Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling of NO2 and PM2.5 Concentrations in Hamburg for 2016
2.1.1. Features of the EPISODE-CityChem Model
2.1.2. Model Configuration
2.1.3. Meteorological Setup of EPISODE-CityChem
2.1.4. Boundary Conditions
2.1.5. Urban Emissions
2.1.6. Road Transport Emissions
2.2. Dynamic Population Modeling
2.2.1. Microenvironment Mapping
- (1)
- Static approach: based on residential addresses and therefore consists of one microenvironment; the home environment.
- (2)
- Dynamic approach [46]: consists of four different microenvironments, which are the home, work, other, and transport environment.
- (3)
- Dynamic transport approach: newly developed modification of the dynamic approach to split the transport environment into seven different modes of transport.
2.2.2. Population Data and Diurnal Activities
2.3. Population Exposure Modeling
3. Results
3.1. Evaluation of Simulated NO2 and PM2.5 Concentrations
3.2. Simulated NO2 and PM2.5 Concentrations and the Impact of Road Transport
3.3. Simulated Total Exposure to NO2 and PM2.5 Concentrations
3.3.1. Total Exposure in Different Approaches
3.3.2. Differences in Spatial Distribution of Total Exposure
3.3.3. Impact of Road Traffic in Different Modes of Transport
3.4. Sensitivity of Ambient Concentration and Infiltration Factors in the Dynamic Transport Approach
3.5. Population-Weighted Exposure in Different Modes of Transport
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Microenvironment Mapping in the Dynamic Approach
Code | UA2012 Classification | Microenvironment |
---|---|---|
11100 | Continuous Urban Fabric | Work (30%), Other (30%) |
12100 | Industrial, commercial, public, military, private | Work |
13100 | Mineral extraction and dump sites | Work |
13300 | Construction Sites | Work |
12300 | Port areas | Work |
12210 | Fast transit roads and associated land | Transport |
12220 | Other roads and associated land | Transport |
14100 | Green urban areas | Other |
14200 | Sports and leisure facilities | Other |
Appendix B. Microenvironment Mapping in the Dynamic Transport Approach
Mode of Transport | OSM Key(s) | OSM Value(s) | Description |
---|---|---|---|
walking | “highway” | “footway” | For designated footpaths; i.e., mainly/exclusively for pedestrians. |
Cycling (combination of three queries to cover all possible paths to ride a bike) | “highway” | “cycleway” | For designated cycle ways. |
“highway” “bicycle” | - “yes” | For roads which can be used by bikers. | |
“cycleway” | - | Cycleway tagged on the main roadway or lane. | |
in-car | “highway” | “motorway”, “motorway_link", “trunk”, “trunk_link”, “primary”, “primary_link”, “secondary”, “secondary_link”, “tertiary”, “tertiary_link” | Restricted access, two lanes, freeways, Autobahn, most important roads that are not motorways, major, minor, residential roads. Additionally filtered by tunnels. |
buses | "highway" | “primary”, “primary_link”, “secondary”, “secondary_link”, “tertiary”, “tertiary_link” | Major and minor urban road network. |
subway trains | “railway” | “subway” | City passenger rail service, mostly underground. |
suburban trains | “railway” | “light_rail” | higher-standard tram system. |
regional trains | “railway” “usage” | “rail” “main” | passenger trains in the standard with heavy traffic. |
Appendix C. Statistical Indicators and Model Performance Indicators
Appendix D. PM2.5 Exposure Maps
Appendix E. List of Abbreviations
ABM | Agent-based modeling |
API | Application programming interface |
AQG | Air Quality Guideline |
CAMS | Copernicus Atmospheric Monitoring Services |
CH4 | Methane |
CLC2018 | Corine Land Cover 2018 |
CO2 | Carbon dioxide |
CTM | Chemistry transport model |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EMEP | European Monitoring and Evaluation Program |
ERA5 | European Reanalysis 5th generation |
EU | European Union |
Finf | Infiltration factor |
GPS | Global positioning system |
HCHO | Formaldehyde |
HNO3 | Nitric acid |
IOA | Index of Agreement |
LULC | Land use and land cover classes |
MB | Mean bias |
NMB | Normalized mean bias |
NMVOC | non-methane volatile organic compounds |
NO | Nitric oxide |
NO2 | Nitrogen dioxide |
NO3 | Nitrate radical |
NOx | Nitrogen oxides |
O3 | Ozone |
OH | Hydroxyl radical |
OSM | OpenStreetMap |
OSPM | Open Street Pollution Model |
PANS | Peroxyl nitrates |
PM2.5 | particles smaller than 2.5 μm in aerodynamic diameter |
PSS | Photo-stationary state |
PWE | Population-weighted exposure |
RMSE | Root mean square error |
SMOKE-EU | Sparse Matrix Operator Kernel Emissions for Europe |
SNAP | Selected Nomenclature for sources of Air Pollution |
SO2 | Sulfur dioxide |
SSCM | Simplified street canyon model |
TAPM | The Air Pollution Model |
TMA | Time-microenvironment-activity |
UA2012 | Urban Atlas 2012 |
UECT | Urban Emission Conversion Tool |
UNDYNE | Urban Dynamic Exposure Model |
VOC | Volatile organic compound |
WHO | World Health Organization |
References
- European Commission (EC). Transport in the European Union: Current Trends and Issues. Available online: https://ec.europa.eu/transport/sites/transport/files/2019-transport-in-the-eu-current-trends-and-issues.pdf (accessed on 31 August 2019).
- European Environment Agency. Air Quality in Europe. 2019 report; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9480-088-6. [Google Scholar]
- European Environment Agency. Health Impacts of Air Pollution. Available online: https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution (accessed on 16 February 2020).
- WHO. Air Quality Guidelines. Global Update 2005; Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide; World Health Organization: Copenhagen, Denmark, 2006; ISBN 9289021926. [Google Scholar]
- Latza, U.; Gerdes, S.; Baur, X. Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006. Int. J. Hyg. Environ. Health 2009, 212, 271–287. [Google Scholar] [CrossRef]
- Curtis, L.; Rea, W.; Smith-Willis, P.; Fenyves, E.; Pan, Y. Adverse health effects of outdoor air pollutants. Environ. Int. 2006, 32, 815–830. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Heroux, M.E.; Braubach, M.; Korol, N.; Krzyzanowski, M.; Paunovic, E.; Zastenskaya, I. The main conclusions about the medical aspects of air pollution: The projects REVIHAAP and HRAPIE WHO/EC. Gig. Sanit. 2013, 6, 9–14. [Google Scholar]
- Hvidtfeldt, U.A.; Geels, C.; Sørensen, M.; Ketzel, M.; Khan, J.; Tjønneland, A.; Christensen, J.H.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5 constituents and mortality in a Danish cohort. Environ. Int. 2019, 133, 105268. [Google Scholar] [CrossRef] [PubMed]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.I.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J.K. Synergistic effects of prenatal exposure to fine particulate matter (PM2.5) and ozone (O3) on the risk of preterm birth: A population-based cohort study. Environ. Res. 2019, 176, 108549. [Google Scholar] [CrossRef]
- Wing, S.E.; Bandoli, G.; Telesca, D.; Su, J.G.; Ritz, B. Chronic exposure to inhaled, traffic-related nitrogen dioxide and a blunted cortisol response in adolescents. Environ. Res. 2018, 163, 201–207. [Google Scholar] [CrossRef]
- Hamra, G.B.; Laden, F.; Cohen, A.J.; Raaschou-Nielsen, O.; Brauer, M.; Loomis, D. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2015, 123, 1107–1112. [Google Scholar] [CrossRef]
- WHO. WHO Expert Consultation: Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQGs); Meeting Report; WHO: Bonn, Germany, 2015. [Google Scholar]
- Rasche, M.; Walther, M.; Schiffner, R.; Kroegel, N.; Rupprecht, S.; Schlattmann, P.; Schulze, P.C.; Franzke, P.; Witte, O.W.; Schwab, M.; et al. Rapid increases in nitrogen oxides are associated with acute myocardial infarction: A case-crossover study. Eur. J. Prev. Cardiol. 2018, 25, 1707–1716. [Google Scholar] [CrossRef]
- Bowatte, G.; Erbas, B.; Lodge, C.J.; Knibbs, L.D.; Gurrin, L.C.; Marks, G.B.; Thomas, P.S.; Johns, D.P.; Giles, G.G.; Hui, J.; et al. Traffic-related air pollution exposure over a 5-year period is associated with increased risk of asthma and poor lung function in middle age. Eur. Respir. J. 2017, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-Y.; Lo, W.-C.; Chao, C.-T.; Wu, M.-S.; Chiang, C.-K. Association between air pollutants and development of chronic kidney disease: A systematic review and meta-analysis. Sci. Total Environ. 2020, 706, 135522. [Google Scholar] [CrossRef] [PubMed]
- Horsdal, H.T.; Agerbo, E.; McGrath, J.J.; Vilhjálmsson, B.J.; Antonsen, S.; Closter, A.M.; Timmermann, A.; Grove, J.; Mok, P.L.H.; Webb, R.T.; et al. Association of Childhood Exposure to Nitrogen Dioxide and Polygenic Risk Score for Schizophrenia With the Risk of Developing Schizophrenia. JAMA Netw. Open 2019, 2, e1914401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; van der Denier Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; et al. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmos. Chem. Phys. 2015, 15, 9577–9591. [Google Scholar] [CrossRef] [Green Version]
- Cepeda, M.; Schoufour, J.; Freak-Poli, R.; Koolhaas, C.M.; Dhana, K.; Bramer, W.M.; Franco, O.H. Levels of ambient air pollution according to mode of transport: A systematic review. Lancet Public Health 2017, 2, e23–e34. [Google Scholar] [CrossRef] [Green Version]
- Dons, E.; Int Panis, L.; van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time–activity patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [Google Scholar] [CrossRef]
- WHO. Health Risk Assessment of Air Pollution—General Principles. Available online: http://www.euro.who.int/__data/assets/pdf_file/0006/298482/Health-risk-assessment-air-pollution-General-principles-en.pdf (accessed on 19 August 2019).
- Özkaynak, H.; Baxter, L.K.; Dionisio, K.L.; Burke, J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Reis, S.; Liška, T.; Vieno, M.; Carnell, E.J.; Beck, R.; Clemens, T.; Dragosits, U.; Tomlinson, S.J.; Leaver, D.; Heal, M.R. The influence of residential and workday population mobility on exposure to air pollution in the UK. Environ. Int. 2018, 121, 803–813. [Google Scholar] [CrossRef]
- Singh, V.; Sokhi, R.S.; Kukkonen, J. An approach to predict population exposure to ambient air PM2.5 concentrations and its dependence on population activity for the megacity London. Environ. Pollut. 2020, 257, 113623. [Google Scholar] [CrossRef]
- Soares, J.; Kousa, A.; Kukkonen, J.; Matilainen, L.; Kangas, L.; Kauhaniemi, M.; Riikonen, K.; Jalkanen, J.-P.; Rasila, T.; Hänninen, O.; et al. Refinement of a model for evaluating the population exposure in an urban area. Geosci. Model Dev. 2014, 7, 1855–1872. [Google Scholar] [CrossRef] [Green Version]
- Bravo, M.A.; Fuentes, M.; Zhang, Y.; Burr, M.J.; Bell, M.L. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation. Environ. Res. 2012, 116, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Künzli, N.; Kaiser, R.; Medina, S.; Studnicka, M.; Chanel, O.; Filliger, P.; Herry, M.; Horak, F.; Puybonnieux-Texier, V.; Quénel, P.; et al. Public-health impact of outdoor and traffic-related air pollution: A European assessment. Lancet 2000, 356, 795–801. [Google Scholar] [CrossRef]
- Im, U.; Brandt, J.; Geels, C.; Hansen, K.M.; Christensen, J.H.; Andersen, M.S.; Solazzo, E.; Kioutsioukis, I.; Alyuz, U.; Balzarini, A.; et al. Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. Atmos. Chem. Phys. 2018, 18, 5967–5989. [Google Scholar] [CrossRef] [Green Version]
- Fridell, E.; Haeger-Eugensson, M.; Moldanova, J.; Forsberg, B.; Sjöberg, K. A modelling study of the impact on air quality and health due to the emissions from E85 and petrol fuelled cars in Sweden. Atmos. Environ. 2014, 82, 1–8. [Google Scholar] [CrossRef]
- Ramacher, M.O.P.; Karl, M.; Aulinger, A.; Bieser, J. Population Exposure to Emissions from Industry, Traffic, Shipping and Residential Heating in the Urban Area of Hamburg. In Air Pollution Modeling and its Application XXVI; Mensink, C., Gong, W., Hakami, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 177–183. ISBN 978-3-030-22054-9. [Google Scholar]
- Tang, L.; Ramacher, M.O.P.; Moldanova, J.; Matthias, V.; Karl, M.; Johansson, L. The impact of ship emissions on air quality and human health in the Gothenburg area—Part 1: Current situtation. Atmos. Chem. Phys. Discuss. 2020. in preparation. [Google Scholar]
- Picornell, M.; Ruiz, T.; Borge, R.; García-Albertos, P.; de La Paz, D.; Lumbreras, J. Population dynamics based on mobile phone data to improve air pollution exposure assessments. J. Expo. Sci. Environ. Epidemiol. 2019, 278–291. [Google Scholar] [CrossRef]
- Dewulf, B.; Neutens, T.; Lefebvre, W.; Seynaeve, G.; Vanpoucke, C.; Beckx, C.; van de Weghe, N. Dynamic assessment of exposure to air pollution using mobile phone data. Int. J. Health Geogr. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Beckx, C.; Panis, L.I.; Arentze, T.; Janssens, D.; Torfs, R.; Broekx, S.; Wets, G. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: Methods and application to a Dutch urban area. Environ. Impact Assess. Rev. 2009, 29, 179–185. [Google Scholar] [CrossRef]
- Dias, D.; Tchepel, O. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. Int. J. Environ. Res. Public Health 2018, 15, 558. [Google Scholar] [CrossRef] [Green Version]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gariazzo, C.; Pelliccioni, A.; Bolignano, A. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic. Atmos. Environ. 2016, 131, 289–300. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R.; Peterson, S.; Sue Wing, I. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environ. Pollut. 2017, 229, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, M.; Grauwin, S.; Britter, R.; Misstear, B.; McNabola, A.; Laden, F.; Barrett, S.R.H.; Ratti, C. “Exposure Track”-The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution. Environ. Sci. Technol. 2016, 50, 9671–9681. [Google Scholar] [CrossRef] [Green Version]
- Elessa Etuman, A.; Coll, I. OLYMPUS v1.0: Development of an integrated air pollutant and GHG urban emissions model—Methodology and calibration over greater Paris. Geosci. Model Dev. 2018, 11, 5085–5111. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Hoffmann, P.; Scheffran, J.; Rühe, S.; Fischereit, J.; Gasser, I. An Agent-Based Modeling Framework for Simulating Human Exposure to Environmental Stresses in Urban Areas. Urban Sci. 2018, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, P.; Fischereit, J.; Heitmann, S.; Schlünzen, K.; Gasser, I. Modeling Exposure to Heat Stress with a Simple Urban Model. Urban Sci. 2018, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Kousa, A.; Kukkonen, J.; Karppinen, A.; Aarnio, P.; Koskentalo, T. A model for evaluating the population exposure to ambient air pollution in an urban area. Atmos. Environ. 2002, 36, 2109–2119. [Google Scholar] [CrossRef]
- Ramacher, M.O.P.; Karl, M.; Bieser, J.; Jalkanen, J.-P.; Johansson, L. Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities—A generic approach. Atmos. Chem. Phys. 2019, 19, 9153–9179. [Google Scholar] [CrossRef] [Green Version]
- Ahas, R.; Silm, S.; Järv, O.; Saluveer, E.; Tiru, M. Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones. J. Urban Technol. 2010, 17, 3–27. [Google Scholar] [CrossRef]
- Karl, M.; Walker, S.-E.; Solberg, S.; Ramacher, M.O.P. The Eulerian urban dispersion model EPISODE—Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg. Geosci. Model Dev. 2019, 12, 3357–3399. [Google Scholar] [CrossRef] [Green Version]
- Ramacher, M.O.P. UNDYNE—Urban Dynamic Exposure Model; Zenodo: Hamburg, Germany, 2020. [Google Scholar]
- Berkowicz, R.; Hertel, O.; Larsen, S.E.; Sorensen, N.N.; Nielsen, M. Modelling Traffic Pollution in Streets. Available online: https://www2.dmu.dk/1_viden/2_Miljoe-tilstand/3_luft/4_spredningsmodeller/5_OSPM/5_description/ModellingTrafficPollution_report.pdf (accessed on 23 January 2019).
- Hurley, P.J.; Physick, W.L.; Luhar, A.K. TAPM: A practical approach to prognostic meteorological and air pollution modelling. Environ. Model. Softw. 2005, 20, 737–752. [Google Scholar] [CrossRef]
- Hurley, P.J. TAPM. Technical Description; CSIRO: Aspendale, VIC, Australia, 2008; ISBN 978-1-921424-71-7. [Google Scholar]
- Copernicus Land Monitoring Service. Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 23 January 2019).
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef] [Green Version]
- Hamer, P.D.; Walker, S.-E.; Sousa-Santos, G.; Vogt, M.; Vo-Thanh, D.; Lopez-Aparicio, S.; Ramacher, M.O.P.; Karl, M. The urban dispersion model EPISODE. Part 1: A Eulerian and subgrid-scale air quality model and its application in Nordic winter conditions. Geosci. Model Dev. Discuss. 2019, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Bieser, J.; Aulinger, A.; Matthias, V.; Quante, M.; Builtjes, P. SMOKE for Europe—adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci. Model Dev. Discuss. 2010, 3, 949–1007. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.; Fagerli, H.; Johnson, J.E.; Tsyro, S.; Wind, P. Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. Part II. Unified EMEP Model Performance: EMEP Status Report 1/2003; Norwegian Meteorological Institute: Oslo, Norway, 2003; ISSN 0806-4520. [Google Scholar]
- Granier, C.; Darras, S.; Denier van der Gon, H.; Doubalova, J.; Elguindi, N.; Galle, B.; Gauss, M.; Guevara, M.; Jalkanen, J.-P.; Kuenen, J.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions (April 2019 Version). 2019. Available online: https://atmosphere.copernicus.eu/sites/default/files/2019-06/cams_emissions_general_document_apr2019_v7.pdf (accessed on 6 February 2020).
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; van der Denier Gon, H.A.C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef] [Green Version]
- Kuik, F.; Kerschbaumer, A.; Lauer, A.; Lupascu, A.; Schneidemesser, E.V.; Butler, T.M. Top–down quantification of NOx emissions from traffic in an urban area using a high-resolution regional atmospheric chemistry model. Atmos. Chem. Phys. 2018, 18, 8203–8225. [Google Scholar] [CrossRef] [Green Version]
- Florczyk, A.J.; Cobane, C.; Ehrlich, D.; Freire, S.; Kemper, T.; Maffeini, L.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M.; et al. GHSL Data Package 2019. JRC Technical Report; EUR 29788 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-13186-1. JRC 117104. [Google Scholar] [CrossRef]
- Ibarra-Espinosa, S.; Ynoue, R.; O’Sullivan, S.; Pebesma, E.; Andrade, M.d.F.; Osses, M. VEIN v0.2.2: An R package for bottom–up vehicular emissions inventories. Geosci. Model Dev. 2018, 11, 2209–2229. [Google Scholar] [CrossRef]
- Beckx, C.; Int Panis, L.; Uljee, I.; Arentze, T.; Janssens, D.; Wets, G. Disaggregation of nation-wide dynamic population exposure estimates in The Netherlands: Applications of activity-based transport models. Atmos. Environ. 2009, 43, 5454–5462. [Google Scholar] [CrossRef]
- Borrego, C.; TCHEPEL, O.; COSTA, A.; MARTINS, H.; Ferreira, J.; MIRANDA, A. Traffic-related particulate air pollution exposure in urban areas. Atmos. Environ. 2006, 40, 7205–7214. [Google Scholar] [CrossRef]
- Dhondt, S.; Beckx, C.; Degraeuwe, B.; Lefebvre, W.; Kochan, B.; Bellemans, T.; Int Panis, L.; Macharis, C.; Putman, K. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates. Environ. Impact Assess. Rev. 2012, 36, 42–51. [Google Scholar] [CrossRef]
- Gerharz, L.E.; Klemm, O.; Broich, A.V.; Pebesma, E. Spatio-temporal modelling of individual exposure to air pollution and its uncertainty. Atmos. Environ. 2013, 64, 56–65. [Google Scholar] [CrossRef]
- Hänninen, O.O.; Alm, S.; Katsouyanni, K.; Künzli, N.; Maroni, M.; Nieuwenhuijsen, M.J.; Saarela, K.; Srám, R.J.; Zmirou, D.; Jantunen, M.J. The EXPOLIS study: Implications for exposure research and environmental policy in Europe. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Ragettli, M.S.; Tsai, M.-Y.; Braun-Fahrländer, C.; De Nazelle, A.; Schindler, C.; Ineichen, A.; Ducret-Stich, R.E.; Perez, L.; Probst-Hensch, N.; Künzli, N.; et al. Simulation of population-based commuter exposure to NO2 using different air pollution models. Int. J. Environ. Res. Public Health 2014, 11, 5049–5068. [Google Scholar] [CrossRef] [Green Version]
- Rivas, I.; Kumar, P.; Hagen-Zanker, A. Exposure to air pollutants during commuting in London: Are there inequalities among different socio-economic groups? Environ. Int. 2017, 101, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Shekarrizfard, M.; Faghih-Imani, A.; Hatzopoulou, M. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location. Environ. Res. 2016, 147, 435–444. [Google Scholar] [CrossRef]
- Smith, J.D.; Mitsakou, C.; Kitwiroon, N.; Barratt, B.M.; Walton, H.A.; Taylor, J.G.; Anderson, H.R.; Kelly, F.J.; Beevers, S.D. London Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5 in an Urban Setting. Environ. Sci. Technol. 2016, 50, 11760–11768. [Google Scholar] [CrossRef] [Green Version]
- Tayarani, M.; Rowangould, G. Estimating exposure to fine particulate matter emissions from vehicle traffic: Exposure misclassification and daily activity patterns in a large, sprawling region. Environ. Res. 2019, 182, 108999. [Google Scholar] [CrossRef]
- Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y. Air pollution exposure assessment methods utilized in epidemiological studies. J. Environ. Monit. 2009, 11, 475–490. [Google Scholar] [CrossRef]
- Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A.I. Forecasting human exposure to atmospheric pollutants in Portugal—A modelling approach. Atmos. Environ. 2009, 43, 5796–5806. [Google Scholar] [CrossRef]
- Ott, W.R. Concepts of human exposure to air pollution. Environ. Int. 1982, 7, 179–196. [Google Scholar] [CrossRef]
- Baklanov, A.; Hänninen, O.; Slørdal, L.H.; Kukkonen, J.; Bjergene, N.; Fay, B.; Finardi, S.; Hoe, S.C.; Jantunen, M.; Karppinen, A.; et al. Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmos. Chem. Phys. 2007, 7, 855–874. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 23 January 2019).
- Batista e Silva, F.; Poelman, H. Mapping Population Density in Functional Urban Areas—A Method to Downscale Population Statistics to Urban Atlas Polygons; JRC Technical Report no. EUR 28194 EN; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Copernicus Land Monitoring Service. Urban Atlas Mapping Guide v4.7. Available online: https://land.copernicus.eu/user-corner/technical-library/urban-atlas-2012-mapping-guide-new (accessed on 23 January 2019).
- Padgham, M.; Lovelace, R.; Salmon, M.; Rudis, B. osmdata. JOSS 2017, 2, 305. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. 2012. Available online: http://CRAN.R-project.org/package=raster (accessed on 23 January 2019).
- Statistisches Amt für Hamburg und Schleswig-Holstein. Statistisches Jahrbuch Hamburg 2018/2019; Statistisches Amt für Hamburg und Schleswig-Holstein: Hamburg, Germany, 2019. [Google Scholar]
- Holtermann, L.; Alkis, O.; Schulze, S. Pendeln in Hamburg: HWWI Policy Paper 83. Available online: http://www.hwwi.org/uploads/tx_wilpubdb/HWWI-Policy_Paper_83.pdf (accessed on 2 February 2020).
- Dionisio, K.L.; Baxter, L.K.; Burke, J.; Özkaynak, H. The importance of the exposure metric in air pollution epidemiology studies: When does it matter, and why? Air Qual Atmos Health 2016, 9, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Frey, H.C. Modeling of In-Vehicle Human Exposure to Ambient Fine Particulate Matter. Atmos. Environ. 2011, 45, 4745–4752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Z.; Li, Y.; Westerdahl, D.; Adamkiewicz, G.; Spengler, J.D. Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in China. Environ. Int. 2019, 127, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Fujita, E.M.; Campbell, D.E.; Arnott, W.P.; Johnson, T.; Ollison, W. Concentrations of mobile source air pollutants in urban microenvironments. J. Air Waste Manag. Assoc. 2014, 64, 743–758. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Yang, X.; Hu, D.; Dong, W.; Yang, F.; Liu, Q.; Li, H.; Pan, L.; Shan, J.; Niu, W.; et al. Short-term effects of particulate matter in metro cabin on heart rate variability in young healthy adults: Impacts of particle size and source. Environ. Res. 2018, 167, 292–298. [Google Scholar] [CrossRef]
- Shen, J.; Gao, Z. Commuter exposure to particulate matters in four common transportation modes in Nanjing. Build. Environ. 2019, 156, 156–170. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Frey, H.C.; Lau, A.K.H. Factors affecting variability in PM2.5 exposure concentrations in a metro system. Environ. Res. 2018, 160, 20–26. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Hazlehurst, M.F.; Spalt, E.W.; Nicholas, T.P.; Curl, C.L.; Davey, M.E.; Burke, G.L.; Watson, K.E.; Vedal, S.; Kaufman, J.D. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: The Multi-Ethnic Study of Atherosclerosis and Air Pollution. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Schindler, C.; Eeftens, M.; Aguilera, I.; Ducret-Stich, R.E.; Ineichen, A.; Davey, M.; Phuleria, H.C.; Probst-Hensch, N.; Tsai, M.-Y.; et al. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland. Environ. Int. 2015, 82, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, P.; Iordache, V.; Poupard, O.; Genin, D.; Allard, F. Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 2005, 15, 2–12. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to NO2 in school and office indoor environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef]
- Bae, H.; Yang, W.; Chung, M. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stalls located near busy roadways in Seoul, Korea. Sci. Total Environ. 2004, 323, 99–105. [Google Scholar] [CrossRef]
- Challoner, A.; Gill, L. Indoor/outdoor air pollution relationships in ten commercial buildings: PM2.5 and NO2. Build. Environ. 2014, 80, 159–173. [Google Scholar] [CrossRef]
- Baek, S.-O.; Kim, Y.-S.; Perry, R. Indoor air quality in homes, offices and restaurants in Korean urban areas—Indoor/outdoor relationships. Atmos. Environ. 1997, 31, 529–544. [Google Scholar] [CrossRef]
- Jiao, W.; Frey, H.C. Method for Measuring the Ratio of In-Vehicle to Near-Vehicle Exposure Concentrations of Airborne Fine Particles. Transp. Res. Rec. 2013, 2341, 34–42. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Hanna, S.; Chang, J. Acceptance criteria for urban dispersion model evaluation. Meteorol. Atmos. Phys. 2012, 116, 133–146. [Google Scholar] [CrossRef]
- Thunis, P.; Pederzoli, A.; Pernigotti, D. Performance criteria to evaluate air quality modeling applications. Atmos. Environ. 2012, 59, 476–482. [Google Scholar] [CrossRef]
- Matthias, V.; Arndt, J.A.; Aulinger, A.; Bieser, J.; van der Denier Gon, H.; Kranenburg, R.; Kuenen, J.; Neumann, D.; Pouliot, G.; Quante, M. Modeling emissions for three-dimensional atmospheric chemistry transport models. J. Air Waste Manag. Assoc. 2018, 68, 763–800. [Google Scholar] [CrossRef] [PubMed]
- Bieser, J.; Ramacher, M.O.P.; Prank, M.; Solazzo, E.; Uppstu, A. Multi Model Study on the Impact of Emissions on CTMs. In Air Pollution Modeling and its Application XXVI; Mensink, C., Gong, W., Hakami, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 309–315. ISBN 978-3-030-22054-9. [Google Scholar]
- Wang, L.L.; Dols, W.S.; Chen, Q. Using CFD Capabilities of CONTAM 3.0 for Simulating Airflow and Contaminant Transport in and around Buildings. Hvacr Res. 2010, 16, 749–763. [Google Scholar] [CrossRef]
- Argyropoulos, C.D.; Hassan, H.; Kumar, P.; Kakosimos, K.E. Measurements and modelling of particulate matter building ingress during a severe dust storm event. Build. Environ. 2020, 167, 106441. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Xiao, S.; Shen, J.; Li, X.; Ma, W.; Chen, L. Commuters’ exposure to PM1 by common travel modes in Shanghai. Atmos. Environ. 2012, 59, 39–46. [Google Scholar] [CrossRef]
- Onat, B.; Stakeeva, B. Personal exposure of commuters in public transport to PM2.5 and fine particle counts. Atmos. Pollut. Res. 2013, 4, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Urban Population Exposure to Air Pollution by Particulate Matter. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/T2020_RN210 (accessed on 21 February 2020).
- WHO. WHO Global Ambient Air Quality Database (Update 2018). Available online: https://www.who.int/airpollution/data/cities/en/ (accessed on 21 February 2020).
CTM Setup with EPISODE-CityChem | Setup for Hamburg 2016 |
---|---|
Horizontal domain size (x × y) | 30 × 30 km2 |
Horizontal domain resolution | 1000 m |
Model grid coordinate system | WGS1984 Universal Transverse Mercator (UTM) Zone 32N |
Vertical dimension | Lowest Layer height 17.5 m 16 vertical layers below 1000 m Vertical top height 3750 m |
Boundary Conditions | Hourly Copernicus Atmospheric Monitoring Services (CAMS) regional ensemble concentrations |
Meteorology | Hourly meteorological fields simulated with The Air Pollution Model (TAPM), 1000 m horizontal grid resolution. |
Point source emissions * | 750 sources (federal emission reports, 11. BimSchV) |
Line source emissions * | 12625 road links (CAMS-REG-AP v3.1, OSM) |
Area source emissions * | 6430 sources, grid resolution 1000 m (CAMS-REG-AP v3.1) |
Microenvironment | PM2.5 | NO2 | References | ||
---|---|---|---|---|---|
Winter | Summer | Winter | Summer | ||
Residential | 0.5 | 0.6 | 0.7 | 0.8 | [26,45,67,71,92,93,96,97,98] |
Work | 0.5 | 0.6 | 0.75 | 0.85 | [26,45,67,71,92,93,96,97,98] |
Other | 0.8 | 1 | 0.8 | 1 | [26,46] |
Transport | 1 | 1 | 1 | 1 | [25,71] |
Walking, Cycling | 1 | 1 | 1 | 1 | - |
In-car | 0.7 | 0.8 | 0.9 | 0.9 | [85,86,87,99] |
Buses | 0.9 | 0.9 | 0.9 | 0.9 | [89] |
Subway trains | 0.7 | 0.7 | 0.6 | 0.6 | [88,89,90] |
Suburban trains | 0.7 | 0.7 | 0.7 | 0.7 | [88,89,90] |
Regional trains | 0.6 | 0.6 | 0.6 | 0.6 | [88,89,90] |
Site | n | FAC2 | MB | NMB | RMSE | r | IOA |
---|---|---|---|---|---|---|---|
13ST | 8687 | 0.69 | −5.44 | −0.20 | 16.11 | 0.49 | 0.52 |
17SM | 8717 | 0.65 | −18.26 | −0.36 | 27.73 | 0.51 | 0.41 |
20VE | 8680 | 0.77 | −2.62 | −0.07 | 19.28 | 0.44 | 0.47 |
21BI | 8542 | 0.71 | 0.75 | 0.03 | 18.70 | 0.38 | 0.47 |
24FL | 8599 | 0.68 | −3.53 | −0.16 | 15.00 | 0.50 | 0.54 |
51BF | 8725 | 0.62 | −4.68 | −0.27 | 12.73 | 0.48 | 0.55 |
52NG | 8684 | 0.60 | −3.27 | −0.22 | 12.48 | 0.42 | 0.52 |
54BL | 8692 | 0.57 | −6.32 | −0.38 | 12.54 | 0.51 | 0.55 |
61WB | 8682 | 0.71 | 3.22 | 0.12 | 18.71 | 0.35 | 0.42 |
64KS | 8651 | 0.76 | −9.66 | −0.21 | 22.38 | 0.55 | 0.51 |
68HB | 8675 | 0.63 | −10.98 | −0.18 | 37.41 | 0.46 | 0.50 |
70MB | 8711 | 0.64 | −19.96 | −0.35 | 31.94 | 0.41 | 0.37 |
72FI | 8721 | 0.66 | 2.45 | 0.12 | 16.57 | 0.42 | 0.48 |
73FW | 8688 | 0.58 | −0.57 | −0.03 | 15.76 | 0.38 | 0.52 |
74BT | 442 | 0.80 | −3.91 | −0.12 | 17.97 | 0.58 | 0.51 |
80KT | 8686 | 0.79 | 2.47 | 0.08 | 17.65 | 0.44 | 0.50 |
Site | n | FAC2 | MB | NMB | RMSE | r | IOA |
---|---|---|---|---|---|---|---|
13ST | 352 | 0.81 | −3.03 | −0.23 | 8.39 | 0.51 | 0.60 |
20VE | 364 | 0.81 | −1.62 | −0.12 | 7.67 | 0.48 | 0.61 |
61WB | 364 | 0.78 | −1.18 | −0.09 | 9.26 | 0.29 | 0.53 |
64KS | 347 | 0.82 | −2.49 | −0.17 | 7.91 | 0.51 | 0.60 |
68HB | 363 | 0.88 | −2.27 | −0.14 | 8.29 | 0.52 | 0.62 |
Transport Environment | NO2 Sensitivity | PM2.5 Sensitivity | ||
---|---|---|---|---|
Min | Max | Min | Max | |
walking | −10% | 6% | −2% | 1% |
cycling | −11% | 6% | −2% | 1% |
in-car | −32% | 19% | −29% | 28% |
buses | −31% | 19% | −24% | 12% |
subway trains | −41% | 42% | −30% | 30% |
suburban trains | −36% | 36% | −30% | 30% |
regional trains | −40% | 41% | −35% | 35% |
transport | −24% | 15% | −16% | +14% |
total | −11% | 6% | −3% | +2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramacher, M.O.P.; Karl, M. Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas. Int. J. Environ. Res. Public Health 2020, 17, 2099. https://doi.org/10.3390/ijerph17062099
Ramacher MOP, Karl M. Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas. International Journal of Environmental Research and Public Health. 2020; 17(6):2099. https://doi.org/10.3390/ijerph17062099
Chicago/Turabian StyleRamacher, Martin Otto Paul, and Matthias Karl. 2020. "Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas" International Journal of Environmental Research and Public Health 17, no. 6: 2099. https://doi.org/10.3390/ijerph17062099
APA StyleRamacher, M. O. P., & Karl, M. (2020). Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas. International Journal of Environmental Research and Public Health, 17(6), 2099. https://doi.org/10.3390/ijerph17062099