Modeling Impact of Word of Mouth and E-Government on Online Social Presence during COVID-19 Outbreak: A Multi-Mediation Approach
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Role of E-Govt
2.2. COVID-19-Word of Mouth
2.3. Epidemic Protection from COVID-19and Its Mediating Role
2.4. Attitudes toward Epidemic Outbreak and Its Mediating Role
2.5. Online Social Presence in Epidemic Outbreak
3. Materials and Methods
3.1. Study Area
3.2. Data Sampling and Collection
3.3. Statistical Analysis
4. Results
4.1. Measurement Model Assessment
4.2. Structured Model Assessment
4.3. Effect Size and Predictive Relevance
4.4. Multiple Mediating Effect Tests
4.5. Magnitude and Strength of Mediation
4.6. Impact–Performance Map Analysis (IPMA)
5. Discussion
6. Conclusions
7. Research Limitations and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalid, S.A.; Lavilles, R.Q. Maturity assessment of local e-government websites in the philippines. Procedia Comput. Sci. 2019, 161, 99–106. [Google Scholar] [CrossRef]
- Berger, J.; Iyengar, R. Communication channels and word of mouth: How the medium shapes the message. J. Consum. Res. 2013, 40, 567–579. [Google Scholar] [CrossRef]
- Nabi, R.L.; Huskey, R.; Nicholls, S.B.; Keblusek, L.; Reed, M. When audiences become advocates: Self-induced behavior change through health message posting in social media. Comput. Hum. Behav. 2019, 99, 260–267. [Google Scholar] [CrossRef]
- Introne, J.; Goggins, S. Advice reification, learning, and emergent collective intelligence in online health support communities. Comput. Hum. Behav. 2019, 99, 205–218. [Google Scholar] [CrossRef]
- Spielmann, N.; Maguire, J.S.; Charters, S. Product patriotism: How consumption practices make and maintain national identity. J. Bus. Res. 2018. [Google Scholar] [CrossRef]
- Quinn, S.; Bond, R.; Nugent, C. Quantifying health literacy and ehealth literacy using existing instruments and browser-based software for tracking online health information seeking behavior. Comput. Hum. Behav. 2017, 69, 256–267. [Google Scholar] [CrossRef]
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease-2019 (covid-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Hartanto, A.; Yong, J.C.; Toh, W.X.; Lee, S.T.H.; Tng, G.Y.Q.; Tov, W. Cognitive, social, emotional, and subjective health benefits of computer use in adults: A 9-year longitudinal study from the midlife in the united states (midus). Comput. Hum. Behav. 2020, 104, 106179. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Shi, J.; Peng, T.-Q. What makes cancer information viral on social media? Comput. Hum. Behav. 2019, 93, 149–156. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Deng, Z.; Chen, X. Knowledge sharing motivations in online health communities: A comparative study of health professionals and normal users. Comput. Hum. Behav. 2017, 75, 797–810. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Peng, W.-H. Fluctuations for the outbreak prevalence of the sir epidemics in complex networks. Phys. A Stat. Mech. Appl. 2019, 123848. [Google Scholar] [CrossRef]
- Atkins, L.; Kelly, M.P.; Littleford, C.; Leng, G.; Michie, S. From the national health service to local government: Perceptions of public health transition in england. Public Health 2019, 174, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.; Wilkinson, E.; Cleary, P.; Blagden, S.; Farmer, S. Did school characteristics affect the uptake of meningococcal quadrivalent vaccine in greater manchester, united kingdom? Public Health 2019, 171, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.; Kumari, M.; Sharma, T.P. Rumors detection, verification and controlling mechanisms in online social networks: A survey. Online Soc. Netw. Media 2019, 14, 100050. [Google Scholar] [CrossRef]
- Park, Y.J.; Shin, D.D. Contextualizing privacy on health-related use of information technology. Comput. Hum. Behav. 2020, 105, 106204. [Google Scholar] [CrossRef]
- Ko, H.; Kim, H.; Yoon, C.-G.; Kim, C.-Y. Social capital as a key determinant of willingness to join community-based health insurance: A household survey in nepal. Public Health 2018, 160, 52–61. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Ding, X.; Chen, Y.; Wang, L. Strengthening the maternal and child health system in remote and low-income areas through multilevel governmental collaboration: A case study from nujiang prefecture in china. Public Health 2020, 178, 23–30. [Google Scholar] [CrossRef]
- Antheunis, M.L.; Tates, K.; Nieboer, T.E. Patients’ and health professionals’ use of social media in health care: Motives, barriers and expectations. Patient Educ. Couns. 2013, 92, 426–431. [Google Scholar] [CrossRef]
- Bonwitt, J.; Dawson, M.; Kandeh, M.; Ansumana, R.; Sahr, F.; Brown, H.; Kelly, A.H. Unintended consequences of the ‘bushmeat ban’ in west africa during the 2013–2016 ebola virus disease epidemic. Soc. Sci. Med. 2018, 200, 166–173. [Google Scholar] [CrossRef]
- Atanasova, S.; Kamin, T.; Petrič, G. The benefits and challenges of online professional-patient interaction: Comparing views between users and health professional moderators in an online health community. Comput. Hum. Behav. 2018, 83, 106–118. [Google Scholar] [CrossRef]
- Chua, A.Y.K.; Banerjee, S. Intentions to trust and share online health rumors: An experiment with medical professionals. Comput. Hum. Behav. 2018, 87, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schochet, G. Patriotism. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N.J., Baltes, P.B., Eds.; Pergamon: Oxford, UK, 2001; pp. 11116–11118. [Google Scholar]
- Rahman Qureshi, U.U.; Saleem, S.; Khan, A.; Afzal, M.S.; Ali, M.S.; Ahmed, H. Outbreak of novel corona virus (2019-ncov); implications for travelers to pakistan. Travel Med. Infect. Dis. 2020, 101571. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.H.; Walsh-Childers, K.; Kim, H.-S. Factors influencing the perceived credibility of diet-nutrition information web sites. Comput. Hum. Behav. 2016, 58, 37–47. [Google Scholar] [CrossRef]
- Biduski, D.; Bellei, E.A.; Rodriguez, J.P.M.; Zaina, L.A.M.; De Marchi, A.C.B. Assessing long-term user experience on a mobile health application through an in-app embedded conversation-based questionnaire. Comput. Hum. Behav. 2020, 104, 106169. [Google Scholar] [CrossRef]
- Walsh, K.; Grech, C.; Hill, K. Health advice and education given to overweight patients by primary care doctors and nurses: A scoping literature review. Preventive Medicine Reports 2019, 14, 100812. [Google Scholar] [CrossRef]
- Cao, J.; Chen, X.; Zhang, X.; Gao, Y.; Zhang, X.; Kumar, S. Overview of remanufacturing industry in china: Government policies, enterprise, and public awareness. J. Clean. Prod. 2020, 242, 118450. [Google Scholar] [CrossRef]
- Aladwani, A.M.; Dwivedi, Y.K. Towards a theory of sociocitizenry: Quality anticipation, trust configuration, and approved adaptation of governmental social media. Int. J. Inf. Manag. 2018, 43, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Belkahla Driss, O.; Mellouli, S.; Trabelsi, Z. From citizens to government policy-makers: Social media data analysis. Gov. Inf. Q. 2019, 36, 560–570. [Google Scholar] [CrossRef]
- Gil-Garcia, J.R.; Guler, A.; Pardo, T.A.; Burke, G.B. Characterizing the importance of clarity of roles and responsibilities in government inter-organizational collaboration and information sharing initiatives. Gov. Inf. Q. 2019, 36, 101393. [Google Scholar] [CrossRef]
- Fu, L.; Sun, Z.; Zha, L.; Liu, F.; He, L.; Sun, X.; Jing, X. Environmental awareness and pro-environmental behavior within china’s road freight transportation industry: Moderating role of perceived policy effectiveness. J. Clean. Prod. 2020, 252, 119796. [Google Scholar] [CrossRef]
- Cao, J.; Lu, B.; Chen, Y.; Zhang, X.; Zhai, G.; Zhou, G.; Jiang, B.; Schnoor, J.L. Extended producer responsibility system in china improves e-waste recycling: Government policies, enterprise, and public awareness. Renew. Sustain. Energy Rev. 2016, 62, 882–894. [Google Scholar] [CrossRef]
- Gintova, M. Understanding government social media users: An analysis of interactions on immigration, refugees and citizenship canada twitter and facebook. Gov. Inf. Q. 2019, 36, 101388. [Google Scholar] [CrossRef]
- Dias, G.P. Fifteen years of e-government research in ibero-america: A bibliometric analysis. Gov. Inf. Q. 2019, 36, 400–411. [Google Scholar] [CrossRef]
- Pai, R.R.; Alathur, S. Assessing awareness and use of mobile phone technology for health and wellness: Insights from india. Health Policy Technol. 2019, 8, 221–227. [Google Scholar] [CrossRef]
- Biswas, A.; Abdullah, A.S.M.; Deave, T.; Dalal, K.; Mashreky, S.R. Exploration of gaps and challenges in managing burn injury at district and sub-district government health care facilities in bangladesh. Burn. Open 2020, 4, 16–21. [Google Scholar] [CrossRef]
- Tursunbayeva, A.; Franco, M.; Pagliari, C. Use of social media for e-government in the public health sector: A systematic review of published studies. Gov. Inf. Q. 2017, 34, 270–282. [Google Scholar] [CrossRef]
- Amador, J.; Gómez-Corral, A. A stochastic epidemic model with two quarantine states and limited carrying capacity for quarantine. Phys. A Stat. Mech. Appl. 2020, 544, 121899. [Google Scholar] [CrossRef]
- Dénes, A.; Gumel, A.B. Modeling the impact of quarantine during an outbreak of ebola virus disease. Infect. Dis. Model. 2019, 4, 12–27. [Google Scholar] [CrossRef]
- Lee, H. Stochastic and spatio-temporal analysis of the middle east respiratory syndrome outbreak in south korea, 2015. Infect. Dis. Model. 2019, 4, 227–238. [Google Scholar] [CrossRef]
- Lee, S.M.; Kang, W.S.; Cho, A.-R.; Kim, T.; Park, J.K. Psychological impact of the 2015 mers outbreak on hospital workers and quarantined hemodialysis patients. Compr. Psychiatry 2018, 87, 123–127. [Google Scholar] [CrossRef]
- Chung, J.E. Retweeting in health promotion: Analysis of tweets about breast cancer awareness month. Comput. Hum. Behav. 2017, 74, 112–119. [Google Scholar] [CrossRef]
- Kimmerle, J.; Bientzle, M.; Cress, U. “Scientific evidence is very important for me”: The impact of behavioral intention and the wording of user inquiries on replies and recommendations in a health-related online forum. Comput. Hum. Behav. 2017, 73, 320–327. [Google Scholar] [CrossRef]
- Beaudoin, C.E.; Hong, T. Health information seeking, diet and physical activity: An empirical assessment by medium and critical demographics. Int. J. Med Inform. 2011, 80, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Imhof, M.A.; Schmälzle, R.; Renner, B.; Schupp, H.T. Strong health messages increase audience brain coupling. NeuroImage 2020, 116527. [Google Scholar] [CrossRef] [PubMed]
- Carfora, V.; Catellani, P.; Caso, D.; Conner, M. How to reduce red and processed meat consumption by daily text messages targeting environment or health benefits. J. Environ. Psychol. 2019, 65, 101319. [Google Scholar] [CrossRef]
- Cechetti, N.P.; Bellei, E.A.; Biduski, D.; Rodriguez, J.P.M.; Roman, M.K.; De Marchi, A.C.B. Developing and implementing a gamification method to improve user engagement: A case study with an m-health application for hypertension monitoring. Telemat. Inform. 2019, 41, 126–138. [Google Scholar] [CrossRef]
- Kaya, B.; Gündoğan, E. Evaluating reliability of question-disease relations in online health forms: A link prediction approach. Telemat. Inform. 2018, 35, 1799–1808. [Google Scholar] [CrossRef]
- Kooraki, S.; Hosseiny, M.; Myers, L.; Gholamrezanezhad, A. Coronavirus outbreak: What the department of radiology should know. J. Am. Coll. Radiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zwald, M.L.; Kit, B.K.; Fakhouri, T.H.I.; Hughes, J.P.; Akinbami, L.J. Prevalence and correlates of receiving medical advice to increase physical activity in u.S. Adults: National health and nutrition examination survey 2013–2016. Am. J. Prev. Med. 2019, 56, 834–843. [Google Scholar] [CrossRef]
- Ma, T.; Atkin, D. User generated content and credibility evaluation of online health information: A meta analytic study. Telemat. Inform. 2017, 34, 472–486. [Google Scholar] [CrossRef]
- Kitapci, O.; Akdogan, C.; Dortyol, İ.T. The impact of service quality dimensions on patient satisfaction, repurchase intentions and word-of-mouth communication in the public healthcare industry. Procedia Soc. Behav. Sci. 2014, 148, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Bauch, C.T.; Breban, R. Role of word-of-mouth for programs of voluntary vaccination: A game-theoretic approach. Math. Biosci. 2015, 269, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeoh, E.; Othman, K.; Ahmad, H. Understanding medical tourists: Word-of-mouth and viral marketing as potent marketing tools. Tour. Manag. 2013, 34, 196–201. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395. [Google Scholar] [CrossRef] [Green Version]
- Harry, F.H. Sars control and psychological effects of quarantine, toronto, canada. Emerg. Infect. Dis. J. 2005, 11, 354. [Google Scholar]
- Kim, E.Y.; Liao, Q.; Yu, E.S.; Kim, J.H.; Yoon, S.W.; Lam, W.W.T.; Fielding, R. Middle east respiratory syndrome in south korea during 2015: Risk-related perceptions and quarantine attitudes. Am. J. Infect. Control 2016, 44, 1414–1416. [Google Scholar] [CrossRef] [Green Version]
- Short, J.; Williams, E.; Christie, B. The Social Psychology of Telecommunications; John Wiley & Sons: Hoboken, NJ, USA, 1976. [Google Scholar]
- Ye, S.; Lei, S.I.; Shen, H.; Xiao, H. Social presence, telepresence and customers’ intention to purchase online peer-to-peer accommodation: A mediating model. J. Hosp. Tour. Manag. 2020, 42, 119–129. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Yang, H. Loneliness and the use of social media to follow celebrities: A moderating role of social presence. Soc. Sci. J. 2019, 56, 21–29. [Google Scholar] [CrossRef]
- Algharabat, R.; Rana, N.P.; Dwivedi, Y.K.; Alalwan, A.A.; Qasem, Z. The effect of telepresence, social presence and involvement on consumer brand engagement: An empirical study of non-profit organizations. J. Retail. Consum. Serv. 2018, 40, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Ying, T.; Zhou, L.; Wang, T. Enhancing customer trust in peer-to-peer accommodation: A “soft” strategy via social presence. Int. J. Hosp. Manag. 2019, 79, 1–10. [Google Scholar] [CrossRef]
- Kaushik, K.; Kumar Jain, N.; Kumar Singh, A. Antecedents and outcomes of information privacy concerns: Role of subjective norm and social presence. Electron. Commer. Res. Appl. 2018, 32, 57–68. [Google Scholar] [CrossRef]
- Kim, J.; Merrill Jr, K.; Yang, H. Why we make the choices we do: Social tv viewing experiences and the mediating role of social presence. Telemat. Inform. 2019, 45, 101281. [Google Scholar] [CrossRef]
- Parong, J.; Pollard, K.A.; Files, B.T.; Oiknine, A.H.; Sinatra, A.M.; Moss, J.D.; Passaro, A.; Khooshabeh, P. The mediating role of presence differs across types of spatial learning in immersive technologies. Comput. Hum. Behav. 2020, 107, 106290. [Google Scholar] [CrossRef]
- Jin, Y.; Huang, J. Why do consumers participate in brand microblogs? Electron. Commer. Res. Appl. 2017, 24, 1–11. [Google Scholar] [CrossRef]
- Osei-Frimpong, K.; McLean, G. Examining online social brand engagement: A social presence theory perspective. Technol. Forecast. Soc. Chang. 2018, 128, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Markovic, S.; Iglesias, O.; Singh, J.J.; Sierra, V. How does the perceived ethicality of corporate services brands influence loyalty and positive word-of-mouth? Analyzing the roles of empathy, affective commitment, and perceived quality. J. Bus. Ethics 2018, 148, 721–740. [Google Scholar] [CrossRef]
- Lopez-Quintero, C.; Freeman, P.; Neumark, Y. Hand washing among school children in bogota, colombia. Am. J. Public Health 2009, 99, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Qasmi, S.A.; Shah, S.M.M.; Wakil, H.Y.I.; Pirzada, S. Guiding hand hygiene interventions among future healthcare workers: Implications of knowledge, attitudes, and social influences. Am. J. Infect. Control 2018, 46, 1026–1031. [Google Scholar] [CrossRef]
- Ajzen, H.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Pearson: London, UK, 1980. [Google Scholar]
- Scherer, K.R. What are emotions? And how can they be measured? Soc. Sci. Inf. 2005, 44, 695–729. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Ringle, C.M.; Thiele, K.O.; Gudergan, S.P. Estimation issues with pls and cbsem: Where the bias lies! J. Bus. Res. 2016, 69, 3998–4010. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Plan. 2012, 45, 320–340. [Google Scholar] [CrossRef]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of pls-sem in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Hartmann, E.; De Grahl, A. The flexibility of logistics service providers and its impact on customer loyalty—An empirical study. In Success Factors in Logistics Outsourcing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 7–51. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Pls-sem: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report pls analyses. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 655–690. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using pls path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Streukens, S.; Leroi-Werelds, S. Bootstrapping and pls-sem: A step-by-step guide to get more out of your bootstrap results. Eur. Manag. J. 2016, 34, 618–632. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (pls-sem). Sage Publications: Southend Oaks, CA, USA, 2016. [Google Scholar]
- Streukens, S.; Wetzels, M.; Daryanto, A.; de Ruyter, K. Analyzing factorial data using pls: Application in an online complaining context. In Handbook of Partial Least Squares: Concepts, Methods and Applications; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin, Heidelberg, 2010; pp. 567–587. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with Eqs: Basic Concepts, Applications, and Programming; Routledge: Abington, Thames, UK, 2013. [Google Scholar]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with Lisrel, Prelis, and Simplis: Basic Concepts, Applications, and Programming; Psychology Press: East Sussex, UK, 2013. [Google Scholar]
- Hooper, D.; Coughlan, J.; Mullen, M. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (pls-sem) an emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.; Chatla, S. The elephant in the room: Evaluating the predictive performance of partial least squares (pls) path models. SSRN Electron. J. 2015. [Google Scholar] [CrossRef]
- Rigdon, E.E. Rethinking partial least squares path modeling: In praise of simple methods. Long Range Plan. 2012, 45, 341–358. [Google Scholar] [CrossRef]
- Selya, A.S.; Rose, J.S.; Dierker, L.C.; Hedeker, D.; Mermelstein, R.J. A practical guide to calculating cohen’s f2, a measure of local effect size, from proc mixed. Front. Psychol. 2012, 3, 111. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. The statistical power of abnormal-social psychological research: A review. J. Abnorm. Soc. Psychol. 1962, 65, 145. [Google Scholar] [CrossRef]
- Aguinis, H.; Edwards, J.R.; Bradley, K.J. Improving our understanding of moderation and mediation in strategic management research. Organ. Res. Methods 2016, 20, 665–685. [Google Scholar] [CrossRef]
- Carrión, G.C.; Nitzl, C.; Roldán, J.L. Mediation analyses in partial least squares structural equation modeling: Guidelines and empirical examples. In Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications; Latan, H., Noonan, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 173–195. [Google Scholar]
- Ringle, C.M.; Sarstedt, M. Gain more insight from your pls-sem results: The importance-performance map analysis. Ind. Manag. Data Syst. 2016, 116, 1865–1886. [Google Scholar] [CrossRef]
- Park, S.; Nicolau, J.L. Asymmetric effects of online consumer reviews. Ann. Tour. Res. 2015, 50, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Zolotov, M.; Oliveira, T.; Casteleyn, S.; Irani, Z. Continuous usage of e-participation: The role of the sense of virtual community. Gov. Inf. Q. 2019, 36, 536–545. [Google Scholar] [CrossRef]
- Kim, M.; Cho, M. Examining the role of sense of community: Linking local government public relationships and community-building. Public Relat. Rev. 2019, 45, 297–306. [Google Scholar] [CrossRef]
- Oh, J.; Ki, E.-J. Factors affecting social presence and word-of-mouth in corporate social responsibility communication: Tone of voice, message framing, and online medium type. Public Relat. Rev. 2019, 45, 319–331. [Google Scholar] [CrossRef]
Classification | Frequency (n) | Percentage | |
---|---|---|---|
Sex | Male Female | 315 368 | 46.12% 53.87% |
Marital status | Married Unmarried Divorced | 309 356 18 | 45.24% 52.12% 2.63% |
Age | Under 18 18–30 31–40 41–50 Above 50 | 27 259 225 143 29 | 3.95% 37.92% 32.94% 20.93% 4.24% |
Construct | Items and Sources |
---|---|
Role of E-Govt | Efforts of E-Govt, trust in E-Govt, support of E-Govt [26] |
2019-nCoV-WOM | Information,countries’ status, 2019-nCoV- plan [68] |
Epidemic protection | Hand wash, mask, motivation to protect [69,70] |
Attitude toward epidemic outbreak | Willingness to quarantine, health psychology, doctors’ advice [71] |
Online Social presence in outbreak | More present in quarantine, present for social support, present to discuss COVID-19 |
Construct | Item | Outer Loading | Mean | SD | α | CR | AVE |
---|---|---|---|---|---|---|---|
Role of E-Govt | E-Govt 1 | 0.921 | 5.045 | 1.376 | 0.8 | 0.883 | 0.717 |
E-Govt 2 | 0.935 | 5.104 | 1.155 | ||||
E-Govt 3 | 0.932 | 5.125 | 1.144 | ||||
2019-nCoV-WOM | CONV-1 | 0.749 | 5.557 | 0.853 | 0.921 | 0.95 | 0.864 |
CONV-2 | 0.895 | 5.509 | 0.994 | ||||
CONV-3 | 0.89 | 5.402 | 0.947 | ||||
Epidemic protection | E-P 1 | 0.901 | 5.255 | 1.026 | 0.847 | 0.908 | 0.767 |
E-P 2 | 0.913 | 5.321 | 1.077 | ||||
E-P 3 | 0.809 | 5.227 | 0.807 | ||||
Attitude toward epidemic outbreak | ATOB 1 | 0.844 | 5.427 | 0.924 | 0.806 | 0.886 | 0.721 |
ATOB 2 | 0.846 | 5.364 | 0.856 | ||||
ATOB 3 | 0.857 | 5.469 | 1.058 | ||||
Online social presence in Outbreak | S-P 1 | 0.877 | 5.254 | 0.902 | 0.817 | 0.891 | 0.732 |
S-P2 | 0.855 | 5.38 | 0.98 | ||||
S-P 3 | 0.835 | 5.305 | 0.818 |
ATOB | 2019-nCoV-WOM | E-Govt | S-p | E-P | |
---|---|---|---|---|---|
ATOB | 0.849 | ||||
2019-nCoV-WOM | 0.701 | 0.847 | |||
E-Govt | 0.640 | 0.637 | 0.93 | ||
S-P | 0.710 | 0.753 | 0.636 | 0.856 | |
E-P | 0.727 | 0.737 | 0.631 | 0.711 | 0.876 |
Relationship | Direct Effect | t-Value | Decision | F2 | |
---|---|---|---|---|---|
H1a | E-Govt→ E-P | 0.272 | 8.075 | Supported | 0.107 |
H1b | E-Govt→ S-p | 0.137 | 3.317 | Supported | 0.028 |
H1c | E-Govt→ ATOB | 0.326 | 8.68 | Supported | 0.142 |
H2a | conv19-WOM→E-P | 0.563 | 16.353 | Supported | 0.456 |
H2b | conv19-WOM→S-P | 0.368 | 8.34 | Supported | 0.149 |
H2c | conv19-WOM→ATOB | 0.493 | 12.674 | Supported | 0.323 |
H3a | E-P→S-P | 0.187 | 4.359 | Supported | 0.037 |
H3b | ATOB→S-P | 0.228 | 5.835 | Supported | 0.059 |
Endogenous Variables | Q2 | R2 | Exogenous Variables | Effect Size f2 |
---|---|---|---|---|
E-P | 0.425 | 0.587 | E-Govt 2019-nCoV-WOM | 0.107 0.456 |
ATOB | 0.378 | 0.554 | E-Govt 2019-nCoV-WOM | 0.142 0.323 |
S-P | 0.456 | 0.659 | E-Govt 2019-nCoV-WOM E-P ATOB | 0.028 0.149 0.037 0.059 |
Mediation Path | Specific Indirect Effect | T-value | p-value | Total Effect | |
---|---|---|---|---|---|
H4b | E-Govt→ E-P→S-P | 0.051 | 3.951 | 0.000 | 0.125*** (7.320) |
H5b | E-Govt→ATOB→S-p | 0.074 | 5.189 | 0.000 | |
H3c | 2019-nCoV-WOM→E-P→S-P | 0.106 | 4.093 | 0.000 | 0.218*** (7.224) |
H4c | 2019-nCoV-WOM→ATOB→S-P | 0.113 | 5.262 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasir, A.; Hu, X.; Ahmad, M.; Rauf, A.; Shi, J.; Ali Nasir, S. Modeling Impact of Word of Mouth and E-Government on Online Social Presence during COVID-19 Outbreak: A Multi-Mediation Approach. Int. J. Environ. Res. Public Health 2020, 17, 2954. https://doi.org/10.3390/ijerph17082954
Yasir A, Hu X, Ahmad M, Rauf A, Shi J, Ali Nasir S. Modeling Impact of Word of Mouth and E-Government on Online Social Presence during COVID-19 Outbreak: A Multi-Mediation Approach. International Journal of Environmental Research and Public Health. 2020; 17(8):2954. https://doi.org/10.3390/ijerph17082954
Chicago/Turabian StyleYasir, Ammar, Xiaojian Hu, Munir Ahmad, Abdul Rauf, Jingwen Shi, and Saba Ali Nasir. 2020. "Modeling Impact of Word of Mouth and E-Government on Online Social Presence during COVID-19 Outbreak: A Multi-Mediation Approach" International Journal of Environmental Research and Public Health 17, no. 8: 2954. https://doi.org/10.3390/ijerph17082954
APA StyleYasir, A., Hu, X., Ahmad, M., Rauf, A., Shi, J., & Ali Nasir, S. (2020). Modeling Impact of Word of Mouth and E-Government on Online Social Presence during COVID-19 Outbreak: A Multi-Mediation Approach. International Journal of Environmental Research and Public Health, 17(8), 2954. https://doi.org/10.3390/ijerph17082954