Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Amine-Functionalized Samples
2.3. Characterization of the Adsorbents
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Characterization of Materials
3.2. Separation of Carbon Dioxide from Simulated Biogas
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Zhao, P.; Hao, L.; Xu, Y. Amine-modified SBA-15(P): A promising adsorbent for CO2 capture. J. CO2 Util. 2018, 24, 22–33. [Google Scholar] [CrossRef]
- Luis, M.; Tomaz, C.; Sarah, S. Amine functionalized porous silica for CO2/CH4 separation by adsorption: Which amine and why. Chem. Eng. J. 2018, 336, 612–621. [Google Scholar]
- Augelletti, R.; Conti, M.; Annesini, M.C. Pressure swing adsorption for biogas upgrading. A new process confifiguration for the separation of biomethane and carbon dioxide. J. Clean. Prod. 2017, 140, 1390–1398. [Google Scholar] [CrossRef]
- Rasi, S.; Veijanen, A.; Rintala, J. Trace compounds of biogas from different biogas production plants. Energy 2007, 32, 1375–1380. [Google Scholar] [CrossRef]
- Ren, Y.P.; Ding, R.Y.; Yue, H.R.; Tang, S.Y.; Liu, C.J.; Zhao, J.B.; Lin, W.; Liang, B. Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture. Appl. Energ. 2017, 198, 250–260. [Google Scholar] [CrossRef]
- Dos Santos, T.C.; Ronconi, C.M. Self-assembled 3D mesoporous graphene oxides (MEGOs) as adsorbents and recyclable solids for CO2 and CH4 capture. J. CO2 Util. 2017, 20, 292–300. [Google Scholar] [CrossRef]
- White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S.; Pennline, H.W. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-coal beds and deep saline aquifers. J. Air Waste Manage. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; El-Naas, M.H.; Zhang, Z.; Van der Bruggen, B. CO2 Capture using Hollow Fiber Membranes: A review of membran wetting. Energy Fuels 2018, 32, 1283–1293. [Google Scholar] [CrossRef]
- Ferella, F.; Puca, A.; Taglieri, G.; Rossi, L.; Gallucci, K. Separation of carbon dioxide for biogas upgrading to biomethane. J. Clean Prod. 2017, 164, 1205–1218. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, Y. Nitrogen-Rich Porous Adsorbents for CO2 Capture and Storage. Chem.-Asian J. 2013, 8, 1680–1691. [Google Scholar]
- Zhang, G.; Zhao, P.; Hao, L.; Xu, Y. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support. Sep. Purif. Technol. 2019, 209, 516–527. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Q.; Shen, M.; Shi, J.; Chen, J.; Pan, H.; Shi, Y. Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions. Environ. Sci. Technol. 2011, 45, 5710–5716. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Park, J.N.; Abdi, S.H.R.; Park, S.K.; Park, Y.K.; Lee, C.W. Nano-sized carbon hollow spheres for abatement of ethylene. Top. Catal. 2006, 39, 221–226. [Google Scholar] [CrossRef]
- Zhang, H.; Goeppert, A.; Kar, S.; Prakash, G.K.S. Structural parameters to consider in selecting silica supports for polyethylenimine based CO2 solid adsorbents. Importance of pore size. J. CO2 Util. 2018, 26, 246–253. [Google Scholar] [CrossRef]
- Feng, X.; Hu, G.; Hu, X.; Xie, G.; Xie, Y.; Lu, J.; Luo, M. Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO2 Capture. Ind. Eng. Chem. Res. 2013, 52, 4221–4228. [Google Scholar] [CrossRef]
- Zeleňák, V.; Badaničová, M.; Halamová, D.; Čejka, J.; Zukal, A.; Murafa, N.; Goerigk, G. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chem. Eng. J. 2008, 144, 336–342. [Google Scholar] [CrossRef]
- Lashaki, M.J.; Sayari, A. CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure. Chem. Eng. J. 2018, 334, 1260–1269. [Google Scholar] [CrossRef]
- Hori, K.; Higuchi, T.; Aoki, Y.; Miyamoto, M.; Oumi, Y.; Yogo, K.; Uemiya, S. Effect of pore size, aminosilane density and aminosilane molecular length on CO2 adsorption performance in aminosilane modified mesoporous silica. Microporous Mesoporous Mater. 2017, 246, 158–165. [Google Scholar] [CrossRef]
- Son, W.J.; Choi, J.S.; Ahn, W.S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 2008, 113, 31–40. [Google Scholar] [CrossRef]
- Zhang, H.; Goeppert, A.; Czaun, M.; Prakash, G.K.S.; Olah, G.A. CO2 capture on easily regenerable hybrid adsorbents based on polyamines and mesocellular silica foam. Effect of pore volume of the support and polyamine molecular weight. RSC Adv. 2014, 4, 19403–19417. [Google Scholar] [CrossRef]
- Heydari-Gorji, A.; Yang, Y.; Sayari, A. Effect of the Pore Length on CO2 Adsorption over Amine-Modified Mesoporous Silicas. Energy Fuels 2011, 25, 4206–4210. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, L.; Zhang, Y.; Yang, G.; Yan, Z. Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture. Ind. Eng. Chem. Res. 2011, 50, 3220–3226. [Google Scholar] [CrossRef]
- Yan, X.; Komarneni, S.; Yan, Z. CO2 adsorption on Santa Barbara Amorphous-15 (SBA-15) and amine-modified Santa Barbara Amorphous-15 (SBA-15) with and without controlled microporosity. J. Colloid Interface Sci. 2013, 390, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Rezaei, F.; Yang, X. Mixed Alkanolamine-Polyethylenimine Functionalized Silica for CO2 capture. Energy Technol. 2019, 7, 253–262. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A.-H.A.; Li, W.; Jones, C.W.; Giannelis, E.P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 2001, 4, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Yue, M.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 2006, 16, 1717–1722. [Google Scholar] [CrossRef]
- Song, F.; Zhong, Q.; Ding, J.; Zhao, Y.; Bu, Y. Mesoporous TiO2 as the support of tetraethylenepentamine for CO2 capture fromsimulated flue gas. RSC Adv. 2013, 3, 23785–23790. [Google Scholar] [CrossRef]
- Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 2001, 15, 250–255. [Google Scholar] [CrossRef]
- Yue, M.; Sun, L.; Cao, Y.; Wang, Z.; Wang, Y.; Yu, Q. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous Mesoporous Mater. 2008, 114, 74–81. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, Y. Mixed-amine Modified SBA-15 as Novel Adsorbent of CO2 Separation for Biogas Upgrading. Sep. Sci. Technol. 2011, 46, 679–686. [Google Scholar] [CrossRef]
- Wan, X.; Lu, X.; Liu, J. Impregnation of PEI in Novel Porous MgCO3 for Carbon Dioxide Capture from Flue Gas. Ind. Eng. Chem. Res. 2019, 58, 4979–4987. [Google Scholar] [CrossRef]
- Wang, X.; Qing, J.; Zhao, J. Mixed amine-modified MCM-41 sorbents for CO2 capture. Int. J. Greenh. Gas Control 2015, 37, 90–98. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Liu, J.; Sun, Y.; Liu, W. Polyethylenimine-impregnated resins: The effect of support structures on selective adsorption for CO2 from simulated biogas. Chem. Eng. J. 2019, 355, 822–829. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Guo, Q. Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture. Chem. Eng. J. 2015, 260, 573–581. [Google Scholar] [CrossRef]
- Cui, M.; Chen, S.; Qi, T.; Zhang, Y. Investigation of CO2 Capture in Nonaqueous Ethylethanolamine Solution Mixed with Porous Solids. J. Chem. Eng. Data 2018, 63, 1198–1205. [Google Scholar] [CrossRef]
- Bae, J.Y.; Jang, S.G. Characteristics of CO2 Capture by Tetraethylenepentamine Modified Mesoporous Silica Morphology. J. Nanosci. Nanotechnol 2019, 19, 6291–6296. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, X.; Sun, L.; Liu, X. Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. J. Nat. Gas Chem. 2009, 18, 167–172. [Google Scholar] [CrossRef]
- Gil, M.V.; álvarez-Gutiérrez, N.; Martínez, M.; Rubiera, F.; Pevida, C.; Morán, A. Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. J. Chem. Eng. J. 2015, 269, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Peter, S.A.; Baron, G.V.; Gascon, J.; Kapteijn, F.; Denayer, J.F.M. Dynamic desorption of CO2, and CH4, from amino-MIL-53(Al) adsorbent. J. Adsorption 2013, 19, 1235–1244. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2·g−1) | Total Pore Volume (mL·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
FS | 230.2 | 0.6228 | 10.82 |
FS-20%PEI | 97.6311 | 0.368724 | 15.10682 |
FS-20%MEA | 121.8443 | 0.387443 | 12.71928 |
FS-10%MEA-10%PEI | 103.8038 | 0.395548 | 15.24213 |
Adsorbent | CH4/CO2 (V/V%) | Ta (℃) | pb (MPa) | qadc (mg/g) | Reference |
---|---|---|---|---|---|
FNG-II Silica-MEA(20%) | 64.4/35.6 | 25 | 0.2 | 68.87 | This work |
FNG-II Silica-MEA(10%)-PEI(10%) | 64.4/35.6 | 25 | 0.2 | 64.68 | This work |
FNG-II Silica-PEI(20%) | 64.4/35.6 | 25 | 0.2 | 35.76 | This work |
MCM-41-PEI(50%) | -/100 | 75 | - | 111 | [19] |
SBA-15-PEI(50%) | -/100 | 75 | - | 127 | [19] |
D101-PEI(20%) | 64.4/35.6 | 25 | 0.2 | 47.7 | [33] |
ADS-17-PEI(20%) | 64.4/35.6 | 25 | 0.2 | 65.2 | [33] |
β-Zeolite-MEA(40%) | -/100 | 30 | 0.1 | 33.88 | [37] |
Activated carbon | 50/50 | 25 | 0.12 | 64.68 | [38] |
amino-MIL-53(Al) | 40/60 | 30 | 0.1 | 60.72 | [39] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Liu, W.; Wang, X.; Yang, H.; Liu, J. Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica. Int. J. Environ. Res. Public Health 2020, 17, 1452. https://doi.org/10.3390/ijerph17041452
Sun Y, Liu W, Wang X, Yang H, Liu J. Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica. International Journal of Environmental Research and Public Health. 2020; 17(4):1452. https://doi.org/10.3390/ijerph17041452
Chicago/Turabian StyleSun, Yankun, Wanzhen Liu, Xinzhong Wang, Haiyan Yang, and Jun Liu. 2020. "Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica" International Journal of Environmental Research and Public Health 17, no. 4: 1452. https://doi.org/10.3390/ijerph17041452
APA StyleSun, Y., Liu, W., Wang, X., Yang, H., & Liu, J. (2020). Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica. International Journal of Environmental Research and Public Health, 17(4), 1452. https://doi.org/10.3390/ijerph17041452