The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveillance Network and Mosquito Identification
2.2. Molecular Analysis
2.3. Weather Variables
2.4. Statistical Analysis
3. Results
3.1. Influence of Weather on Mosquito Seasonality and Daily Activity
3.2. DNA Barcode Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasperi, G.; Bellini, R.; Malacrida, A.R.; Crisanti, A.; Dottori, M.; Aksoy, S. A new threat looming over the Mediterranean basin: Emergence of viral diseases transmitted by Aedes albopictus mosquitoes. PLoS Negl. Trop. Dis. 2012, 6, e1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECDC. Guidelines for the Surveillance of Native Mosquitoes in Europe; ECDC: Stockholm, Sweden, 2014; ISBN 9789291933785. [Google Scholar]
- Global Invasive Species Database (GISD) 2020. Available online: http://www.iucngisd.org/gisd/ (accessed on 30 January 2020).
- Waldock, J.; Chandra, N.L.; Lelieveld, J.; Proestos, Y.; Michael, E.; Christophides, G.; Parham, P.E. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog. Glob. Health 2013, 107, 224–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder-smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017, 17, e101–e106. [Google Scholar] [CrossRef] [Green Version]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Philip, L. Spread of the Tiger: Global risk of invasion by the mosquito Aedes albopictus. NIH Public Access 2008, 7, 76–85. [Google Scholar]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Ecol. Epidemiol. Glob. Heal. 2015, 4, 1–18. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito Maps; ECDC: Stockholm, Sweden, 2019; Available online: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (accessed on 30 January 2020).
- Medlock, J.M.; Hansford, K.M.; Versteirt, V.; Cull, B.; Kampen, H.; Fontenille, D.; Hendrickx, G.; Zeller, H.; Van Bortel, W.; Schaffner, F. An entomological review of invasive mosquitoes in Europe. Bull. Entomol. Res. 2015, 105, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Van Gompel, A.; Van Bortel, W. Emerging Pests and Vector-Borne Diseases in Europe; Wageningen Academic Publishers: Wageningen, The Neatherlands, 2007; Volume 14, ISBN 9789086866267. [Google Scholar]
- Paphitou, N.I.; Tourvas, A.; Floridou, D.; Richter, J.; Tryfonos, C.; Christodoulou, C. The first human case of neuroinvasive West Nile virus infection identified in Cyprus Case presentation. J. Infect. Public Health 2017, 3–5. [Google Scholar]
- Report: Cyprus Authorities Confirm One More WNV Case, Second Incident under Investigation. Available online: https://in-cyprus.com/cyprus-authorities-confirm-one-more-WNV-case-second-incident-under-investigation/ (accessed on 30 September 2019).
- Schaffner, F.; Bellini, R.; Petric, D.; Scholte, E.-J. ECDC Guidelines for the Surveillance of Invasive Mosquitoes in Europe; ECDC: Stockholm, Sweden, 2012; Volume 17, ISBN 9789291933785. [Google Scholar]
- Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasites Vectors 2014, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Danis-Lozano, R.; Ramsey, J.M.; Luther, C.; Campbell, L.P.; Peterson, A.T.; Moo-Llanes, D. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140135. [Google Scholar]
- Panackal, A.A. Global climate change and infectious diseases: Invasive mycoses. J. Earth Sci. Clim. Chang. 2016, 2, 1061–1063. [Google Scholar] [CrossRef]
- de Almeida Costa, E.A.P.; de Mendonça Santos, E.M.; Correia, J.C.; de Albuquerque, C.M.R. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 2010, 54, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Elhossary, S.; Khan, I.A.; Al Zahrani, M.H.; Al Zahrani, F.S.; Al Bashri, F.M. The impact of climatic variables with GIS application on the abundance of medically important mosquitoes (Diptera: Culicidae) in Jeddah, Saudi Arabia. Int. J. Mosq. Res. 2018, 5, 12–18. [Google Scholar]
- Bashar, K.; Tuno, N. Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasites Vectors 2014, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.Y.; Bi, P.; Cazelles, B.; Zhou, S.; Huang, S.Q.; Yang, J.; Pei, Y.; Wu, X.X.; Fu, S.H.; Tong, S.L.; et al. How environmental conditions impact mosquito ecology and Japanese encephalitis: An eco-epidemiological approach. Environ. Int. 2015, 79, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, K.; Ali khan, M.; Mahyoub, J. Role of climatic factors in the seasonal abundance of Aedes aegypti L. and dengue fever cases in Jeddah province of Saudi Arabia. Curr. World Environ. 2017, 4, 307–312. [Google Scholar] [CrossRef]
- Jemal, Y.; Al-Thukair, A.A. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Asylum Quarterly Report. Source: Statistics Explained. Available online: https://ec.europa.eu/eurostat/statisticsexplained/ (accessed on 27 September 2019).
- Clerides, S.; Pashourtidou, N. Tourism in Cyprus: Recent Trends and Lessons from the Tourist; Economics Research Centre, University of Cyprus and Cyprus Tourism Organization: Nicosia, Cyprus, 2007; Volume 1. [Google Scholar]
- Violaris, M.; Vasquez, M.I.; Samanidou, A.; Wirth, M.C.; Hadjivassilis, A. The mosquito fauna of the Republic of Cyprus: A revised list. J. Am. Mosq. Control Assoc. 2009, 25, 199–202. [Google Scholar] [CrossRef]
- Jinbo, U.; Kato, T.; Ito, M. Current progress in DNA barcoding and future implications for entomology. Entomol. Sci. 2011, 14, 107–124. [Google Scholar] [CrossRef]
- Versteirt, V.; Nagy, Z.T.; Roelants, P.; Denis, L.; Breman, F.C.; Damiens, D.; Dekoninck, W.; Backeljau, T.; Coosemans, M.; Van Bortel, W. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol. Ecol. Resour. 2015, 15, 449–457. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Becker, N.; Petrić, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control, 2nd ed.; Springer: Berlin, Germany, 2010; ISBN 978-3-540-92873-7. [Google Scholar]
- Batovska, J.; Blacket, M.J.; Brown, K.; Lynch, S.E. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol. Evol. 2016, 6, 3001–3011. [Google Scholar] [CrossRef] [Green Version]
- Whether Conditions. Available online: https://cy.k24.net/en/limassol/weather-akrotiri-116 (accessed on 30 June 2018).
- Dahiru, T. P-value, a true test of statistical significance? A cautionary note. Ann. Ibadan Postgrad. Med. 2008, 6, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Schober, P.; Boer, C.; Schwarte, L. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R. Interpretation of the correlation coeffient: A basic review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Ciota, A.T.; Matacchiero, A.C.; Kilpatrick, A.M.; Kramer, L.D. The effect of temperature on life history traits of Culex mosquitoes. J. Med. Entomol. 2014, 51, 55–62. [Google Scholar] [CrossRef]
- Asigau, S.; Parker, P.G. The influence of ecological factors on mosquito abundance and occurrence in Galápagos. J. Vector Ecol. 2018, 43, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Phanitchat, T.; Apiwathnasorn, C.; Sumroiphon, S.; Samung, Y.; Naksathit, A.; Thawornkuno, C.; Juntarajumnong, W.; Sungvornyothin, S. The influence of temperature on the developmental rate and survival of Aedes albopictus in Thailand. Southeast Asian J. Trop. Med. Public Health 2017, 48, 799–808. [Google Scholar]
- Yoo, E.H.; Chen, D.; Diao, C. The effects of weather and environmental factors on west nile virus mosquito abundance in greater toronto area. Earth Interact. 2016, 20. [Google Scholar] [CrossRef]
- Ferraguti, M.; Martínez-De La Puente, J.; Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Möhlmann, T.W.R.; Wennergren, U.; Tälle, M.; Favia, G.; Damiani, C.; Bracchetti, L.; Koenraadt, C.J.M. Community analysis of the abundance and diversity of mosquito species (Diptera: Culicidae) in three European countries at different latitudes. Parasites Vectors 2017, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farajollahi, A.; Fonseca, D.M.; Kramer, L.D.; Kilpatrick, A.M. Infection, Genetics and Evolution ‘Bird biting’ mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 2011, 11, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbach, R.E.; Dahl, C.; White, G.B. Culex (Culex) pipiens Linnaeus (Diptera: Culicidae): Concepts, type designations, and description. Proc. Entomol. Soc. Washingt. 1985, 87, 1–24. [Google Scholar]
- Harbach, R.E.; Harrison, B.A.; Gad, A.M. Culex (Culex) molestus forskal (Diptera: Culicidae): Neotype designation, description, variation, and taxonomic status. Proc. Entomol. Soc. Washingt. 1984, 86, 521–542. [Google Scholar]
- Sirivanakarn, S.; White, G.B. Neotype designation of Culex quinquefasciatus say (Diptera, Culicidae). Proc. Entomol. Soc. Washingt. 1978, 80, 360–372. [Google Scholar]
- Bourguet, D.; Fonseca, D.; Vourch, G.; Dubois, M.P.; Chandre, F.; Severini, C.; Raymond, M. The acetylcholinesterase gene Ace: A diagnostic marker for the pipiens and Quinquefasciatus forms of the Culex pipiens complex. J. Am. Mosq. Control Assoc. 1998, 14, 390–396. [Google Scholar]
- Di Luca, M.; Toma, L.; Boccolini, D.; Severini, F.; La Rosa, G.; Minelli, G.; Bongiorno, G.; Montarsi, F.; Arnoldi, D.; Capelli, G.; et al. Ecological distribution and CQ11 genetic structure of Culex pipiens complex (Diptera: Culicidae) in Italy. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Fonseca, D.M.; Keyghobadi, N.; Malcolm, C.A.; Mehmet, C.; Schaffner, F.; Mogi, M.; Fleischer, R.C.; Wilkerson, R.C. Emerging vectors in the Culex pipiens complex. Science 2004, 303, 1535–1538. [Google Scholar] [CrossRef] [Green Version]
- Weitzel, T.; Collado, A.; Jöst, A.; Pietsch, K.; Storch, V.; Becker, N. Genetic differentiation of population within the Culex pipiens complex and phylogeny of related species. J. Am. Mosq. Control Assoc. 2009, 25, 6–17. [Google Scholar] [CrossRef]
- Spielman, A. Studies on autogeny in natural populations of Culex pipiens. II. Seasonal abundance of autogenous and anautogenous populations. J. Med Entomol. 1971, 8, 555–561. [Google Scholar] [CrossRef]
- Kruppa, T. Vergleichende Untersuchungen zur Morphologie und Biologie von drei Arten des Culex pipiens-Komplexes. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 1988. [Google Scholar]
- Miller, B.R.; Crabtree, M.B.; Savage, H.M. Phylogeny of fourteen Culex mosquito species, including the Culex pipiens complex, inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol. Biol. 1996, 5, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Hesson, J.; Lundstrom, J.; Halvarsson, P.; Erixon, P.; Collado, A. A sensitive and reliable restriction enzyme assay to distinguish between the mosquitoes Culex torrentium and Culex pipiens. Med. Vet. Entomol. 2010, 24, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, T.; Collado, A.; Becker, N. Distribution and frequency of Culex pipiens and Culex torrentium (Culicidae) in Europe and diagnostic allozyme markers. J. Eur. Mosq. Control Assoc. Assoc. 2011, 29, 23–37. [Google Scholar]
- Harbach, R.E. Culex pipiens: Species versus species complex—Taxonomic history and perspective. Am. Mosq. Control Assoc. 2012, 28, 10–23. [Google Scholar] [CrossRef]
- Hubálek, Z. European Experience with the West Nile Virus Ecology and Epidemiology: Could It Be Relevant for the New World? Viral Immunol. 2009, 13, 415–426. [Google Scholar] [CrossRef]
Environmental Variables | Cx. Pipiens | Ae. Detritus | Ae. Caspius | |||
---|---|---|---|---|---|---|
r-Value | p-Value | r-Value | p-Value | r-Value | p-Value | |
Daily Average Temperature (°C) | −0.4896 | 0.0030 * | −0.4046 | 0.0240 * | −0.3803 | 0.0387 * |
Monthly Average Relative Humidity (%) | 0.6658 | 0.0356 * | 0.6849 | 0.0289 * | 0.7118 | 0.0209 * |
Monthly Precipitation (mm) | 0.9746 | 0.0254 * | 0.9831 | 0.0169 * | 0.9446 | 0.0554 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drakou, K.; Nikolaou, T.; Vasquez, M.; Petric, D.; Michaelakis, A.; Kapranas, A.; Papatheodoulou, A.; Koliou, M. The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus. Int. J. Environ. Res. Public Health 2020, 17, 1403. https://doi.org/10.3390/ijerph17041403
Drakou K, Nikolaou T, Vasquez M, Petric D, Michaelakis A, Kapranas A, Papatheodoulou A, Koliou M. The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus. International Journal of Environmental Research and Public Health. 2020; 17(4):1403. https://doi.org/10.3390/ijerph17041403
Chicago/Turabian StyleDrakou, Katerina, Thessalia Nikolaou, Marlen Vasquez, Dusan Petric, Antonios Michaelakis, Apostolos Kapranas, Athina Papatheodoulou, and Maria Koliou. 2020. "The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus" International Journal of Environmental Research and Public Health 17, no. 4: 1403. https://doi.org/10.3390/ijerph17041403
APA StyleDrakou, K., Nikolaou, T., Vasquez, M., Petric, D., Michaelakis, A., Kapranas, A., Papatheodoulou, A., & Koliou, M. (2020). The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus. International Journal of Environmental Research and Public Health, 17(4), 1403. https://doi.org/10.3390/ijerph17041403