Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Methods
2.2.1. Identifying Temporal Patterns Using the Nonparametric Test
2.2.2. Discovering Spatial Patterns by Local Moran’s I Index
3. Results and Discussion
3.1. Identifying the Temporal Patterns of Daily New Confirmed Cases
3.2. Discovering the Spatial Patterns of the Incidence Rate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-2019) Situation Reports. Available online: https://www.who.int. (accessed on 7 April 2020).
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infec. 2020, 9, 221–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.J.; Zhao, X.; Li, J.; Niu, P.H.; Yang, B.; Wu, H.L.; Wang, W.L.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 2020, 92, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Z. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends 2020, 14, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Nkengasong, J. China’s response to a novel coronavirus stands in stark contrast to the 2002 SARS outbreak response. Nat. Med. 2020, 26, 310–311. [Google Scholar] [CrossRef]
- Jacquez, G.M. Spatial analysis in epidemiology: Nascent science or a failure of GIS? J. Geogr. Sci. 2020, 2, 91–97. [Google Scholar] [CrossRef]
- Liu, W.; Yang, K.; Qi, X.; Xu, K.; Ji, H.; Ai, J.; Ge, A.; Wu, Y.; Li, Y.; Dai, Q.; et al. Spatial and temporal analysis of human infection with avian influenza a (H7N9) virus in China, 2013. Eur. Surveill. 2013, 18, 20640. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Yang, K.; Xu, Q.L.; Liu, L.; Chen, J. Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A(H7N9) virus in China, 2013–2014. BMC Infect. Dis. 2017, 17, 704. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Li, R.D.; Xu, X.J.; Hong, X.; Xia, X.; Yu, C. Spatio-temporal pattern and risk factors of the reported novel avian-origin influenza A(H7N9) cases in China. Prev. Vet. Med. 2014, 115, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Goede, D.; Morrison, R.; Perez, A. Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States. Prev. Vet. Med. 2016, 123, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Atique, S.; Chan, T.C.; Chen, C.C.; Hsu, C.H.; Iqtidar, S.; Louis, V.R.; Shabbir, S.A.; Chuang, T.W. Investigating spati-temporal distribution and diffusion patterns of the dengue outbreak in Swat, Pakistan. J. Infect. Public Health 2018, 11, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Wang, X.F.; Li, Y.F. Spatio-temporal Analysis of Infuenza in China, 2005–2018. Sci. Rep. 2019, 9, 19650. [Google Scholar]
- Korobeinikov, A. Global Properties of Infectious Disease Models with Nonlinear Incidence. B. Math. Biol. 2007, 69, 1871–1886. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B. Nonparametric tests against trend. J. Econ. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Ishak, E.H.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Evaluating the non-stationarity of Australian annual maximum flood. J. Hydrol. 2013, 494, 134–145. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Mu, X.M.; Zhang, L.; McVicar, T.R.; Chille, B.; Gau, P. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China. Hydrol. Process. 2007, 21, 2124–2134. [Google Scholar] [CrossRef]
- Love, D.; Uhlenbrook, S.; Twomlow, S.; Van Der Zaag, P. Changing rainfall and discharge patterns in the northern Limpopo Basin, Zimbabwe. Water 2010, 36, 335–350. [Google Scholar]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Wartenberg, D. Spatial epidemiology: Current approaches and future challenges. Environ. Health Persp. 2004, 112, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Auchincloss, A.H.; Gebreab, S.Y.; Mair, C.; Diez Roux, A.V. A review of spatial methods in epidemiology, 2000–2010. Annu. Rev. Public Health 2012, 33, 107–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Shi, Y.; Deng, M.; Yang, X.X.; Liu, Q.L. A spatial anomaly points and regions detection method using multi-constrained graphs and local density. Trans. GIS 2017, 21, 376–405. [Google Scholar] [CrossRef]
- Backer, J.A.; Klinkenberg, D.; Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eur. Surveill. 2020, 25, 2000062. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.Y.; Zheng, L.; Li, Q.X.; Yuan, W.; Lu, L. Exploring determinants of spatial variations in the dengue fever epidemic using geographically weighted regression model: A case study in the joint Guangzhou-Foshan area, China, 2014. Int. J. Environ. Res. Public Health 2017, 14, 1518. [Google Scholar] [CrossRef] [Green Version]
- Mourao, P.R. Keeping up with the (Portuguese) joneses’–A study on the spatial dependence of municipal expenditure. Appl. Econ. 2019, 51, 3689–3709. [Google Scholar] [CrossRef]
Abrupt Change | Temporal Trend | ||
---|---|---|---|
Increasing Trend | Decreasing Trend | Not Significant | |
Significant | Significant | ||
Significant | ITAC | DTAC | NOAC |
Not Significant | ITNO | DTNO | NONO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Deng, M.; Li, C.; Huang, J. Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China. Int. J. Environ. Res. Public Health 2020, 17, 2563. https://doi.org/10.3390/ijerph17072563
Yang W, Deng M, Li C, Huang J. Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China. International Journal of Environmental Research and Public Health. 2020; 17(7):2563. https://doi.org/10.3390/ijerph17072563
Chicago/Turabian StyleYang, Wentao, Min Deng, Chaokui Li, and Jincai Huang. 2020. "Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China" International Journal of Environmental Research and Public Health 17, no. 7: 2563. https://doi.org/10.3390/ijerph17072563
APA StyleYang, W., Deng, M., Li, C., & Huang, J. (2020). Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China. International Journal of Environmental Research and Public Health, 17(7), 2563. https://doi.org/10.3390/ijerph17072563