Joint Toxicity of a Multi-Heavy Metal Mixture and Chemoprevention in Sprague Dawley Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Animal Experiment
2.2.2. Preparation of Multi-Heavy Metal Mixture
2.2.3. Organ Weight and Organ/Body Weight Coefficients
2.2.4. Hematological and Biochemical Analysis
2.2.5. Histopathological Examination
2.2.6. Determination of Heavy Metals in Serum and Organs by ICP-MS
2.3. Statistics
3. Results
3.1. Morris Water Maze Test
3.2. Organ Weight and Organ/Body Weight Coefficients
3.3. Hematological and Biochemical Analysis
3.4. Histopathological Examination
3.5. ICP-MS Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, J.-H.; Kim, E.-A.; Koh, D.-H.; Byun, K.; Ryu, H.-W.; Lee, S.-G. Blood lead levels of Korean lead workers in 2003–2011. Ann. Occup. Environ. Med. 2014, 26, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djuric, A.; Begic, A.; Gobeljic, B.; Stanojevic, I.; Ninkovic, M.; Vojvodic, D.; Pantelic, A.; Zebic, G.; Prokic, V.; Dejanovic, B.; et al. Oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem. Toxicol. 2015, 86, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Djukić-Ćosić, D.; Ninković, M.; Maličevic, Ž.; Plamenac-Bulat, Z.; Matović, V. Effect of supplemental magnesium on the kidney levels of cadmium, zinc, and copper of mice exposed to toxic levels of cadmium. Biol. Trace Elem. Res. 2006, 114, 281–291. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 340–368. [Google Scholar] [CrossRef]
- Chary, N.S.; Kamala, C.T.; Raj, D.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.; Hashem Abdel-Razik, A.R.; Abdel Aziz, R.L. Rescue effects of aqueous seed extracts of Foeniculum vulgare and Carum carvi against cadmium-induced hepatic, renal and gonadal damage in female albino rats. Asian Pac. J. Trop. Med. 2017, 10, 1123–1133. [Google Scholar] [CrossRef]
- Odewumi, C.O.; Badisa, V.L.; Le, U.T.; Latinwo, L.M.; Ikediobi, C.O.; Badisa, R.B.; Darlingreed, S.F. Protective effects of N-acetylcysteine against cadmium-induced damage in cultured rat normal liver cells. Int. J. Mol. Med. 2011, 27, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.A.; Zachi, E.C.; Barboni, M.T.S.; Ventura, D.F. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry. Neurotoxicology 2017, 59, 263–269. [Google Scholar] [CrossRef]
- Karrari, P.; Mehrpour, O.; Abdollahi, M. A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures. DARU J. Pharm. Sci. 2012, 20, 2. [Google Scholar] [CrossRef] [Green Version]
- Mabrouk, A.; Bel Hadj Salah, I.; Chaieb, W.; Ben Cheikh, H. Protective effect of thymoquinone against lead-induced hepatic toxicity in rats. Environ. Sci. Pollut. Res. Int. 2016, 23, 12206–12215. [Google Scholar] [CrossRef]
- BaSalamah, M.A.; Abdelghany, A.H.; El-Boshy, M.; Ahmad, J.; Idris, S.; Refaat, B. Vitamin D alleviates lead induced renal and testicular injuries by immunomodulatory and antioxidant mechanisms in rats. Sci. Rep. 2018, 8, 4853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho Cdos, S.; Fernandes, M.N. Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 151, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Denkhaus, E.; Salnikow, K. Nickel essentiality, toxicity, and carcinogenicity. Crit. Rev. Oncol. Hematol. 2002, 42, 35–56. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, M.; Zhen, H.; Chen, L.; Shi, P.; Huang, Z. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE 2014, 9, e103194. [Google Scholar] [CrossRef] [PubMed]
- Crossgrove, J.; Zheng, W. Manganese toxicity upon overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Yamani, N.; Collins, A.R.; Runden-Pran, E.; Fjellsbo, L.M.; Shaposhnikov, S.; Zienolddiny, S.; Dusinska, M. In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: Towards reliable hazard assessment. Mutagenesis 2017, 32, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Husak, V.V.; Mosiichuk, N.M.; Kubrak, O.I.; Matviishyn, T.M.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Acute exposure to copper induces variable intensity of oxidative stress in goldfish tissues. Fish Physiol. Biochem. 2018, 44, 841–852. [Google Scholar] [CrossRef]
- O’Brien, T.J.; Jiang, G.; Chun, G.; Mandel, H.G.; Westphal, C.S.; Kahen, K.; Montaser, A.; States, J.C.; Patierno, S.R. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease. Mutat. Res. 2006, 610, 85–92. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.F.; Zhao, C.G.; Sui, F.X.; Teng, X.; Wu, Y.B. Therapeutic potential of EGCG on acute renal damage in a rat model of obstructive nephropathy. Mol. Med. Rep. 2013, 7, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Fu, G.; Zhao, Y.; Cheng, Z.; Chen, Y.; Zhao, B.; He, W.; Guo, L.J. EGCG ameliorates the suppression of long-term potentiation induced by ischemia at the Schaffer collateral-CA1 synapse in the rat. Cell. Mol. Neurobiol. 2012, 32, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Sun, H.; Kluz, T.; Clancy, H.A.; Kiok, K.; Costa, M. Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol. Appl. Pharmacol. 2012, 258, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Hastak, K.; Ahmad, N.; Lewin, J.S.; Mukhtar, H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl. Acad. Sci. USA 2001, 98, 10350–10355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.; Hou, W.; Li, S.; Zhu, X.; Lin, Y.; Han, J.; Duan, Z.; Gui, B. Sodium Citrate Inhibits Endoplasmic Reticulum Stress in Rats with Adenine-Induced Chronic Renal Failure. Am. J. Nephrol. 2015, 42, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Gabutti, L.; Ferrari, N.; Mombelli, G.; Keller, F.; Marone, C. The favorable effect of regional citrate anticoagulation on interleukin-1beta release is dissociated from both coagulation and complement activation. J. Nephrol. 2004, 17, 819–825. [Google Scholar]
- Gritters, M.; Grooteman, M.P.; Schoorl, M.; Schoorl, M.; Bartels, P.C.; Scheffer, P.G.; Teerlink, T.; Schalkwijk, C.G.; Spreeuwenberg, M.; Nube, M.J. Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis. Nephrol. Dial. Trans. 2006, 21, 153–159. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.; Youness, E.R.; Mohammed, N.A.; Morsy, S.M.; Omara, E.A.; Sleem, A.A. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice. J. Med. Food 2014, 17, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Jozefczak, M.; Remans, T.; Vangronsveld, J.; Cuypers, A. Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses. Int. J. Mol. Sci. 2012, 13, 3145–3175. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, L.E.; Sobrino-Plata, J.; Montero-Palmero, M.B.; Carrasco-Gil, S.; Flores-Caceres, M.L.; Ortega-Villasante, C.; Escobar, C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 2015, 66, 2901–2911. [Google Scholar] [CrossRef] [Green Version]
- Jan, A.T.; Ali, A.; Haq, Q. Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. J. Postgrad. Med. 2011, 57, 72–77. [Google Scholar]
- Fløtre, C.H.; Varsi, K.; Helm, T.; Bolann, B.; Bjørke-Monsen, A.-L. Predictors of mercury, lead, cadmium and antimony status in Norwegian never-pregnant women of fertile age. PLoS ONE 2017, 12, e0189169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Zhong, H.; Guo, Z.; Wu, Z.; Zhang, H.; Wang, C.; Zhou, Y.; Zuo, Z. Levels of heavy metals and trace elements in umbilical cord blood and the risk of adverse pregnancy outcomes: A population-based study. Biol. Trace Elem. Res. 2014, 160, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Gu, Y.; Zhou, Q.; Mao, G.; Zou, B.; Zhao, J. Combined toxicity of heavy metal mixtures in liver cells. J. Appl. Toxicol. JAT 2016, 36, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Huczek, Z.; Kochman, J.; Filipiak, K.J.; Horszczaruk, G.J.; Grabowski, M.; Piatkowski, R.; Wilczynska, J.; Zielinski, A.; Meier, B.; Opolski, G. Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 2005, 46, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Geoffroy-Siraudin, C.; Perrard, M.-H.; Chaspoul, F.; Lanteaume, A.; Gallice, P.; Durand, P.; Guichaoua, M.-R. Validation of a Rat Seminiferous Tubule Culture Model as a Suitable System for Studying Toxicant Impact on Meiosis Effect of Hexavalent Chromium. Toxicol. Sci. 2010, 116, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Erdem, O.; Yazihan, N.; Kocak, M.K.; Sayal, A.; Akcil, E. Influence of chronic cadmium exposure on the tissue distribution of copper and zinc and oxidative stress parameters in rats. Toxicol. Ind. Health 2016, 32, 1505–1514. [Google Scholar] [CrossRef]
- Satarug, S.; Nishijo, M.; Ujjin, P.; Moore, M.R. Chronic exposure to low-level cadmium induced zinc-copper dysregulation. J. Trace Elem. Med. Biol. 2018, 46, 32–38. [Google Scholar] [CrossRef]
- Saibu, Y.; Jamwal, A.; Feng, R.; Peak, D.; Niyogi, S. Distribution and speciation of zinc in the gills of rainbow trout (Oncorhynchus mykiss) during acute waterborne zinc exposure: Interactions with cadmium or copper. Comparative biochemistry and physiology. Toxicol. Pharmacol. 2018, 206, 23–31. [Google Scholar] [CrossRef]
- Moshtaghie, A.A.; Ani, M.; Aghadavod, E.; Fazilati, M. Protective effects of selenium and zinc on changes in catecholamine levels of brain regions in lead intoxified rat. Pak. J. Biol. Sci. PJBS 2007, 10, 2964–2967. [Google Scholar] [PubMed]
- O’Neal, S.L.; Hong, L.; Fu, S.; Jiang, W.; Jones, A.; Nie, L.H.; Zheng, W. Manganese accumulation in bone following chronic exposure in rats: Steady-state concentration and half-life in bone. Toxicol. Lett. 2014, 229, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, L.; Tanwir, F.; Yousefi Babadi, V. Physiological and Biochemical Effects of Echium Amoenum Extract on Mn(2+)-Imposed Parkinson Like Disorder in Rats. Adv. Pharm. Bull. 2018, 8, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.M.; Zhou, B.; Cosco, D.; Gitschier, J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 2001, 98, 6836–6841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, A.; Alonzo, E.; Sauble, E.; Chu, Y.L.; Nguyen, D.; Linder, M.C.; Sato, D.S.; Mason, A.Z. Copper binding components of blood plasma and organs, and their responses to influx of large doses of (65)Cu, in the mouse. Biometals 2008, 21, 525–543. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, S.; Tsuchiya, Y.; Garcia-Ruiz, J.P.; Lalioti, V.; Nielsen, S.; Cassio, D.; Sandoval, I.V. ATP7B copper-regulated traffic and association with the tight junctions: Copper excretion into the bile. Gastroenterology 2008, 134, 1215–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, H.C.; Collier, S.; Deshmukh, K.; Guthrie, J.; Robertson, J.D.; Kornfeld, K. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet. 2013, 9, e1003522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloup, V.; Jankovska, I.; Szakova, J.; Magdalek, J.; Sloup, S.; Langrova, I. Effects of tapeworm infection on absorption and excretion of zinc and cadmium by experimental rats. Environ. Sci. Pollut. Res. Int. 2018, 25, 35464–35470. [Google Scholar] [CrossRef] [PubMed]
Chemical | Content (mg) | Mass Ratio of Metal Element |
---|---|---|
K2Cr2O7 | 8.547 | 41.345 |
MnCl2•4H2O | 45.609 | 173.264 |
NiCl2•6H2O | 8.893 | 30.054 |
CuSO4•5H2O | 89.816 | 312.824 |
ZnSO4•7H2O | 344.187 | 1070.838 |
CdCl2•2.5H2O | 1.972 | 13.281 |
CH3ClHg | 0.091 | 1.000 |
(CH3COO)2Pb3H2O | 0.884 | 6.611 |
Total | 500.001 |
(g) | Group | F | p | ||||
---|---|---|---|---|---|---|---|
Control | Mixture | Mix + EGCG | Mix + TCD | Mix + GSH | |||
Heart | 1.68 ± 0.11 | 1.66 ± 0.12 | 1.54 ± 0.27 | 1.70 ± 0.13 | 1.72 ± 0.24 | 0.984 | 0.430 |
Liver | 12.20 ± 0.98 | 12.58 ± 1.69 | 12.41 ± 1.48 | 12.88 ± 1.66 | 13.39 ± 1.82 | 0.647 | 0.633 |
Spleen | 0.86 ± 0.12 | 0.77 ± 0.13 | 0.75 ± 0.11 | 0.81 ± 0.13 | 0.89 ± 0.07 | 1.938 | 0.128 |
Lung | 1.67 ± 0.27 | 2.21 ± 0.52 | 1.75 ± 0.26 | 1.83 ± 0.48 | 1.77 ± 0.41 | 1.958 | 0.125 |
Kidney | 3.33 ± 0.33 | 3.28 ± 0.29 | 3.27 ± 0.16 | 3.51 ± 0.28 | 3.52 ± 0.31 | 1.531 | 0.217 |
Brain | 2.11 ± 0.10 | 2.09 ± 0.11 | 2.06 ± 0.05 | 2.09 ± 0.18 | 2.10 ± 0.08 | 0.136 | 0.968 |
Testicle | 3.39 ± 0.17 | 3.16 ± 0.15 * | 2.96 ± 0.21 * | 3.18 ± 0.21 * | 3.16 ± 0.19 * | 3.923 | 0.011 |
Group | F | p | |||||
---|---|---|---|---|---|---|---|
Control | Mixture | Mix + EGCG | Mix + TCD | Mix + GSH | |||
Heart | 0.32 ± 0.02 | 0.32 ± 0.03 | 0.29 ± 0.05 | 0.30 ± 0.02 | 0.30 ± 0.04 | 0.983 | 0.431 |
Liver | 2.29 ± 0.18 | 2.39 ± 0.38 | 2.31 ± 0.17 | 2.28 ± 0.14 | 2.29 ± 0.14 | 0.327 | 0.858 |
Spleen | 0.16 ± 0.02 | 0.15 ± 0.02 | 0.14 ± 0.03 | 0.14 ± 0.02 | 0.15 ± 0.02 | 1.167 | 0.344 |
Lung | 0.31 ± 0.04 | 0.42 ± 0.10 * | 0.32 ± 0.05 | 0.33 ± 0.08 | 0.30 ± 0.07 | 3.025 | 0.032 |
Kidney | 0.63 ± 0.09 | 0.62 ± 0.06 | 0.61 ± 0.03 | 0.63 ± 0.04 | 0.60 ± 0.03 | 0.295 | 0.879 |
Brain | 0.39 ± 0.02 | 0.40 ± 0.03 | 0.39 ± 0.03 | 0.37 ± 0.04 | 0.36 ± 0.03 | 1.752 | 0.163 |
Testicle | 0.64 ± 0.02 | 0.60 ± 0.03 | 0.55 ± 0.07 * | 0.57 ± 0.05 * | 0.54 ± 0.06 * | 3.949 | 0.011 |
Parameters | Group | F | p | ||||
---|---|---|---|---|---|---|---|
Control | Mixture | Mix + EGCG | Mix + TCD | Mix + GSH | |||
White Blood Cell | |||||||
WBC(×109/L) | 4.47 ± 0.93 | 3.27 ± 0.57 | 3.63 ± 0.91 | 3.20 ± 0.82 | 2.23 ± 0.47 | 3.362 | 0.055 |
NE% | 31.57 ± 10.74 | 35.20 ± 9.10 | 27.17 ± 1.96 | 29.67 ± 2.60 | 30.40 ± 3.22 | 0.592 | 0.676 |
LY% | 65.73 ± 9.90 | 61.46 ± 8.63 | 69.57 ± 3.41 | 65.73 ± 3.14 | 63.10 ± 4.72 | 1.176 | 0.353 |
MO% | 1.07 ± 1.16 | 3.53 ± 1.57 | 1.43 ± 1.25 | 2.43 ± 1.16 | 3.03 ± 0.15 | 2.421 | 0.117 |
EO% | 1.63 ± 0.35 | 2.80 ± 2.21 | 1.83 ± 0.49 | 1.60 ± 0.26 | 1.40 ± 0.61 | 0.800 | 0.552 |
Red Blood Cell | |||||||
RBC(×1012/L) | 7.08 ± 0.35 | 7.16 ± 0.50 | 7.22 ± 0.37 | 7.12 ± 0.26 | 7.15 ± 0.40 | 0.093 | 0.984 |
HGB(g/L) | 138.00 ± 6.32 | 137.17 ± 6.40 | 137.60 ± 5.50 | 136.83 ± 5.52 | 128.50 ± 17.07 | 1.069 | 0.393 |
HCT | 0.40 ± 0.02 | 0.42 ± 0.03 | 0.41 ± 0.02 | 0.41 ± 0.03 | 0.39 ± 0.06 | 0.411 | 0.799 |
MCV(fl) | 56.67 ± 2.45 | 57.50 ± 1.54 | 56.30 ± 1.27 | 57.28 ± 1.63 | 57.60 ± 1.58 | 0.417 | 0.795 |
MCH(pg) | 19.78 ± 0.66 | 19.15 ± 0.55 | 19.10 ± 0.37 | 19.48 ± 0.67 | 19.40 ± 0.44 | 1.399 | 0.264 |
MCHC(g/L) | 343.33 ± 8.16 | 333.17 ± 8.26 | 339.40 ± 6.11 | 340.00 ± 12.33 | 337.17 ± 9.24 | 1.011 | 0.421 |
RDW-CV(%) | 14.62 ± 1.09 | 15.58 ± 0.97 * | 14.68 ± 0.64 # | 14.73 ± 0.69 | 13.97 ± 0.38 # | 3.107 | 0.034 |
Platelet | |||||||
PLT(×109/L) | 881.33 ± 139.71 | 823.83 ± 73.52 | 777.60 ± 73.43 | 833.17 ± 40.09 | 849.67 ± 51.80 | 1.441 | 0.251 |
PDW-CV(%) | 14.67 ± 0.05 | 14.65 ± 0.05 | 14.70 ± 0.10 | 14.70 ± 0.06 | 14.67 ± 0.05 | 0.675 | 0.616 |
MPV(fl) | 5.78 ± 0.08 | 6.00 ± 0.14 * | 5.94 ± 0.17 * | 6.05 ± 0.08 * | 5.97 ± 0.12 * | 4.195 | 0.010 |
PCT | 0.51 ± 0.08 | 0.53 ± 0.04 | 0.46 ± 0.04 | 0.52 ± 0.04 | 0.51 ± 0.03 | 1.487 | 0.237 |
Parameters | Group | F | p | ||||
---|---|---|---|---|---|---|---|
Control | Mixture | Mix + EGCG | Mix + TCD | Mix + GSH | |||
TG(mmol/L) | 0.62 ± 0.07 | 0.76 ± 0.45 | 0.77 ± 0.19 | 0.68 ± 0.39 | 0.68 ± 0.15 | 0.265 | 0.897 |
CHOL(mmol/L) | 1.29 ± 0.30 | 1.39 ± 0.56 | 1.37 ± 0.28 | 1.29 ± 0.39 | 1.14 ± 0.18 | 0.417 | 0.794 |
TBIL(μmol/L) | 2.85 ± 0.57 | 3.73 ± 0.84 * | 2.37 ± 0.50 # | 2.72 ± 0.54 # | 2.50 ± 0.39 # | 3.667 | 0.021 |
DBIL(μmol/L) | 0.83 ± 0.39 | 1.17 ± 0.47 | 0.57 ± 0.06 | 0.90 ± 0.31 | 0.75 ± 0.26 | 1.911 | 0.148 |
IBIL(μmol/L) | 1.90 ± 0.36 | 2.57 ± 0.59 * | 1.80 ± 0.56 # | 1.82 ± 0.44 # | 1.75 ± 0.18 # | 3.337 | 0.031 |
TP(g/L) | 53.80 ± 2.80 | 56.17 ± 3.88 | 57.48 ± 2.62 | 53.98 ± 3.29 | 54.07 ± 3.00 | 1.469 | 0.243 |
ALB(g/L) | 27.30 ± 1.17 | 29.03 ± 1.00 | 29.44 ± 1.22 | 27.90 ± 2.03 | 28.17 ± 1.78 | 1.620 | 0.202 |
GLOB(g/L) | 26.50 ± 1.38 | 27.13 ± 2.94 | 28.04 ± 1.46 | 26.08 ± 1.46 | 25.90 ± 1.41 | 1.208 | 0.333 |
A/G(ALB/GLOB) | 1.03 ± 0.05 | 1.08 ± 0.08 | 1.05 ± 0.03 | 1.07 ± 0.05 | 1.09 ± 0.04 | 1.033 | 0.411 |
ALT(U/L) | 41.50 ± 7.74 | 45.67 ± 4.27 | 51.20 ± 6.67 | 42.17 ± 4.26 | 45.33 ± 9.50 | 1.705 | 0.182 |
AST(U/L) | 145.83 ± 35.10 | 104.50 ± 30.46 | 146.80 ± 49.16 | 139.83 ± 17.17 | 129.33 ± 27.50 | 1.673 | 0.189 |
ALP(U/L) | 83.17 ± 13.66 | 129.67 ± 22.49 * | 119.40 ± 23.33 * | 100.33 ± 8.98 # | 96.67 ± 22.18 # | 5.710 | 0.002 |
UREA(mmol/L) | 6.74 ± 1.11 | 6.35 ± 0.62 | 6.80 ± 0.62 | 5.90 ± 0.82 | 6.17 ± 0.66 | 1.310 | 0.295 |
CREA(μmol/L) | 35.07 ± 3.58 | 34.32 ± 3.17 | 33.64 ± 2.32 | 31.33 ± 1.13 | 32.08 ± 3.69 | 1.642 | 0.196 |
UR/Cr | 0.19 ± 0.02 | 0.19 ± 0.02 | 0.20 ± 0.02 | 0.19 ± 0.03 | 0.20 ± 0.03 | 0.495 | 0.739 |
URCA(μmol/L) | 81.83 ± 12.19 | 83.50 ± 17.75 | 90.60 ± 13.28 | 77.00 ± 15.77 | 78.00 ± 18.24 | 0.636 | 0.642 |
Element (µg/L) | Group | F | p | ||||
---|---|---|---|---|---|---|---|
Control | Mixture | Mix + EGCG | Mix + TCD | Mix + GSH | |||
52Cr | 7.164 ± 0.624 | 9.271 ± 1.171 * | 7.503 ± 0.607 | 8.197 ± 1.127 | 8.464 ± 1.441 * | 3.129 | 0.035 |
55Mn | 5.829 ± 0.974 | 9.123 ± 4.492 | 6.695 ± 1.409 | 6.374 ± 1.673 | 7.671 ± 3.327 | 1.267 | 0.311 |
60Ni | 0.150 ± 0.245 | 3.012 ± 1.496 * | 0.230 ± 0.124 # | 0.305 ± 0.264 # | 0.426 ± 0.294 # | 11.251 | <0.001 |
63Cu | 1056.750 ± 104.982 | 950.482 ± 107.573 | 964.510 ± 116.376 | 1010.820 ± 110.527 | 1122.620 ± 103.817 | 1.034 | 0.411 |
66Zn | 1092.200 ± 125.269 | 1062.810 ± 125.269 | 1104.850 ± 100.431 | 1126.280 ± 162.298 | 1126.970 ± 137.700 | 0.252 | 0.905 |
111Cd | 0.112 ± 0.096 | 0.826 ± 1.277 | 0.320 ± 0.191 | 0.253 ± 0.117 | 0.308 ± 0.119 | 1.198 | 0.338 |
202Hg | 0.000 ± 0.000 | 9.712 ± 1.059 * | 8.847 ± 1.356 * | 10.476 ± 1.315 * | 10.350 ± 0.968 * | 111.310 | <0.001 |
208Pb | 1.422 ± 0.402 | 2.164 ± 1.106 | 1.710 ± 0.824 | 1.911 ± 0.496 | 2.126 ± 1.056 | 0.813 | 0.530 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tang, Y.; Li, Z.; Hua, Q.; Wang, L.; Song, X.; Zou, B.; Ding, M.; Zhao, J.; Tang, C. Joint Toxicity of a Multi-Heavy Metal Mixture and Chemoprevention in Sprague Dawley Rats. Int. J. Environ. Res. Public Health 2020, 17, 1451. https://doi.org/10.3390/ijerph17041451
Wang Y, Tang Y, Li Z, Hua Q, Wang L, Song X, Zou B, Ding M, Zhao J, Tang C. Joint Toxicity of a Multi-Heavy Metal Mixture and Chemoprevention in Sprague Dawley Rats. International Journal of Environmental Research and Public Health. 2020; 17(4):1451. https://doi.org/10.3390/ijerph17041451
Chicago/Turabian StyleWang, Yafei, Yuqing Tang, Zhou Li, Qihang Hua, Li Wang, Xin Song, Baobo Zou, Min Ding, Jinshun Zhao, and Chunlan Tang. 2020. "Joint Toxicity of a Multi-Heavy Metal Mixture and Chemoprevention in Sprague Dawley Rats" International Journal of Environmental Research and Public Health 17, no. 4: 1451. https://doi.org/10.3390/ijerph17041451
APA StyleWang, Y., Tang, Y., Li, Z., Hua, Q., Wang, L., Song, X., Zou, B., Ding, M., Zhao, J., & Tang, C. (2020). Joint Toxicity of a Multi-Heavy Metal Mixture and Chemoprevention in Sprague Dawley Rats. International Journal of Environmental Research and Public Health, 17(4), 1451. https://doi.org/10.3390/ijerph17041451