Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surrogate Measurement of Collision
2.2. Average Crash Risk (ACR) Threshold
2.2.1. K-means clustering
2.2.2. Interquartile Range Rule
2.2.3. The Xth percentile
2.3. Discrete Fourier Transform
2.4. Imbalanced Class Boosting Algorithms
2.5. Performance Evaluation
3. Data
4. Result I: Driving Aggressiveness Labeling
4.1. Average Crash Risk Threshold
4.2. Crash Risk and Driving Aggressiveness
5. Result II: Driving Aggressiveness Recognition
5.1. The Performance of Boosting Algorithms
5.2. The Impact of Imbalance Ratio
5.3. The Impact of Resampling
6. Discussion
6.1. ACR and Aggressiveness
6.2. Algorithm Performance
6.3. Mode Input
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kluger, R.; Smith, B.L.; Park, H.; Dailey, D.J. Identification of safety-critical events using kinematic vehicle data and the discrete fourier transform. Accid. Anal. Prev. 2016, 96, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Schorr, J.; Hamdar, S.H.; Silverstein, C. Measuring the safety impact of road infrastructure systems on driver behavior: Vehicle instrumentation and real-world driving experiment. J. Intell. Transp. Syst. 2017, 21, 364–374. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Peeta, S.; He, X. (Sean); Li, Y. A Real-Time Fatigue Driving Recognition Method Incorporating Contextual Features and Two Fusion Levels. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3408–3420. [Google Scholar] [CrossRef]
- Liu, T.; Yang, Y.; Huang, G.-B.; Yeo, Y.K.; Lin, Z. Driver Distraction Detection Using Semi-Supervised Machine Learning. IEEE Trans. Intell. Transp. Syst. 2015, 17, 1108–1120. [Google Scholar] [CrossRef]
- Chandrasiri, N.P.; Nawa, K.; Ishii, A. Driving skill classification in curve driving scenes using machine learning. J. Mod. Transp. 2016, 24, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, P.; Gupta, S.; Kim, K.; Pulli, K. Multi-sensor system for driver’s hand-gesture recognition. In Proceedings of the IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Ljubljana, Slovenia, 4–8 May 2015; Volume 1, pp. 1–8. [Google Scholar]
- Wu, M.; Zhang, S.; Dong, Y. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors. Sensors 2016, 16, 1746. [Google Scholar] [CrossRef] [Green Version]
- Fernández, S.; Ito, T. Driver classification for intelligent transportation systems using fuzzy logic. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1212–1216. [Google Scholar]
- Wang, W.; Xi, J. A Rapid Pattern-recognition Method for Driving Styles using Clustering-based Ssupport Vector Machines. In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016. [Google Scholar]
- Yan, C.; Coenen, F.; Yue, Y.; Yang, X.; Zhang, B. Video-Based Classification of Driving Behavior Using a Hierarchical Classification System with Multiple Features. Int. J. Pattern Recognit. Artif. Intell. 2016, 30, 1650010. [Google Scholar] [CrossRef] [Green Version]
- Zaki, M.H.; Sayed, T.; Shaaban, K. Use of Drivers’ Jerk Profiles in Computer Vision–Based Traffic Safety Evaluations. Transp. Res. Rec. J. Transp. Res. Board 2014, 2434, 103–112. [Google Scholar] [CrossRef]
- Oh, C.; Jung, E.; Rim, H.; Kang, K.; Kang, Y. Intervehicle Safety Warning Information System for Unsafe Driving Events. Transp. Res. Rec. J. Transp. Res. Board 2012, 2324, 1–10. [Google Scholar] [CrossRef]
- Chhabra, R.; Verma, S.; Krishna, C.R. A survey on driver behavior detection techniques for intelligent transportation systems. In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering—Confluence, Noida, India, 12–13 January 2017; pp. 36–41. [Google Scholar]
- Khushaba, R.; Kodagoda, S.; Lal, S.; Dissanayake, G. Driver Drowsiness Classification Using Fuzzy Wavelet-Packet-Based Feature-Extraction Algorithm. IEEE Trans. Biomed. Eng. 2010, 58, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Wang, H. DETECTION OF DRIVING FATIGUE BY USING NONCONTACT EMG AND ECG SIGNALS MEASUREMENT SYSTEM. Int. J. Neural Syst. 2014, 24, 1450006. [Google Scholar] [CrossRef] [PubMed]
- Murphey, Y.L.; Milton, R.; Kiliaris, L. Driver’s Style Classification using Jerk Analysis. In Proceedings of the IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, Nashville, TN, USA, 30 March–2 April 2009. [Google Scholar]
- Higgs, B.; Abbas, M. Segmentation and Clustering of Car-Following Behavior: Recognition of Driving Patterns. IEEE Trans. Intell. Transp. Syst. 2014, 16, 81–90. [Google Scholar] [CrossRef]
- Ambros, J.; Turek, R.; Paukrt, J. Road Safety Evaluation using Traffic Conflicts: Pilot Comparison of Micro-simulation and Observation. In Proceedings of the International Conference on Traffic and Transport Engineering, Belgrade, Serbia, 27–28 November 2014; City Net Scientific Research Center Ltd.: Belgrade, Serbia. [Google Scholar]
- Kitajima, S.; Marumo, Y.; Hiraoka, T.; Itoh, M. Comparison of evaluation features concerning estimation of driver’s risk perception. Rev. Automot. Eng. 2009, 40, 191–198. [Google Scholar]
- Mahmud, S.M.S.; Ferreira, L.; Hoque, S.; Tavassoli, A. Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Res. 2017, 41, 153–163. [Google Scholar] [CrossRef]
- Kitajima, S.; Takatori, O.; Enokida, S.; Takeda, K. Estimation of Driver’s Dangerous States of Rear-end Collision based on Driver Video Recorder Data and Ordinary Driving Data. In Proceedings of the Automotive Engineers of Japan, Bari, Italy, 10–12 June 2009. [Google Scholar]
- Japan Society of Traffic Engineers. Traffic Engineering Handbook; Japan Society of Traffic Engineers: Tokyo, Japan, 2005. [Google Scholar]
- Uno, N.; Iida, Y.; Itsubo, S.; Yasuhara, S. A Microscopic Analysis of Traffic Conflict Caused by Lane-changing Vehicle at Weaving Section. In Proceedings of the 13th Mini-EURO Conference-Handling Uncertainty in the Analysis of Traffic and Transportation Systems, Bari, Italy, 10–13 June 2002. [Google Scholar]
- Okamura, M.; Fukuda, A.; Morita, H.; Suzuki, H.; Nakazawa, M. Impact evaluation of a driving support system on traffic flow by microscopic traffic simulation. Adv. Transp. Stud. 2011, 99–102. [Google Scholar]
- Wang, H.; Zhang, C.; Shi, T.; Wang, F.; Ma, S. Real-Time EEG-Based Detection of Fatigue Driving Danger for Accident Prediction. Int. J. Neural Syst. 2015, 25, 1550002. [Google Scholar] [CrossRef]
- Singh, N.K.; Singh, A.K.; Tripathy, M. A comparative study of BPNN, RBFNN and ELMAN neural network for short-term electric load forecasting: A case study of Delhi region. In Proceedings of the 2014 9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 15–17 December 2014; pp. 1–6. [Google Scholar]
- Wang, W.; Xi, J.; Zhao, D. Driving Style Analysis Using Primitive Driving Patterns with Bayesian Nonparametric Approaches. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2986–2998. [Google Scholar] [CrossRef] [Green Version]
- Aoude, G.S.; Desaraju, V.R.; Stephens, L.H.; How, J.P. Driver Behavior Classification at Intersections and Validation on Large Naturalistic Data Set. IEEE Trans. Intell. Transp. Syst. 2012, 13, 724–736. [Google Scholar] [CrossRef]
- Sun, R.; Han, K.; Hu, J.; Wang, S.; Hu, M.; Ochieng, W.Y. Integrated solution for anomalous driving detection based on BeiDou/GPS/IMU measurements. Transp. Res. Part C: Emerg. Technol. 2016, 69, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chaozhong, W.; Huang, Z.; Lyu, N.; Hu, Z.; Zhong, M.; Cheng, Y.; Ran, B. Dangerous Driving Behavior Detection using Video-extracted Vehicle Trajectory Histograms. J. Intell. Transp. Syst. 2017, 6, 409–421. [Google Scholar] [CrossRef]
- Chawla, N.V.; Lazarevic, A.; Hall, L.O.; Bowyer, K. SMOTEBoost: Improving Prediction of the Minority Class in Boosting. In Proceedings of the Requirements Engineering: Foundation for Software Quality, Cavtat-Dubrovnik, Croatia, 22–26 September 2003; Volume 2838, pp. 107–119. [Google Scholar]
- Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Syst. Man, Cybern. Part A Syst. Hum. 2009, 40, 185–197. [Google Scholar] [CrossRef]
- Rayhan, F.; Ahmed, S.; Mahbub, A.; Jani, R.; Shatabda, S.; Farid, D.M. CUSBoost: Cluster-Based Under-Sampling with Boosting for Imbalanced Classification. In Proceedings of the 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bangalore, India, 21–23 December 2017; pp. 1–5. [Google Scholar]
- Chawla, N.; Bowyer, K.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, 0118432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanino, M.; Punzo, V. Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns. Transp. Res. Part B Methodol. 2015, 80, 82–106. [Google Scholar] [CrossRef]
- Coifman, B.; Li, L. A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset. Transp. Res. Part B Methodol. 2017, 105, 362–377. [Google Scholar] [CrossRef]
- Shinar, D.; Compton, R. Aggressive driving: An observational study of driver, vehicle, and situational variables. Accid. Anal. Prev. 2004, 36, 429–437. [Google Scholar] [CrossRef]
Boosting Algorithm | Resample Training Data |
---|---|
Cost-sensitive boosting | |
AdaBoost | No |
XGBoost | No |
Standard boosting with resampling | |
SMOTE + AdaBoost | SMOTE |
SMOTE + XGBoost | SMOTE |
RUS + AdaBoost | Random undersampling |
RUS + XGBoost | Random undersampling |
Imbalanced Class Boosting | |
SMOTEBoost | No |
RUSBoost | No |
CUSBoost | No |
Dataset | Input | Method | ACR Threshold Value | Percentage of Aggressive Drivers | Imbalance Ratio |
---|---|---|---|---|---|
Dataset 1 | DFT of speed and acceleration | K-means clustering | 0.14 | 14.4% | 6:1 |
Dataset 2 | DFT of gap | K-means clustering | 0.14 | 14.4% | 6:1 |
Dataset 3 | DFT of speed, acceleration, and gap | K-means clustering | 0.14 | 14.4% | 6:1 |
Dataset 4 | DFT of speed, acceleration, and gap | Interquartile range rule | 0.19 | 10.0% | 9:1 |
Dataset 5 | DFT of speed, acceleration, and gap | 94th percentile | 0.28 | 6.4% | 14:1 |
Algorithms | Precision | Recall | F1 Score | AUPRC |
---|---|---|---|---|
Cost-sensitive boosting | ||||
AdaBoost | 0.720 | 0.504 | 0.561 | 0.639 |
XGBoost | 0.809 | 0.552 | 0.639 | 0.693 |
Standard boosting with resampling | ||||
SMOTE + AdaBoost | 0.495 | 0.663 | 0.557 | 0.617 |
SMOTE + XGBoost | 0.526 | 0.684 | 0.586 | 0.655 |
RUS + AdaBoost | 0.414 | 0.763 | 0.529 | 0.572 |
RUS + XGBoost | 0.432 | 0.779 | 0.551 | 0.573 |
Imbalanced class boosting | ||||
SMOTEBoost | 0.441 | 0.823 | 0.571 | 0.664 |
RUSBoost | 0.297 | 0.928 | 0.445 | 0.507 |
CUSBoost | 0.586 | 0.661 | 0.615 | 0.715 |
Algorithms | Precision | Recall | F1 Score | AUPRC |
---|---|---|---|---|
Cost-sensitive boosting | ||||
AdaBoost | 0.832 | 0.768 | 0.786 | 0.852 |
XGBoost | 0.910 | 0.894 | 0.897 | 0.917 |
Standard boosting with resampling | ||||
SMOTE + AdaBoost | 0.845 | 0.824 | 0.825 | 0.869 |
SMOTE + XGBoost | 0.887 | 0.930 | 0.903 | 0.902 |
RUS + AdaBoost | 0.681 | 0.901 | 0.774 | 0.820 |
RUS + XGBoost | 0.823 | 0.917 | 0.861 | 0.890 |
Imbalanced class boosting | ||||
SMOTEBoost | 0.799 | 0.856 | 0.818 | 0.895 |
RUSBoost | 0.588 | 0.962 | 0.722 | 0.851 |
CUSBoost | 0.840 | 0.908 | 0.866 | 0.912 |
Algorithms | Precision | Recall | F1 Score | AUPRC |
---|---|---|---|---|
Cost-sensitive boosting | ||||
AdaBoost | 0.890 | 0.824 | 0.847 | 0.923 |
XGBoost | 0.924 | 0.893 | 0.904 | 0.938 |
Boosting with resampling | ||||
SMOTE + AdaBoost | 0.830 | 0.873 | 0.732 | 0.802 |
SMOTE + XGBoost | 0.848 | 0.916 | 0.912 | 0.926 |
RUS + AdaBoost | 0.827 | 0.888 | 0.806 | 0.855 |
RUS + XGBoost | 0.925 | 0.929 | 0.914 | 0.910 |
Imbalanced class boosting | ||||
SMOTEBoost | 0.812 | 0.917 | 0.852 | 0.942 |
RUSBoost | 0.605 | 0.954 | 0.730 | 0.902 |
CUSBoost | 0.870 | 0.911 | 0.884 | 0.935 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Xue, Q.; Xing, Y.; Li, C. Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting. Int. J. Environ. Res. Public Health 2020, 17, 2375. https://doi.org/10.3390/ijerph17072375
Wang K, Xue Q, Xing Y, Li C. Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting. International Journal of Environmental Research and Public Health. 2020; 17(7):2375. https://doi.org/10.3390/ijerph17072375
Chicago/Turabian StyleWang, Ke, Qingwen Xue, Yingying Xing, and Chongyi Li. 2020. "Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting" International Journal of Environmental Research and Public Health 17, no. 7: 2375. https://doi.org/10.3390/ijerph17072375
APA StyleWang, K., Xue, Q., Xing, Y., & Li, C. (2020). Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting. International Journal of Environmental Research and Public Health, 17(7), 2375. https://doi.org/10.3390/ijerph17072375