Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Physicochemical and Enzymatic Properties
2.3. DNA Extraction, PCR and Sequencing
2.4. Statistical Methods
3. Results
3.1. Changes in Physicochemical Properties
3.2. Changes in Microbial Activity and Abundance
3.3. Stabilization Process. of Vermicomposting
3.4. Changes in Microbial Community Structure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, G.; Zhang, G.M.; Wang, H.C. Current state of sludge production; management; treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. J. Clean. Prod. 2016, 92, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.J.; Shen, Y.W.; Wang, Y.H.; Xiao, J.M.; Yuan, H.P.; Lou, Z.Y.; Zhu, N.W. Synergy between denitrification and calcium bridging improves dewaterability of waste activated sludge. J. Clean. Prod. 2020, 242, 118438. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.; Araujo, A.S.; Ibrahim, M.H.; Sulaiman, O. Management of urban solid waste: Vermicomposting a sustainable option. Resour. Conserv. Recy. 2011, 55, 719–729. [Google Scholar] [CrossRef]
- Lee, L.H.; Wu, T.Y.; Shak, K.P.Y.; Lim, S.L.; Ng, K.Y.; Nguyen, M.N.; Teoh, W.H. Sustainable approach to biotransform industrial sludge into organic fertilizer via vermicomposting: A mini-review. J. Chem. Technol. Biot. 2018, 93, 925–935. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Wu, Y.; Chen, J.Y.; Cui, G.Y.; Li, F.S.; Chen, Y.Z.; Wu, N. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. 2018, 259, 32–39. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V.K. Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresour. Technol. 2019, 274, 512–517. [Google Scholar] [CrossRef]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms enhance the work of microbes. In Microbes at Work; Springer: Berlin, Germany, 2010; pp. 93–114. [Google Scholar]
- Marhan, S.; Auber, J.; Poll, C. Additive effects of earthworms; nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil. Appl. Soil Ecol. 2015, 86, 55–61. [Google Scholar] [CrossRef]
- Hackenberger, D.K.; Palijan, G.; Lončarić, Ž.; Glavaš, O.J.; Hackenberger, B.K. Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole. Ecotox. Environ. Safe. 2018, 148, 480–489. [Google Scholar] [CrossRef]
- Edwards, C.A.; Lofty, J.R. Biology of Earthworm; Chapman & Hall: London, UK, 1977. [Google Scholar]
- Fu, X.Y.; Huang, K.; Cui, G.Y.; Chen, X.M.; Li, F.S.; Zhang, X.Y.; Li, F. Dynamics of bacterial and eukaryotic community associated with stability during vermicomposting of pelletized dewatered sludge. Int. Biodeter. Biodegr. 2015, 104, 452–459. [Google Scholar] [CrossRef]
- Fu, X.Y.; Cui, G.Y.; Huang, K.; Chen, X.M.; Li, F.S.; Zhang, X.Y.; Li, F. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community. Environ. Sci. Pollut. R. 2016, 25, 4522–4530. [Google Scholar] [CrossRef] [PubMed]
- Hait, S.; Tare, V. Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Manag. 2011, 31, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Abbasi, S. Efficacy of the vermicomposts of different organic wastes as “clean” fertilizers: State-of-the-art. Sustainability 2018, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- Levén, L.; Nyberg, K.; Schnürer, A. Conversion of phenols during anaerobic digestion of organic solid waste-a review of important microorganisms and impact of temperature. J. Environ. Manag. 2012, 95, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, Y.; Li, B.K.; Wang, B.; Wang, S.Y.; Peng, Y.Z. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature. Bioresour. Technol. 2016, 211, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Nikaeen, M.; Nafez, A.H.; Bina, B.; Nabavi, B.F.; Hassanzadeh, A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manag. 2015, 39, 104–110. [Google Scholar] [CrossRef]
- Koyama, M.; Nagao, N.; Syukri, F.; Rahim, A.A.; Kamarudin, M.S.; Toda, T.; Mitsuhashi, T.; Nakasaki, K. Effect of temperature on thermophilic composting of aquaculture sludge: NH3 recovery, nitrogen mass balance, and microbial community dynamics. Bioresour. Technol. 2018, 265, 207–213. [Google Scholar] [CrossRef]
- Ma, X.J.; Xing, M.Y.; Wang, Y.; Xu, Z.; Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. J. Environ. Manag. 2016, 170, 207–214. [Google Scholar] [CrossRef]
- Wu, J.F.; Xiong, J.B.; Hu, C.J.; Shi, Y.; Wang, K.; Zhang, D.M. Temperature sensitivity of soil bacterial community along contrasting warming gradient. Appl. Soil Ecol. 2015, 94, 40–48. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Deng, Y.; Zhang, P.; Xue, K.; Liang, Y.T.; Van Nostrand, J.D.; Yang, Y.F.; He, Z.L.; Wu, L.Y.; Stahl, D.A.; et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl. Acad. Sci. USA 2014, 111, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Creamer, C.A.; De Menezes, A.B.; Krull, E.S.; Sanderman, J.; Newton-Walters, R.; Farrell, M. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 2015, 80, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Domfnguez, J. 20 State-of-the-Art and New Perspectives on Vermicomposting Research. In Earthworm Ecology; CRC Press: Boca Raton, FL, USA, 2004; pp. 401–424. [Google Scholar]
- Frederickson, J.; Howell, G. Large-scale vermicomposting: Emission of nitrous oxide and effects of temperature on earthworm populations. The 7th international symposium on earthworm ecology Cardiff Wales 2002. Pedobiologia 2003, 47, 724–730. [Google Scholar] [CrossRef]
- Garg, V.K.; Gupta, R. Effect of temperature variations on vermicomposting of household solid waste and fecundity of Eisenia Fetida. Bioremediat. J. 2011, 15, 165–172. [Google Scholar] [CrossRef]
- Xia, H.; Wu, Y.; Chen, X.M.; Huang, K.; Chen, J.Y. Effects of antibiotic residuals in dewatered sludge on the behavior of ammonia oxidizers during vermicomposting maturation process. Chemosphere 2019, 218, 810–817. [Google Scholar] [CrossRef]
- Wu, Z.; Yin, B.; Song, X.; Qiu, J.; Cao, L.; Zhao, Q. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 2019, 16, 4737. [Google Scholar] [CrossRef] [Green Version]
- Tourna, M.; Freitag, T.E.; Nicol, G.W.; Prosser, J.I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 2008, 10, 1357–1364. [Google Scholar] [CrossRef]
- Gubry-Rangin, C.; Novotnik, B.; Mandič-Mulec, I.; Nicol, G.W.; Prosser, J.I. Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biol. Biochem. 2017, 106, 61–68. [Google Scholar] [CrossRef]
- Feng, X.J.; Simpson, M.J. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol. Biochem. 2009, 41, 804–812. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Gómez-Brandón, M.; Rousk, J.; Bååth, E. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Global Change Biol. 2009, 15, 2950–2957. [Google Scholar] [CrossRef]
- Jin, D.C.; Wang, P.; Bai, Z.H.; Jin, B.; Yu, Z.S.; Wang, X.X.; Zhuang, G.Q.; Zhang, H.X. Terrimonas pekingensis sp. nov., isolated from bulking sludge, and emended descriptions of the genus Terrimonas, Terrimonas ferruginea, Terrimonas lutea and Terrimonas aquatica. Int. J. Syst. Evol. Micr. 2013, 63, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Sheik, A.R.; Muller, E.E.; Audinot, J.N.; Lebrun, L.A.; Grysan, P.; Guignard, C.; Wilmes, P. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella. ISME J. 2016, 10, 1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, S.; Tiago, I.; Pires, A.L.; Da Costa, M.S.; Veríssimo, A. Dokdonella fugitiva sp. nov., a Gammaproteobacterium isolated from potting soil. Syst. Appl. Microbiol. 2006, 29, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Pampuro, N.; Dinuccio, E.; Balsari, P.; Cavallo, E. Evaluation of two composting strategies for making pig slurry solid fraction suitable for pelletizing. Atmo. Pollut. Res. 2016, 7, 288–293. [Google Scholar] [CrossRef]
Parameters | Initial Sludge | Vermicomposting after 60 days | ||
---|---|---|---|---|
15 °C | 20 °C | 25 °C | ||
Water content (%) | 80.38 ± 0.01 | 80.15 ± 0.0 | 80.37 ± 0.0 | 80.53 ± 0.0 |
Organic matter (%) | 68.0 ± 7.7 | 55.0 ± 1.16 | 51.7 ± 1.99 | 49.8 ± 1.42 |
pH | 6.77 ± 0.005 | 6.53 ± 0.005 | 6.77 ± 0.00 | 7.01 ± 0.00 |
Electrical conductivity (μs/cm) | 573 ± 8.49 | 911.5 ± 2.04 | 1097.5 ± 6.94 | 2100 ± 16.33 |
Dissolved organic carbon (mg/kg) | 16.69 ± 0.13 | 14.05 ± 0.04 | 13.92 ± 0.04 | 9.17 ± 0.05 |
Ammonium (mg/kg) | 7.36 ± 0.08 | 103.79 ± 0.76 | 206.06 ± 0.23 | 238.91 ± 2.9 |
Nitrate (mg/kg) | 10.26 ± 2.0 | 219.91 ± 45.15 | 285.10 ± 9.10 | 1389.49 ± 47.07 |
Ammonium/nitrate | 0.74 ± 0.19 | 0.24 ± 0.04 | 0.67 ± 0.04 | 0.13 ± 0.05 |
Microbial biomass carbon (g/kg) | 105.61 ± 10.6 | 15.63 ± 0.98 | 8.50 ± 0.18 | 6.71 ± 1.08 |
Dehydrogenase activity (mg/g/h) | 28.06 ± 1.34 | 0.49 ± 0.08 | 0.49 ± 0.02 | 0.27 ± 0.01 |
Sample Name | Shannon | Simpson | Chao1 |
---|---|---|---|
15 °C | 6.88 | 0.973 | 1373.25 |
20 °C | 6.98 | 0.972 | 1508.01 |
25 °C | 7.06 | 0.974 | 1651.31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, J.; Zhang, Y.; Huang, K. Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. Int. J. Environ. Res. Public Health 2020, 17, 1748. https://doi.org/10.3390/ijerph17051748
Zhang H, Li J, Zhang Y, Huang K. Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. International Journal of Environmental Research and Public Health. 2020; 17(5):1748. https://doi.org/10.3390/ijerph17051748
Chicago/Turabian StyleZhang, Hongwei, Jianhui Li, Yingying Zhang, and Kui Huang. 2020. "Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge" International Journal of Environmental Research and Public Health 17, no. 5: 1748. https://doi.org/10.3390/ijerph17051748
APA StyleZhang, H., Li, J., Zhang, Y., & Huang, K. (2020). Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. International Journal of Environmental Research and Public Health, 17(5), 1748. https://doi.org/10.3390/ijerph17051748