Do Herbaceous Species Functional Groups Have a Uniform Pattern along an Elevation Gradient? The Case of a Semi-Arid Savanna Grasslands in Southern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
Preliminary Study for Site Selection
2.3. Sampling Design and Data Collection
- 850–920 m.a.s.l (near the bottom of the valley)
- 1150–1200 m.a.s.l (the elevation limit for loon foor)
- 1450–1520 m.a.s.l (the elevation class of lowest situated loon warra), and
- 1690–1720 m.a.s.l (near highland).
2.4. Data Analyses
3. Results
3.1. Herbaceous Species Composition and Distribution
3.2. Total and Functional Groups Herbaceous Species Community Structure
3.3. Functional Groups and Community Structure along Elevation Classes
3.4. Total and Functional Groups Biomass Productivity along Elevation Classes
3.5. The Total and Functional Groups Richness and Biomass along Elevation
4. Discussion
4.1. Herbaceous Species Composition and Total Community Structure
4.2. Herbaceous Community Structure along Elevation Classes
4.3. Herbaceous Biomass Productivity along Elevation Classes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Herbaceous Species | Number Given on Spatial Distribution | Relative Frequency % | |||
---|---|---|---|---|---|
I | II | III | IV | ||
Grasses | |||||
Aristida adoensis | 4 | 10.56 | 7.09 | 3.33 | |
Blepharis ciliaris | 10 | 11.27 | 0.79 | 6.29 | |
Bothriochloa insculpta | 39 | 4.67 | 1.71 | ||
Brachiaria species | 5 | 4.93 | 0.67 | ||
Cenchrus ciliaris | 36 | 9.33 | 5.71 | ||
Chrysopogon aucheri | 31 | 6.30 | 12.67 | 11.43 | |
Cymbopogen commutatus | 19 | 1.41 | |||
Cynodon dactylon | 13 | 2.11 | 0.57 | ||
Cyperus species | 9 | 7.75 | 4.72 | 12.00 | 10.86 |
Andropogon chinensis | 0.67 | ||||
Dactyloctenium aegyptium | 17 | 4.23 | 0.57 | ||
Digitaria milanjiana | 25 | 3.94 | 6.00 | ||
Digitaria naghellensis | 0.57 | ||||
Urochloa trichopus | 26 | 0.70 | 1.57 | ||
Eragrostis papposa | 21 | 3.52 | 1.57 | 5.33 | 7.43 |
Heteropogon contortus | 3.33 | ||||
Eragrostis capitulifera | 33 | 2.36 | |||
Brachiaria eruciformis | 2 | 6.34 | 11.02 | ||
Sporobolus pellucidus | 30 | 5.51 | |||
Oropetium species | 3 | 6.34 | 8.66 | 3.43 | |
Panicum maximum | 41 | 0.57 | |||
Panicum turpidum | 34 | 1.57 | 1.33 | ||
Pennisetum mezianum | 22 | 0.70 | 7.09 | 0.67 | 16.57 |
Setaria verticillata | 12 | 4.93 | |||
Siege species | 37 | 1.33 | |||
Sporobolus pyramid | 23 | 6.30 | 14.67 | ||
Sporobolus species | 7 | 7.75 | 0.79 | 1.33 | |
Themeda triandra | 27 | 1.57 | 2.00 | ||
Xerophyta humilis | 16 | 0.70 | 0.79 | ||
Graminoids | |||||
Amarathus thunbergi | 18 | 3.52 | 0.57 | ||
Anthospermum herbaceum | 35 | 0.79 | 0.67 | 1.71 | |
Indigofera volkensii | 20 | 0.70 | |||
Chionothrix latifolia | 42 | 0.57 | |||
Chlorophytum gallabatense | 11 | 4.23 | 0.79 | 4.67 | 5.14 |
Caralluma priogonium | 15 | 2.11 | 0.79 | ||
Commelina africana | 6 | 9.15 | 7.87 | 12.00 | 13.71 |
Ocimum gratissimum | 0.67 | ||||
Tribulus cistoides | 29 | 6.30 | |||
Forbs | |||||
Chenopodium opulifoliu | 14 | 4.23 | 9.14 | ||
Duosperm eremophilu | 24 | 7.87 | |||
Athroisma boranense | 8 | 2.11 | 1.57 | ||
Tagetes minuta | 38 | 0.67 | |||
Indigofera volkensii | 40 | 0.67 | |||
Portulaca species | 0.70 | ||||
Sericocompsis pallida | 0.57 | ||||
Sericocompsis species | 1 | 0.67 | 2.29 | ||
Aspilia mossambicensis | 32 | 0.79 | |||
Chlorophytum negellense | 28 | 0.79 | |||
Vigna vexillata | 0.79 | 0.67 | 0.57 |
Response Variables | Elevation Levels | |||||
---|---|---|---|---|---|---|
I | II | III | IV | F-Value | p-Value | |
Diversity | ||||||
Total | 1.366 ± 0.0629 b | 1.37 ± 0.072 b | 1.63 ± 0.078 a | 1.86 ± 0.044 a | 12.97 | 0 |
Grasses | 0.2135 ± 0.0169 b | 0.218 ± 0.0175 b | 0.2568 ± 0.0126 ab | 0.2896 ± 0.0161 a | 4.892 | 0.00312 |
Graminoids | 0.2031 ± 0.015 b | 0.235 ± 0.0209 ab | 0.221 ± 0.0171 ab | 0.282 ± 0.0169 a | 2.932 | 0.0387 |
Forbs | 0.25432 ± 0.021 a | 0.2472 ± 0.0251 a | 0.3019 ± 0.017 a | 0.3034 ± 0.015 a | 2.127 | 0.101 |
Richness | ||||||
Total | 6.1 ± 0.33 c | 6.63 ± 0.48 bc | 8.1 ± 0.60 ab | 9.7 ± 0.36 a | 12.71 | 0 |
Grasses | 3.52 ± 0.25 a | 3.3 ± 0.29 a | 4.1 ± 0.34 a | 3.86 ± 0.20 a | 1.657 | 0.18 |
Graminoids | 1.42 ± 0.11 ab | 1.27 ± 0.08 b | 1.24 ± 0.08 b | 1.84 ± 0.01 a | 5.812 | 0.00125 |
Forbs | 1.92 ± 0.14 b | 3 ± 0.30 b | 3.61 ± 0.33 ab | 4.30 ± 0.35 a | 10.49 | 0 |
Evenness | ||||||
Total | 0.84 ± 0.05 c | 0.77 ± 0.04 bc | 1 ± 0.04 ab | 1.12 ± 0.03 a | 12.92 | 0 |
Grasses | 0.47 ± 0.05 a | 0.46 ± 0.06 a | 0.51 ± 0.05 a | 0.56 ± 0.05 a | 0.65 | 0.585 |
Graminoids | 0.83 ± 0.04 | 0.87 ± 0.06 | 0.98 ± 0.03 | 0.93 ± 0.05 | 0.413 | 0.745 |
Forbs | 0.85 ± 0.05 a | 0.71 ± 0.05 ab | 0.56 ± 0.02 b | 0.57 ± 0.03 b | 7.548 | 0.000157 |
References
- Wright, I.J.; Ackerly, D.D.; Bongers, F.; Harms, K.E.; Ibarra-Manriquez, G.; Martinez-Ramos, M.; Mazer, S.J.; Muller-Landau, H.C.; Paz, H.; Poorter, L.; et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 2006, 99, 1003–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wullschleger, S.D.; Epstein, H.E.; Box, E.O.; Euskirchen, E.S.; Goswami, S.; Iversen, C.M.; Kattge, J.; Norby, R.J.; Van Bodegom, P.M.; Xu, X. Plant functional types in Earth system models: Past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 2014, 114, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, E.-D.; Beck, E.; Müller-Hohenstein, K. Plant Ecology; Springer: Berlin, Germany, 2005; ISBN 978-3-540-20833-4. [Google Scholar]
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95443-1. [Google Scholar]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.A.; Haddad, B.M.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Pockman, W.T.; et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Kucharik, C.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Lavorel, S.; De Bello, F.; Quétier, F.; Grigulis, K.; Robson, T.M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 2007, 104, 20684–20689. [Google Scholar] [CrossRef] [Green Version]
- Naito, A.T.; Cairns, D.M. Patterns and processes of global shrub expansion. Prog. Phys. Geogr. 2011, 35, 423–442. [Google Scholar] [CrossRef]
- Gartzia, M.; Alados, C.L.; Pérez-Cabello, F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Prog. Phys. Geogr. 2014, 38, 201–217. [Google Scholar] [CrossRef]
- Hassan, R.; Scholes, R.; Ash, N. Ecosystems and Human Well-Being: Current State and Trends; Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; Volume 1. [Google Scholar]
- Angassa, A.; Oba, G. Relating long-term rainfall variability to cattle population dynamics in communal rangelands and a government ranch in southern Ethiopia. Agric. Syst. 2007, 94, 715–725. [Google Scholar] [CrossRef]
- Anadón, J.D.; Sala, O.E.; Turner, B.L.; Bennett, E.M. Effect of woody-plant encroachment on livestock production in North and South America. Proc. Natl. Acad. Sci. USA 2014, 111, 12948–12953. [Google Scholar] [CrossRef] [Green Version]
- Bobbink, R. Effects of nutrient enrichment in Dutch chalk grasslands. J. Appl. Ecol. 1991, 28, 28–41. [Google Scholar] [CrossRef]
- Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J.G. Impacts of nitrogen deposition on the species richness of grasslands. Science 2004, 303, 1876–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, T.G.; Puttick, J.R.; Hoffman, M.T. Bush encroachment in southern Africa: Changes and causes. Afr. J. Range Forage Sci. 2014, 31, 67–88. [Google Scholar] [CrossRef]
- Venter, Z.S.; Cramer, M.D.; Hawkins, H.J. Drivers of woody plant encroachment over Africa. Nat. Commun. 2018, 9, 2272. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, Z.; Nippert, J.B.; Collins, S.L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 2012, 93, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Gillson, L.; Dawson, T.P.; Jack, S.; McGeoch, M.A. Accommodating climate change contingencies in conservation strategy. Trends Ecol. Evol. 2012, 28, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Yayneshet, T.; Eik, L.O.; Moe, S.R. The effects of exclosures in restoring degraded semi-arid vegetation in communal grazing lands in northern Ethiopia. J. Arid Environ. 2008, 73, 542–549. [Google Scholar] [CrossRef]
- Liao, C.; Fei, D. Pastoralist adaptation practices under non-governmental development interventions in Southern Ethiopia. Rangel. J. 2017, 39, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Morais, J.M.; Cianciaruso, M.V. Plant functional groups: Scientometric analysis focused on removal experimentsPlant functional groups: Scientometric analysis focused on removal experiments. Acta Bot. Bras. 2014, 28, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Dıaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.D. Handbook of protocols for standard and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, C.E.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Hutley, L.B.; et al. Savanna vegetation-fire-climate relationships differ among continents. Science 2014, 343, 548–552. [Google Scholar] [CrossRef]
- Bruinenberg, M.H.; Valkh, H.; Korevaar, H.; Struik, P.C. Factors affecting digestibility of temperate forages from seminatural grasslands: A review. Grass Forage Sci. 2002, 57, 292–301. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bardgett, R.D. Impacts of grazing and browsing by large herbivores on soils and soil biological properties. In The Ecology of Browsing and Grazing; Gordon, I.J., Prins, H.H.T., Eds.; Springer: New York, NY, USA, 2008; pp. 201–216. [Google Scholar]
- Chiarucci, A.; Alongi, C.; Wilson, J.B. Competitive exclusion and the No-Interaction model operate simultaneously in microcosm plant communities. J. Veg. Sci. 2004, 15, 789–796. [Google Scholar]
- Junk, W.J.; Piedade, M.T.F.; Lourival, R.; Wittmann, F.; Kandus, P.; Lacerda, L.D.; Bozelli, R.L.; Esteves, F.A.; Da Cunha, C.N.; Schöngart, J.; et al. Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 5–22. [Google Scholar] [CrossRef]
- Austin, M.P.; Pausas, J.G.; Nicholls, A.O. Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Aust. Ecol. 2010, 21, 154–164. [Google Scholar] [CrossRef]
- Gillson, L.; Hoffman, M.T. Rangeland ecology in a changing world. Science 2007, 315, 53–54. [Google Scholar] [CrossRef] [Green Version]
- Coppock, D.L. The Borana Plateau of Southern Ethiopia: Synthesis of Pastoral Research, Development and Change, 1980–1991; International Livestock Centre for Africa: Addis Ababa, Ethiopia, 1994. [Google Scholar]
- Cossins, N.J.; Upton, M. The Borana pastoral system of Southern Ethiopia. Agric. Syst. 2007, 25, 199–218. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Assistance to Land Use Planning-Ethiopia: Geomorphology and Soils Maps Legend; Technical report 78/003; FAO: Rome, Italy, 1984. [Google Scholar]
- Oba, G.; Kotile, D.G. Assessments of landscape level degradation in southern Ethiopia: Pastoralists versus ecologists. Land Degrad. Dev. 2001, 12, 461–475. [Google Scholar] [CrossRef]
- Oromia Water Works Design & Supervision Enterprise (OWWDSE). The National Regional State of OromiaOromia Land and Environmental Protection Bureau; Borana Land Use Planning Study Project; OWWDSE: Finfinne/Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Bille, J.C.; Eshete, A.; Corra, M. Ecology and Ecosystems of the Borana Deep Wells Area; ILCA: Addis Ababa, Ethiopia, 1983. [Google Scholar]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Fromann, B.; Persson, S. An Illustrated Guide to the Grasses of Ethiopia; Chillalo Agricultural Development Unit (CADU): Assella, Ethiopia, 1974. [Google Scholar]
- Jenkins, P.N.; Girma, B.; Daniel, B. Grasses Common to Arero Area, Southern Ethiopia; Ministryof Agriculture: Addis Ababa, Ethiopia, 1974. [Google Scholar]
- Ruppert, J.C.; Linstädter, A. Convergence between ANPP estimation methods in grasslands—A practical solution to the comparability dilemma. Ecol. Indic. 2014, 36, 524–531. [Google Scholar] [CrossRef]
- Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949; p. 177. [Google Scholar]
- Margalef, R. Temporal succession and spatial heterogeneity in phytoplankton. In Perspectives in Marine Biology; Buzzati-Traverso, A.A., Ed.; University of California Press: Berkeley, CA, USA, 1958; pp. 323–347. [Google Scholar]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and enviRonment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Pourbabaei, H.; Abedi, R. Plant Species Groups in Chestnut (Castanea sativa Mill.) Sites, Hyrcanian Forests of Iran. Ecol. Balkan. 2013, 5, 37–47. [Google Scholar]
- Marini, L.; Bruun, H.H.; Heikkinen, R.K.; Helm, A.; Honnay, O.; Krauss, J.; Kühn, I.; Lindborg, I.R.; Pärtel, M.; Bommarco, R. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib. 2012, 18, 898–908. [Google Scholar] [CrossRef]
- Nogué, S.; Rull, V.; Vegas-Vilarrúbia, T. Elevational gradients in the neotropical table mountains: Patterns of endemism and implications for conservation. Divers Distrib. 2012, 19, 676–687. [Google Scholar] [CrossRef]
- Resende, I.L.M.; Chaves, L.J.; Rizzo, J.A. Floristic and phytosociological analysis of palm swamps in the central part of the Brazilian savanna. Acta Bot. Bras. 2013, 27, 205–225. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J.; Parr, C.L. Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 2010, 143, 2395–2404. [Google Scholar] [CrossRef]
- Lettow, M.C.; Brudvig, L.A.; Bahlai, C.A.; Landis, D.A. Oak savanna management strategies and their differential effects on vegetative structure, understory light, and flowering forbs. For. Ecol. Manag. 2014, 329, 89–98. [Google Scholar] [CrossRef]
- Gutierrez, J.R.; Whitford, W.G. Chihuahuan Desert annuals: Importance of water and nitrogen. Ecology 1987, 68, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Baldock, K.; Smith, N. A Study of Plant Diversty along an Altitudinal Gradient in the Nubra Valley Region in Ladakh; BSES Expeditions Ladakh 2009 Science Report Ecology; BSES Expeditions: London, UK, 2009. [Google Scholar]
- Allen, A.P.; Gillooly, J.F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 2006, 9, 947–954. [Google Scholar] [CrossRef]
- Stromberg, J.C. Seasonal reversals of upland-riparian diversity gradients in the Sonoran Desert. Divers. Distrib. 2007, 13, 70–83. [Google Scholar] [CrossRef]
- Oatham, M.P.; Nicholls, M.K.; Swingland, I.R. Manipulation of vegetation communities on the Abu Dhabi rangelands. I. The effects of irrigation and release from long term grazing. Biodivers. Conserv. 1995, 4, 696–709. [Google Scholar] [CrossRef]
- Landsberg, J.; James, C.D.; Maconochie, J.; Nicholls, A.O.; Stol, J.; Tynan, R. Scale-related effects of grazing on native plant communities in an arid rangeland region of South Australia. J. Appl. Ecol. 2002, 39, 427–444. [Google Scholar] [CrossRef] [Green Version]
- Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 2005, 8, 224–239. [Google Scholar] [CrossRef]
- Singh, G.; Rathod, T.R.; Mutha, S.; Upadhyaya, S.; Bala, N. Impact of different tree species canopy on diversity and productivity of understorey vegetation in Indian desert. Trop. Ecol. 2008, 49, 13–23. [Google Scholar]
- McNaughton, S.J. Grazing as optimization process: Grass–ungulate relationships in the Serengeti. Am. Nat. 1979, 113, 691–703. [Google Scholar] [CrossRef]
- McNaughton, S.J. Biodiversity and function of grazing ecosystems. In Biodiversity and Ecosystem Function; Shultz, E.-D., Mooney, H.A., Eds.; Springer: Berlin, Germany, 1993; pp. 361–382. [Google Scholar]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W.K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
Elevation (masl) | Soil Type | Land Cover | Land Use | Reference |
---|---|---|---|---|
850–920 | Vary from grey to black | Woodland, bushland, and grassland | The wet season grazing by the foora-herd management and drought year grazing | [31,32,33,34] |
1150–1200 | Drained black cracking clay | Woodland, bushland, and grassland | The wet season grazing by the foora-herd management and also for the dry season grazing during drought | [31,32,34,35] |
1450–1520 | Varies from light grey to brown sand-clay loam | Woodland, bushland, grassland, and cultivated land | Mainly used for encampments and grazed during full-year by the warra-herds and cultivation of land with cereals, maize, sorghum, teff, and cassava | [31,32,33,34] |
1690–1720 | Sandy clay to grey sand | Woodland and bushland, grassland, cultivated land | Mainly used for encampments and grazed during full-year by the warra-herds and cultivation of land with cereals, maize, sorghum, teff, and cassava | [30,31,32,33,34] |
Response Variable | Elevation Classes | F-Value | p-Value | |||
---|---|---|---|---|---|---|
I | II | III | IV | |||
Total | 43.9 ± 2.27 b | 55.45 ± 1.92 a | 51.46 ± 1.93 a | 50.77 ± 1.07 a | 6.66 | 0.0003 |
Grass | 48.1 ± 2.83 b | 56.09 ± 2.56 bc | 56.69± 1.63 ac | 53.62 ± 1.44 bc | 3.13 | 0.028 |
Graminoid | 41.88 ± 2.52 b | 61.73 ± 2.29 a | 49.15 ± 3.53 b | 52.25 ± 1.94 ab | 5.15 | 0.003 |
Forb | 53.37 ± 9.70 a | 57.08 ± 1.70 a | 54.72 ± 1.75 a | 50.63 ± 1.75 a | 0.23 | 0.875 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bora, Z.; Xu, X.; Angassa, A.; Wang, Y.; Zhao, Y. Do Herbaceous Species Functional Groups Have a Uniform Pattern along an Elevation Gradient? The Case of a Semi-Arid Savanna Grasslands in Southern Ethiopia. Int. J. Environ. Res. Public Health 2020, 17, 2817. https://doi.org/10.3390/ijerph17082817
Bora Z, Xu X, Angassa A, Wang Y, Zhao Y. Do Herbaceous Species Functional Groups Have a Uniform Pattern along an Elevation Gradient? The Case of a Semi-Arid Savanna Grasslands in Southern Ethiopia. International Journal of Environmental Research and Public Health. 2020; 17(8):2817. https://doi.org/10.3390/ijerph17082817
Chicago/Turabian StyleBora, Zinabu, Xinwen Xu, Ayana Angassa, Yongdong Wang, and Yongcheng Zhao. 2020. "Do Herbaceous Species Functional Groups Have a Uniform Pattern along an Elevation Gradient? The Case of a Semi-Arid Savanna Grasslands in Southern Ethiopia" International Journal of Environmental Research and Public Health 17, no. 8: 2817. https://doi.org/10.3390/ijerph17082817
APA StyleBora, Z., Xu, X., Angassa, A., Wang, Y., & Zhao, Y. (2020). Do Herbaceous Species Functional Groups Have a Uniform Pattern along an Elevation Gradient? The Case of a Semi-Arid Savanna Grasslands in Southern Ethiopia. International Journal of Environmental Research and Public Health, 17(8), 2817. https://doi.org/10.3390/ijerph17082817