 | 8242 ± 1597 |
P | 39 | 1602 ± 341 | 1580 | 162 | 2470 | −1.25 | 8.82 | 130 | 25 | 1612 ± 247 | 14 | 1585 ± 477 |
S | 39 | 1253 ± 177 | 1240 | 860 | 1730 | 0.43 | 0.44 | 120 | 25 | 1288 ± 178 | 14 | 1190 ± 162 |
Na | 39 | 808 ± 1509 | 459 | 265 | 9423 | 5.31 | 29.79 | 116 | 25 | 862 ± 1794 | 14 | 714 ± 836 |
Fe | 39 | 230 ± 199 | 175 | 10 | 880 | 2.17 | 4.26 | 55.0 | 25 | 254 ± 203 | 14 | 189 ± 192 |
Al | 39 | 261 ± 401 | 122 | 65 | 2500 | 4.88 | 26.7 | 23.0 | 25 | 320 ± 490 | 14 | 157 ± 103 |
As | 37 | 0.17 ± 0.11 | 0.16 | 0.03 | 0.46 | 0.97 | 0.75 | 0.06 | 25 | 0.19 ± 0.11 | 14 | 0.14 ± 0.11 |
Ba | 37 | 9.00 ± 3.21 | 9.00 | 5.00 | 15.0 | 0.22 | −0.99 | 3.00 | 25 | 8.41 ± 2.99 | 14 | 10.1 ± 3.43 |
Br | 37 | 20.4 ± 12.9 | 17.0 | 6.30 | 80.0 | 2.98 | 12.1 | 6.00 | 25 | 22.8 ± 14.2 | 14 | 15.7 ± 8.94 |
Cr | 37 | 1.06 ± 0.40 | 0.90 | 0.60 | 2.40 | 1.40 | 2.16 | 0.20 | 25 | 1.19 ± 0.42 | 14 | 0.82 ± 0.24 |
Cu | 39 | 26.9 ± 15.0 | 23.0 | 16.0 | 99.0 | 3.80 | 15.6 | 3.00 | 25 | 26.5 ± 11.0 | 14 | 27.8 ± 20.8 |
Mo | 37 | 0.14 ± 0.12 | 0.09 | 0.02 | 0.63 | 1.93 | 5.21 | 0.04 | 25 | 0.18 ± 0.13 | 14 | 0.07 ± 0.05 |
Mn | 39 | 22.9 ± 6.77 | 22.0 | 14.0 | 45.0 | 1.09 | 1.52 | 5.00 | 25 | 23.4 ± 6.11 | 14 | 22.1 ± 7.98 |
Pb | 39 | 2.61 ± 1.32 | 2.65 | 0.49 | 8.00 | 1.76 | 6.13 | 0.75 | 25 | 3.01 ± 1.39 | 14 | 1.89 ± 0.84 |
Rb | 37 | 9.86 ± 3.78 | 10.0 | 4.00 | 17.0 | 0.26 | −0.92 | 3.00 | 25 | 9.87 ± 3.73 | 14 | 9.84 ± 4.03 |
Sb | 37 | 0.51 ± 0.36 | 0.40 | 0.11 | 1.90 | 1.91 | 4.80 | 0.17 | 25 | 0.61 ± 0.40 | 14 | 0.34 ± 0.19 |
Sc | 37 | 0.05 ± 0.01 | 0.05 | 0.02 | 0.08 | −0.98 | 3.29 | 0.01 | 25 | 0.05 ± 0.005 | 14 | 0.04 ± 0.01 |
Sr | 39 | 46.1 ± 12.6 | 47.5 | 15.5 | 75.5 | −0.05 | 0.20 | 6.50 | 25 | 48.7 ± 12.7 | 14 | 41.3 ± 11.5 |
Zn | 39 | 21.0 ± 4.09 | 21.0 | 14.5 | 31.0 | 0.43 | −0.13 | 3.00 | 25 | 21.5 ± 4.01 | 14 | 20.1 ± 4.21 |
Spearman Matrix Correlation | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ca | Fe | K | Mg | Na | P | S | As | Ba | Br | Cr | Cu | Mo | Mn | Pb | Rb | Sb | Sc | Sr | Zn | |
Al | 1.00 | 0.13 | 0.25 | −0.17 | −0.05 | 0.17 | −0.12 | 0.10 | 0.05 | −0.13 | −0.08 | 0.14 | −0.02 | 0.11 | 0.41 | −0.03 | −0.12 | 0.06 | 0.04 | −0.12 | −0.15 |
Ca | 1.00 | 0.06 | −0.45 | −0.07 | 0.10 | −0.29 | −0.07 | −0.12 | 0.32 | 0.05 | 0.00 | −0.43 | 0.05 | 0.29 | 0.18 | −0.35 | 0.13 | 0.09 | 0.29 | −0.40 | |
Fe | 1.00 | −0.06 | −0.16 | −0.03 | 0.15 | 0.11 | 0.29 | 0.02 | −0.01 | 0.54 | 0.10 | 0.28 | 0.31 | 0.16 | −0.01 | 0.35 | 0.06 | −0.12 | 0.11 | ||
K | 1.00 | −0.22 | −0.25 | 0.63 | −0.19 | 0.23 | 0.06 | −0.21 | 0.08 | 0.36 | 0.07 | −0.20 | −0.15 | 0.51 | 0.03 | 0.06 | −0.38 | 0.33 | |||
Mg | 1.00 | 0.17 | −0.24 | −0.09 | −0.19 | −0.18 | −0.21 | −0.35 | 0.09 | −0.18 | 0.01 | −0.03 | 0.17 | −0.25 | 0.01 | −0.14 | 0.12 | ||||
Na | 1.00 | −0.47 | −0.05 | −0.69 | −0.13 | 0.28 | −0.07 | −0.10 | −0.15 | 0.10 | −0.06 | −0.04 | −0.05 | −0.09 | 0.01 | −0.25 | |||||
P | 1.00 | 0.16 | 0.59 | 0.24 | −0.01 | 0.29 | 0.31 | 0.07 | −0.06 | −0.23 | 0.35 | 0.15 | 0.15 | −0.23 | 0.41 | ||||||
S | 1.00 | 0.08 | −0.04 | 0.37 | 0.21 | 0.10 | 0.22 | 0.36 | 0.01 | −0.41 | 0.16 | −0.17 | 0.24 | 0.24 | |||||||
As | 1.00 | 0.02 | −0.07 | 0.37 | 0.08 | 0.30 | 0.01 | 0.18 | 0.17 | 0.32 | 0.19 | −0.13 | 0.36 | ||||||||
Ba | 1.00 | 0.10 | 0.01 | 0.04 | −0.06 | 0.02 | −0.15 | −0.22 | 0.12 | 0.06 | 0.07 | 0.05 | |||||||||
Br | 1.00 | 0.38 | 0.06 | 0.22 | 0.24 | −0.06 | −0.06 | 0.52 | −0.06 | 0.60 | 0.20 | ||||||||||
Cr | 1.00 | 0.21 | 0.46 | 0.16 | 0.17 | 0.06 | 0.79 | 0.00 | 0.16 | 0.27 | |||||||||||
Cu | 1.00 | 0.20 | −0.11 | 0.01 | 0.35 | 0.20 | −0.05 | 0.02 | 0.64 | ||||||||||||
Mo | 1.00 | 0.16 | 0.15 | −0.05 | 0.50 | 0.23 | 0.03 | 0.25 | |||||||||||||
Mn | 1.00 | 0.03 | −0.32 | 0.09 | 0.17 | 0.15 | 0.15 | ||||||||||||||
Pb | 1.00 | −0.09 | −0.01 | −0.13 | 0.16 | 0.17 | |||||||||||||||
Rb | 1.00 | 0.04 | 0.08 | −0.26 | 0.30 | ||||||||||||||||
Sb | 1.00 | 0.02 | 0.32 | 0.27 | |||||||||||||||||
Sc | 1.00 | −0.15 | −0.07 | ||||||||||||||||||
Sr | 1.00 | 0.01 | |||||||||||||||||||
Zn | 1.00 |
N. URB | N. CG | p Level | |
---|---|---|---|
As | 24 | 13 | 0.11 |
Ba | 24 | 13 | 0.15 |
Br | 24 | 13 | 0.03 |
Cr | 24 | 13 | 0.003 |
Cu | 25 | 14 | 0.38 |
Mo | 24 | 13 | 0.03 |
Mn | 25 | 14 | 0.32 |
Pb | 25 | 14 | 0.22 |
Rb | 24 | 13 | 1.00 |
Sb | 24 | 13 | 0.01 |
Sc | 24 | 13 | 0.81 |
Sr | 25 | 14 | 0.07 |
Zn | 25 | 14 | 0.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaimo, M.G.; Varrica, D. Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment. Int. J. Environ. Res. Public Health 2020, 17, 881. https://doi.org/10.3390/ijerph17030881
Alaimo MG, Varrica D. Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment. International Journal of Environmental Research and Public Health. 2020; 17(3):881. https://doi.org/10.3390/ijerph17030881
Chicago/Turabian StyleAlaimo, Maria Grazia, and Daniela Varrica. 2020. "Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment" International Journal of Environmental Research and Public Health 17, no. 3: 881. https://doi.org/10.3390/ijerph17030881
APA StyleAlaimo, M. G., & Varrica, D. (2020). Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment. International Journal of Environmental Research and Public Health, 17(3), 881. https://doi.org/10.3390/ijerph17030881