Physical Fitness, Body Composition, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 mSRT Score and Maturational Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measure
- a
- Anthropometric Parameters and Body CompositionAn anthropometric assessment was carried out. A portable segmental analyzer of multifrequency body composition (Tanita MC-780, Tanita Corp., Tokyo, Japan) was used to measure weight (kg), body fat (%), and skeletal muscle mass (%). Furthermore, legs fat (%) and legs skeletal muscle mass (%) based on total weight for each leg were included. The body mass index (BMI) was calculated with the weight (kg) divided by the squared height of the participants. Height (cm) was measured with a stadiometer (Seca 214, Hamburg, Germany). Players were assessed with clothes and without shoes.
- b
- Physical FitnessThe different parameters of physical fitness were assessed following the protocols of the ALPHA health-related fitness battery [17]. All the participants were familiar with all physical performance tests as they had previously developed familiarization sessions in physical education classes.
- c
- Adherence to the Mediterranean DietIn order to determine the adherence to the Mediterranean diet and the existence of possible eating disorders, the KIDMED questionnaire was used. This test, previously validated, consists of 16 items where twelve items represent a positive score for the adherence to the Mediterranean diet and the remaining 4 items represent a negative score [33]. A positive answer to a question that involves greater adherence to the diet is worth +1 point. A positive answer to a question that means less adherence to the diet is worth –1 point. Negative answers do not score (a value of 0 is noted). The KIDMED index is the sum of all the scores and ranges from 0 to 12 points (minimum to maximum adherence to the Mediterranean diet). The adherence to the Mediterranean diet could be categorized as low adherence (very low-quality diet, 0–3), medium adherence (improvement of the diet is needed, 4–7), and high adherence (ideal adherence to the Mediterranean diet, 8–12) [33]. However, in this study, the total score (KIDMED index) was used as scale variable [34].
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Sloan, R.A.; Sawada, S.S.; Martin, C.K.; Church, T.; Blair, S.N. Associations between cardiorespiratory fitness and health-related quality of life. Health Qual. Life Outcomes 2009, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, D.S.; Welker, E.; Choate, A.; Henderson, K.E.; Lott, M.; Tovar, A.; Sallis, J.F. Strength of obesity prevention interventions in early care and education settings: A systematic review. Prev. Med. 2017, 95, S37–S52. [Google Scholar] [CrossRef]
- Franks, P.W.; Hanson, R.L.; Knowler, W.C.; Sievers, M.L.; Bennett, P.H.; Looker, H.C. Childhood obesity, other cardiovascular risk factors, and premature death. N. Engl. J. Med. 2010, 362, 485–493. [Google Scholar] [CrossRef]
- Sadigursky, D.; Braid, J.A.; De Lira, D.N.L.; Machado, B.A.B.; Carneiro, R.J.F.; Colavolpe, P.O. The FIFA 11+ injury prevention program for soccer players: A systematic review. BMC Sports Sci. Med. Rehabil. 2017, 9, 18. [Google Scholar] [CrossRef]
- Krustrup, P.; Aagaard, P.; Nybo, L.; Petersen, J.; Mohr, M.; Bangsbo, J. Recreational football as a health promoting activity: A topical review. Scand. J. Med. Sci. Sports 2010, 20, 1–13. [Google Scholar] [CrossRef]
- Andersen, L.J.; Randers, M.B.; Westh, K.; Martone, D.; Hansen, P.R.; Junge, A.; Krustrup, P. Football as a treatment for hypertension in untrained 30–55-year-old men: A prospective randomized study. Scand. J. Med. Sci. Sports 2010, 20, 98–102. [Google Scholar] [CrossRef]
- Vicente-Rodriguez, G.; Jimenez-Ramirez, J.; Ara, I.; Serrano-Sanchez, J.A.; Dorado, C.; Calbet, J.A.L. Enhanced bone mass and physical fitness in prepubescent footballers. Bone 2003, 33, 853–859. [Google Scholar] [CrossRef]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Fatouros, I.G.; Knapp, K.M.; Williams, C.A.; Gracia-Marco, L. Longitudinal Adaptations of Bone Mass, Geometry, and Metabolism in Adolescent Male Athletes: The PRO-BONE Study. J. Bone Miner. Res. 2017, 32, 2269–2277. [Google Scholar] [CrossRef]
- Randers, M.B.; Petersen, J.; Andersen, L.J.; Krustrup, B.R.; Hornstrup, T.; Nielsen, J.J.; Krustrup, P. Short-term street soccer improves fitness and cardiovascular health status of homeless men. Eur. J. Appl. Physiol. 2012, 112, 2097–2106. [Google Scholar] [CrossRef]
- Krustrup, P.; Nielsen, J.J.; Krustrup, B.R.; Christensen, J.F.; Pedersen, H.; Randers, M.B.; Bangsbo, J. Recreational soccer is an effective health-promoting activity for untrained men. Br. J. Sports Med. 2009, 43, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Hansen, P.R.; Nielsen, C.M.; Larsen, M.N.; Randers, M.B.; Manniche, V.; Bangsbo, J. Structural and functional cardiac adaptations to a 10-week school-based football intervention for 9–10-year-old children. Scand. J. Med. Sci. Sports 2014, 24, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krustrup, P.; Dvorak, J.; Junge, A.; Bangsbo, J. Executive summary: The health and fitness benefits of regular participation in small-sided football games. Scand. J. Med. Sci. Sports 2010, 20, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.; Castillo, M.J. Physical activity, physical fitness, and overweight in children and adolescents: Evidence from epidemiologic studies. Endocrinol. Nutr. 2013, 60, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Milanović, Z.; Pantelić, S.; Čović, N.; Sporiš, G.; Mohr, M.; Krustrup, P. Broad-spectrum physical fitness benefits of recreational football: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Gutiérrez, Á. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Ortega, F.B.; Sánchez-López, M.; Solera-Martínez, M.; Fernández- Sánchez, A.; Sjöströrn, M.; Martínez-Vizcaíno, V. Self- reported and measured cardiorespiratory fitness similarly predict cardiovascular disease risk in Young adults. Scand. J. Med. Sci. Sports 2013, 23, 749–757. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Léger, L.A.; Olds, T.S.; Cazorla, G. Secular trends in the performance of children and adolescents (1980–2000). Sports Med. 2003, 33, 285–300. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef]
- Akınoğlu, B.; Kocahan, T. The effect of body composition on pulmonary function in elite athletes. Prog. Nutr. 2019, 21. [Google Scholar] [CrossRef]
- Keys, A.; Mienotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Kromhout, D. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 1986, 124, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Martinez-Gonzalez, M.A. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, 1–14. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Barmia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.J.; Oliveira, A.; Azevedo, I.; Nunes, J.; Santos, A.C. Association of Pubertal Development with Adiposity and Cardiometabolic Health in Girls and Boys—Findings from the Generation XXI Birth Cohort. J. Adolesc. Health 2019, 65, 558–563. [Google Scholar] [CrossRef]
- Stickland, M.K.; Petersen, S.R.; Bouffard, M. Prediction of maximal aerobic power from the 20-m multi-stage shuttle run test. Can. J. Appl. Physiol. 2003, 28, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Gulías-González, R.; Sánchez-López, M.; Olivas-Bravo, Á.; Solera-Martínez, M.; Martínez-Vizcaíno, V. Physical fitness in Spanish schoolchildren aged 6–12 years: Reference values of the battery EUROFIT and associated cardiovascular risk. J. School Health 2014, 84, 625–635. [Google Scholar] [CrossRef]
- De Miguel-Etayo, P.; Gracia-Marco, L.; Ortega, F.B.; Intemann, T.; Foraita, R.; Lissner, L.; Molnár, D. Physical fitness reference standards in European children: The IDEFICS study. Int. J. Obesity 2014, 38, S57–S66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Wagner, J. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Floody, P.; Alvarez, C.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Latorre-Román, P. Influence of Mediterranean diet adherence, physical activity patterns, and weight status on cardiovascular response to cardiorespiratory fitness test in Chilean school children. Nutrition 2020, 71, 110621. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Rowland, T.W. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Med. 1990, 10, 255–266. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Tatasciore, M.; Newton, R.U.; Pettigrew, S. Eight weeks of resistance training can significantly alter body composition in children who are overweight or obese. J. Strength Cond. Res. 2009, 23, 80–85. [Google Scholar] [CrossRef]
- Ubago-Guisado, E.; Mata, E.; Sánchez-Sánchez, J.; Plaza-Carmona, M.; Martín-García, M.; Gallardo, L. Influence of different sports on fat mass and lean mass in growing girls. J. Sport Health Sci. 2017, 6, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Mota, J.; Teixeira, E.; Marques, E.; Rebelo, A.; Rêgo, C. Effects of a 6-month football intervention program on bone mass and physical fitness in overweight children. Spine 2016, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Onís, M.D.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Hamilton, D.; Dee, A.; Perry, I.J. The lifetime costs of overweight and obesity in childhood and adolescence: A systematic review. Obes. Rev. 2018, 19, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.E. The “fit but fat” concept revisited: Population-based estimates using NHANES. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvetković, N.; Stojanović, E.; Stojiljković, N.; Nikolić, D.; Scanlan, A.T.; Milanović, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand. J. Med. Sci. Sports 2018, 28, 18–32. [Google Scholar] [CrossRef]
- Kim, S.R.; Choi, U.S.; Choi, J.H.; Koh, H.J. Association of Body Fat and Body Mass Index with Pulmonary Function in Women in Their Forties. J. Korean Acad. Fam. Med. 2003, 24, 827–832. [Google Scholar]
- Khosravi, M.; Tayebi, S.M.; Safari, H. Single and concurrent effects of endurance and resistance training on pulmonary function. Iran. J. Basic Med Sci. 2013, 16, 628. [Google Scholar]
- Knuth, A.G.; Hallal, P. School environment and physical activity in children and adolescents: Systematic review. Rev. Bras. Ativ. Física Saúde 2012, 17, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Basaran, S.; Guler-Uysal, F.; Ergen, N.; Seydaoglu, G.; Bingol-Karakoç, G.; Ufuk Altintas, D. Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma. J. Rehabil. Med. 2006, 38, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Tubb, L.; Fingers, S.T.; Chen, S.; Caffrey, J.L. Associations of physical activity and dietary behaviors with children’s health and academic problems. J. School Health 2013, 83, 1–7. [Google Scholar] [CrossRef]
- Moura, T.; Costa, M.; Oliveira, S.; Júnior, M.B.; Ritti-Dias, R.; Santos, M. Height and body composition determine arm propulsive force in youth swimmers independent of a maturation stage. J. Hum. Kinet. 2014, 42, 277–284. [Google Scholar] [CrossRef] [Green Version]
Variables | Total | Prepubertal | Pubertal |
---|---|---|---|
Age (years) | 11.96 ± 1.94 | 10.80 ± 1.18 | 14.15 ± 0.93 |
Weight (kg) | 44.45 ± 13.00 | 39.06 ± 9.94 | 54.60 ± 12.02 |
Height (cm) | 149.90 ± 12.67 | 144.04 ± 10.12 | 160.93 ± 9.16 |
Total BMI (kg/m2) | 19.41 ± 3.34 | 18.59 ± 2.92 | 20.95 ± 3.57 |
Total body fat (%) | 21.43 ± 5.79 | 21.94 ± 5.59 | 20.49 ± 6.07 |
Total muscle mass (%) | 74.36 ± 5.46 | 73.81 ± 5.24 | 75.39 ± 5.74 |
Fat mass in left leg (%) | 4.51 ± 1.14 | 4.68 ± 1.07 | 4.20 ± 1.22 |
Muscle mass in left leg (%) | 12.34 ± 1.22 | 12.05 ± 1.11 | 12.88 ± 1.24 |
Fat mass in right leg (%) | 4.56 ± 1.15 | 4.75 ± 1.08 | 4.20 ± 1.21 |
Muscle mass in right leg (%) | 12.83 ± 1.29 | 12.50 ± 1.15 | 13.44 ± 1.33 |
FVC (L) | 3.03 ± 0.89 | 2.63 ± 0.62 | 3.79 ± 0.81 |
PEF (L/s) | 4.73 ± 1.34 | 4.41 ± 1.32 | 5.31 ± 1.19 |
FEV1 (L) | 2.64 ± 0.76 | 2.30 ± 0.56 | 3.29 ± 0.68 |
FEV1/FVC (%) | 85.94 ± 8.67 | 85.80 ± 9.99 | 86.19 ± 5.44 |
FEF25–75 (L/s) | 3.06 ± 1.01 | 2.69 ± 0.86 | 3.75 ± 0.90 |
20 mSRT (stages) | 6.53 ± 1.95 | 5.90 ± 1.69 | 7.73 ± 1.85 |
20 mSRT (percentile) | 69.83 ± 20.29 | 72.75 ± 20.19 | 64.30 ± 19.46 |
Handgrip strength (kg) | 25.06 ± 9.22 | 21.38 ± 7.12 | 31.99 ± 8.77 |
Handgrip strength (percentile) | 61.37 ± 29.76 | 65.15 ± 29.42 | 54.26 ± 29.31 |
KIDMED index | 7.14 ± 1.95 | 7.14 ± 2.01 | 7.13 ± 1.84 |
Cardiorespiratory Fitness | Effect Size | ||||
---|---|---|---|---|---|
<P75 | ≥P75 | <P75 vs. ≥P75 | Prepub vs. Pub. <P75 | Prepub vs. Pub. ≥P75 | |
Prepubertal | |||||
Weight (kg) | 43.78 ± 10.89 *,† | 35.28 ± 7.36 † | 0.93 | 1.02 | 1.92 |
Height (cm) | 146.46 ± 10.30 *,† | 142.09 ± 9.68 † | 0.44 | 1.53 | 1.87 |
Total BMI (kg/m2) | 20.13 ± 3.03 *,† | 17.35 ± 2.17 † | 1.07 | 0.41 | 1.06 |
Total body fat (%) | 24.50 ± 5.51 *,† | 19.87 ± 4.81 | 0.90 | 0.42 | 0.46 |
Total muscle mass (%) | 71.45 ± 5.17 *,† | 75.72 ± 4.53 | 0.88 | 0.45 | 0.52 |
Fat mass in left leg (%) | 5.12 ± 1.12 *,† | 4.32 ± 0.89 † | 0.79 | 0.54 | 0.66 |
Muscle mass in left leg (%) | 11.95 ± 0.97 † | 12.12 ± 1.21 † | 0.16 | 0.67 | 0.93 |
Fat mass in right leg (%) | 5.18 ± 1.11 *,† | 4.41 ± 0.93 † | 0.76 | 0.61 | 0.70 |
Muscle mass in right leg (%) | 12.35 ± 0.98 † | 12.61 ± 1.26 † | 0.23 | 0.79 | 0.92 |
Pubertal | |||||
Weight (kg) | 55.88 ± 12.94 | 52.09 ± 10.14 | 0.33 | ||
Height (cm) | 160.36 ± 7.90 | 161.83 ± 11.47 | 0.15 | ||
Total BMI (kg/m2) | 21.57 ± 3.97 * | 19.77 ± 2.38 | 0.57 | ||
Total body fat (%) | 21.93 ± 6.62 * | 17.88 ± 3.85 | 0.77 | ||
Total muscle mass (%) | 74.03 ± 6.26 * | 77.85 ± 3.64 | 0.77 | ||
Fat mass in left leg (%) | 4.47 ± 1.29 * | 3.72 ± 0.94 | 0.67 | ||
Muscle mass in left leg (%) | 12.66 ± 1.17 * | 13.29 ± 1.30 | 0.51 | ||
Fat mass in right leg (%) | 4.45 ± 1.26 * | 3.74 ± 0.98 | 0.63 | ||
Muscle mass in right leg (%) | 13.23 ± 1.23 * | 13.86 ± 1.47 | 0.47 |
Cardiorespiratory Fitness | Effect Size | ||||
---|---|---|---|---|---|
<P75 | ≥P75 | <P75 vs. ≥P75 | Prepub vs. Pub. <P75 | Prepub vs. Pub. ≥P75 | |
Prepubertal | |||||
FVC (L) | 2.82 ± 0.67 *,† | 2.48 ± 0.54 † | 0.57 | 1.20 | 2.09 |
PEF (L/s) | 4.59 ± 1.46 † | 4.27 ± 1.20 † | 0.24 | 0.44 | 1.09 |
FEV1 (L) | 2.39 ± 0.62 † | 2.24 ± 0.50 † | 0.25 | 1.22 | 2.12 |
FEV1/FVC (%) | 84.87 ± 9.11 | 86.48 ± 10.71 | 0.16 | 0.13 | 0.05 |
FEF25–75 (L/s) | 2.74 ± 1.02 † | 2.64 ± 0.72 † | 0.11 | 0.93 | 1.58 |
Handgrip (kg) | 23.21 ± 7.84 *,† | 19.80 ± 6.13 † | 0.49 | 0.96 | 1.78 |
Handgrip (percentile) | 69.79 ± 29.41 † | 60.91 ± 29.00 | 0.30 | 0.69 | 0.07 |
KIDMED index | 6.91 ± 2.07 | 7.31 ± 1.97 | 0.20 | 0.02 | 0.16 |
Pubertal | |||||
FVC (L) | 3.66 ± 0.73 * | 4.02 ± 0.93 | 0.43 | ||
PEF (L/s) | 5.13 ± 0.99 | 5.71 ± 1.45 | 0.48 | ||
FEV1 (L) | 3.14 ± 0.61 * | 3.56 ± 0.74 | 0.63 | ||
FEV1/FVC (%) | 85.87 ± 5.88 | 86.87 ± 4.66 | 0.19 | ||
FEF25–75 (L/s) | 3.60 ± 0.84 | 4.01 ± 1.00 | 0.44 | ||
Handgrip (kg) | 30.98 ± 8.29 | 33.89 ± 9.70 | 0.32 | ||
Handgrip (percentile) | 50.27 ± 27.55 | 63.17 ± 31.28 | 0.44 | ||
KIDMED index | 6.86 ± 1.88 | 7.61 ± 1.75 | 0.41 |
Coef. | Std. Err. | p > t | 95% CI | |||
---|---|---|---|---|---|---|
Age | 0.34 | 0.08 | p < 0.001 | 0.17 | to | 0.50 |
BMI (kg/m2) | −0.16 | 0.07 | 0.019 | −0.29 | to | −0.03 |
Total muscle mass (%) | 0.11 | 0.04 | 0.003 | 0.04 | to | 0.18 |
FVC | 0.57 | 0.24 | 0.017 | 0.10 | to | 1.04 |
Handgrip strength (kg) | 0.01 | 0.02 | 0.628 | −0.03 | to | 0.05 |
KIDMED index | 0.06 | 0.05 | 0.271 | −0.04 | to | 0.16 |
Constant | −4.85 | 3.30 | 0.143 | −11.36 | to | 1.65 |
R2 | 0.52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzano-Carrasco, S.; Felipe, J.L.; Sanchez-Sanchez, J.; Hernandez-Martin, A.; Gallardo, L.; Garcia-Unanue, J. Physical Fitness, Body Composition, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 mSRT Score and Maturational Stage. Int. J. Environ. Res. Public Health 2020, 17, 3257. https://doi.org/10.3390/ijerph17093257
Manzano-Carrasco S, Felipe JL, Sanchez-Sanchez J, Hernandez-Martin A, Gallardo L, Garcia-Unanue J. Physical Fitness, Body Composition, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 mSRT Score and Maturational Stage. International Journal of Environmental Research and Public Health. 2020; 17(9):3257. https://doi.org/10.3390/ijerph17093257
Chicago/Turabian StyleManzano-Carrasco, Samuel, Jose Luis Felipe, Javier Sanchez-Sanchez, Antonio Hernandez-Martin, Leonor Gallardo, and Jorge Garcia-Unanue. 2020. "Physical Fitness, Body Composition, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 mSRT Score and Maturational Stage" International Journal of Environmental Research and Public Health 17, no. 9: 3257. https://doi.org/10.3390/ijerph17093257
APA StyleManzano-Carrasco, S., Felipe, J. L., Sanchez-Sanchez, J., Hernandez-Martin, A., Gallardo, L., & Garcia-Unanue, J. (2020). Physical Fitness, Body Composition, and Adherence to the Mediterranean Diet in Young Football Players: Influence of the 20 mSRT Score and Maturational Stage. International Journal of Environmental Research and Public Health, 17(9), 3257. https://doi.org/10.3390/ijerph17093257