The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Framework
2.2. Hypothesis
2.2.1. The Hypothesis on Direct Influence
2.2.2. The Mediating Variables and Hypothesis on Mediating Actions
2.2.3. Moderating Variables and Hypothesis on Moderating Effect
2.3. Survey
2.3.1. Questionnaire
2.3.2. Sampling
2.3.3. Data
3. Results
3.1. Statistical Analysis
3.1.1. The Family Network Variables
3.1.2. The Kinship Network Variables
3.1.3. The Friendship Network Variables
3.2. Modeling Analysis
3.3. Result Analysis
3.3.1. The Three Factor Model
3.3.2. The Four Factor Model
3.3.3. Comparative Analysis
4. Discussion
4.1. Influence of Social Capital
4.2. Mediating Effect of Pre-Decision Process
4.3. Moderating Effect of Socioeconomic Status
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xinsheng, H.; Yingquan, D.; Shengzhu, Z. Analysis on Dangerous Chemicals Accidents in China during 2011–2015. J. Saf. Sci. Technol. 2018, 14, 180–185. [Google Scholar]
- Wang, A.Q.; Wang, H.; Deng, H.; Wang, S.; Shi, W.; Yi, Z.X.; Qiu, R.L.; Yan, K. Controllable synthesis of mesoporous manganese oxide microsphere efficient for photo-Fenton-like removal of fluoroquinolone antibiotics. Appl. Catal. B Environ. 2019, 248, 298–308. [Google Scholar] [CrossRef]
- Wang, A.Q.; Chen, Z.; Zheng, Z.; Xua, H.; Wang, H.; Hua, K.; Yan, K. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem. Eng. J. 2020, 379, 122340. [Google Scholar] [CrossRef]
- Hu, K.; Li, R.Q.; Ye, C.L.; Wang, A.Q.; Wei, W.Q.; Hu, D.; Qiu, R.L.; Yan, K. Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin. J. Clean. Prod. 2020, 253, 120055. [Google Scholar] [CrossRef]
- Desheng, W.; Yu, S.; Kefan, X. Traits and Causes of Environmental Loss-Related Chemical Accidents in China Based on Co-word Analysis. Environ. Sci. Pollut. Res. 2018, 25, 18189–18199. [Google Scholar]
- Le, Z.; Xing, T. Social Learning in the Conflict of NIMBY-A Comparative Study of 7 cases. Academics 2016, 8, 38–54. [Google Scholar]
- Trumbo, C.W.; Peek, L.; Meyer, M.A.; Marlatt, H.L.; Gruntfest, E.; McNoldy, B.D.; Schubert, W.H. A Cognitive-Affective Scale for Hurricane Risk Perception. Risk Anal. 2016, 36, 2233–2246. [Google Scholar] [CrossRef]
- Lindell, M.K.; Perry, R.W. The Protective actions Decision Model: Theoretical Modifications and Additional Evidence. Risk Anal. 2012, 32, 616–632. [Google Scholar] [CrossRef]
- Wei, J.; Wang, F.; Michael, L.K. The Evolution of Stakeholders’ Perceptions of Disaster: A model of Information Flow. J. Assoc. Inf. Sci. Technol. 2016, 67, 441–453. [Google Scholar] [CrossRef]
- Jon, I.; Huang, S.; Michael, L.K. Perceptions and Reactions to Tornado Warning Polygons: Would a Gradient Polygon be Useful? Int. J. Disaster Risk Reduct. 2016, 30, 132–144. [Google Scholar] [CrossRef]
- Sajjad, M.; Li, Y.; Tang, Z. Assessing Hazard Vulnerability, Habitat Conservation, and Restoration for the Enhancement of Mainland China’s Coastal Resilience. Earths Future 2018, 6, 326–338. [Google Scholar] [CrossRef]
- Lindell, M.K.; Perry, R.W. Communication Environment Risk in Multiethnic Communities; Sage Publications: Thousand Oaks, CA, USA; London, UK; New Delhi, India, 2004. [Google Scholar]
- Li, M.; Gao, S.; Lu, F. Dynamic Estimation of Individual Exposure Levels to Air Pollution Using Trajectories Reconstructed from Mobile Phone Data. Int. J. Environ. Res. Public Health 2019, 16, 4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Huang, S.; Qin, P. Local Residents’ Risk Perceptions in Response to Shale Gas Exploitation: Evidence from China. Energy Policy 2018, 113, 123–134. [Google Scholar] [CrossRef]
- Chunhui, Y.; Jianbin, J.; Yalan, X. Public Attitudes towards Scientists’ Roles in Policy Making: An Analysis from the Perspective of Science Literacy, Social Network and Trust. J. Bimon. 2016, 36, 77–86. [Google Scholar]
- Tang, Z.; Zhang, L.; Xu, F.; Vo, H. Examining the Role of Social Media in California’s Drought Risk Management in 2014. Nat. Hazards 2015, 79, 171–193. [Google Scholar] [CrossRef]
- Mostafizi, A.; Wang, H.; Cox, D.; Cramer, L.A.; Dong, S. Agent-based Tsunami Evacuation Modeling of Unplanned Network Disruptions for Evidence-driven Resource Allocation and Retrofitting Strategies. Nat. Hazards 2017, 88, 1347–1372. [Google Scholar] [CrossRef]
- Tsai, C.H.; Kuo, Y.U.; Uei, S.H. Influences of Satisfaction with Telecare and Family Trust in Older Taiwanese People. Int. J. Environ. Res. Public Health 2014, 11, 359–1368. [Google Scholar] [CrossRef] [Green Version]
- Yandong, Z. Social Network and People’s Wellbeing in Urban and Rural Area. Society 2008, 28, 1–19. [Google Scholar]
- Chung, W.J.; Choi, J.; Chang, W.W.; Soobum, L.; Christina, E.S. Community Relations Dealing with a Not in My Backyard (NIMBY) Context: An Experimental Application of Contextal Theory of Publics and Social Exchange Theory. Int. J. Confl. Manag. 2016, 27, 424–452. [Google Scholar] [CrossRef]
- Perlman, A.; Sacks, R.; Barak, R. Hazard Recognition and Risk Perception in Construction. Saf. Sci. 2014, 64, 22–31. [Google Scholar] [CrossRef]
- Hicks, A.; Armijos, M.T.; Barclay, J.; Stone, J.; Cortés, G.P. Risk Communication Films: Process, Product and Potential for Improving Preparedness and Behavior Change. Int. J. Disaster Risk Reduct. 2017, 23, 168–186. [Google Scholar] [CrossRef]
- Miceli, R.; Sotgiu, I.; Settanni, M. Disaster Preparedness and Perception of Flood Risk: A Study in an Alpine Valley in Italy. J. Environ. Psychology 2008, 28, 164–173. [Google Scholar] [CrossRef]
- Roder, G.; Ruljigaljig, T.; Lin, C.W.; Tarolli, P. Natural Hazards Knowledge and Risk Perception of Wujie Indigenous Community in Taiwan. Nat. Hazards 2016, 81, 641–662. [Google Scholar] [CrossRef]
- Ruin, I.; Gaillard, J.C. How to Get There? Assessing Motorists’ Flash Flood Risk Perception on Daily Itineraries. Environ. Hazards 2007, 7, 235–244. [Google Scholar] [CrossRef]
- Bridget, R.; Simon, F.; Jessi, L.; Wilson, M.J.; Gauthe, D.; Bogen, D.; Nguyen, D.; Frahm, E.; Wickliffe, J.K. Louisiana Residents’ Perceptions after the Deepwater Horizon Oil Spill Reflect a Lack of Information Highlighting Are as to Improve Disaster Risk Communication. J. Environ. Manag. 2016, 52, 162–178. [Google Scholar]
- Rausch, I.; Reina, A.; Simoens, P. Coherent Collective Behaviour Emerging from Decentralised Balancing of Social Feedback and Noise. Swarm Intell. 2019, 13, 321–345. [Google Scholar] [CrossRef]
- Lang, H.; Chao, W. Conceptual Modelling of Risk Perception Deviation Mechanism. J. Nat. Disaters 2017, 26, 60–66. [Google Scholar]
- Yanjie, B.; Wenhong, Z. Economic Systems, Social Networks and Occupational Mobility. Soc. Sci. China 2001, 2, 77–89. [Google Scholar]
- Bowen, S.; Xuesong, L.; Xinmu, W. A Study on the Health Promoting Influence of Social capitalocial capitals. Chin. J. Popul. Sci. 2016, 6, 98–106. [Google Scholar]
- Krystal, A.K.; Lindsey, W.; Joan, S.A.; Karen, B.E. Evaluation of Risk Communication in a Mammography Patient Decision Aid. Patient Educ. Couns. 2016, 99, 226–245. [Google Scholar]
- Michael, K.; Arlikatti, L.S.; Huang, S.H. Immediate Behavioral Response to the June 17th, 2013 Flash Floods in Uttarakhand, North India. Int. J. Disaster Risk Reduct. 2019, 34, 129–146. [Google Scholar]
- Liobikiene, G.; Juknys, R. The Role of Values, Environmental Risk Perception, Awareness of Consequences, and Willingness to Assume Responsibility for Environmentally-friendly Behaviour: The Lithuanian case. J. Clean. Prod. 2016, 112, 3413–3422. [Google Scholar] [CrossRef]
- Chen, W.; Wang, C.; Chiang, S. The Impact of Occupational Psychological Hazards and Metabolic Syndrome on the 8-year Risk of Cardiovascular Diseases-A Longitudinal Study. PLoS ONE 2018, 13, e0202977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werg, J.; Grothmann, T.; Chmidt, P.S. Assessing Social Capacity and Vulnerability of Private Households to Natural Hazards—Integrating Psychological and Governance Factors. Nat. Hazards Earth Syst. Sci. 2013, 13, 1613–1628. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Keim, B.D.; Garand, J.C.; Hamilton, L.C. Weather, Climate, and The Economy: Explaining Risk Perceptions of Global Warming, 2001–2010. Weather Climate Soc. 2014, 6, 119–134. [Google Scholar] [CrossRef]
- Feng, H.; Jay, L.; Michaels, S.E.B. Social Capital’s Influence on Environmental Concern in China: An Analysis of the 2010 Chinese General Social Survey. Sociol. Perspect. 2019, 62, 844–864. [Google Scholar]
- Xiaoyuan, L.; Song, L. Social Context, Occupational Status and Entrepreneurial Intentions for Social Individuals. Bus. Rev. 2015, 27, 138–149. [Google Scholar]
- del Águila, M.M.R.; González-Ramírez, A.R. Sample scale calculation. Allergollmnunpathol (Madr) 2014, 42, 485–492. [Google Scholar] [CrossRef]
- Kendall, M.G.; Smith, B.B. Tables of Random Sampling Numbers; Cambridge University Press: Cambridge, UK, 1939. [Google Scholar]
- Hou, J.T.; Wen, Z.L.; Cheng, Z.J. Structural Equation Model and Its Application; Educational Science Publishing House: Beijing, China, 2004. [Google Scholar]
- Bouza-Herrera, C.N. Handling Missing Data in Ranked Set Sampling; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
Social Capital | Model Type | CMIN/DF | CFI | RMSEA | IFI | NFI | RFI | TLI |
---|---|---|---|---|---|---|---|---|
Family Network | Three Factor Model | 2.030 | 0.960 | 0.048 | 0.961 | 0.927 | 0.879 | 0.935 |
Four Factor Model | 1.908 | 0.986 | 0.045 | 0.986 | 0.972 | 0.986 | 0.980 | |
Kinship Network | Three Factor Model | 0.699 | 1.000 | 0.000 | 1.012 | 0.974 | 0.958 | 1.019 |
Four Factor Model | 1.124 | 0.998 | 0.017 | 0.998 | 0.979 | 0.970 | 0.997 | |
Friendship Network | Three Factor Model | 2.174 | 0.937 | 0.051 | 0.938 | 0.891 | 0.842 | 0.908 |
Four Factor Model | 1.753 | 0.982 | 0.041 | 0.982 | 0.959 | 0.944 | 0.975 |
Social Capital | Model Type | Direct Influence | T Value | Indirect Influence | T Value | Total Influence |
---|---|---|---|---|---|---|
Family network | Three Factor Model | 0.265 | 1.426 | 0.221 | 3.652 | 0.486 |
Kinship network | Three Factor Model | 0.044 | 0.550 | 0.193 | 3.243 | 0.237 |
Friendship network | Three Factor Model | 0.188 | 1.257 | 0.259 | 3.968 | 0.447 |
Social Capital | Model Type | Control Coefficient | T Value |
---|---|---|---|
Family Network | Four Factor Model | 1.055 | 6.092 |
Kinship Network | Four Factor Model | 1.590 | 6.028 |
Friendship Network | Four Factor Model | 1.297 | 7.054 |
Social Capital | Model | Direct Influence | T Value | Indirect Influence | T Value | Total Influence |
---|---|---|---|---|---|---|
Family Network | Four factor Model | 0.124 | 0.951 | 0.121 | 2.261 | 0.245 |
Kinship Network | Four factor Model | 0.097 | 0.756 | 0.229 | 3.981 | 0.326 |
Friendship Network | Four factor Model | 0.116 | 0.655 | −0.154 | 2.869 | −0.038 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Zhang, H.; Zhang, H. The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals. Int. J. Environ. Res. Public Health 2020, 17, 1453. https://doi.org/10.3390/ijerph17041453
Liu T, Zhang H, Zhang H. The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals. International Journal of Environmental Research and Public Health. 2020; 17(4):1453. https://doi.org/10.3390/ijerph17041453
Chicago/Turabian StyleLiu, Tiezhong, Huyuan Zhang, and Hubo Zhang. 2020. "The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals" International Journal of Environmental Research and Public Health 17, no. 4: 1453. https://doi.org/10.3390/ijerph17041453
APA StyleLiu, T., Zhang, H., & Zhang, H. (2020). The Influence of Social Capital on Protective Action Perceptions Towards Hazardous Chemicals. International Journal of Environmental Research and Public Health, 17(4), 1453. https://doi.org/10.3390/ijerph17041453