Early Motor Trajectories Predict Motor but not Cognitive Function in Preterm- and Term-Born Adults without Pre-existing Neurological Conditions
Abstract
:1. Introduction
2. Methods
Design and Participants
3. Measures
3.1. Early Motor Trajectories
3.2. Outcomes in Adulthood
3.2.1. Motor Competence
3.2.2. Cognitive Function
3.3. Covariates and Potential Confounds
3.4. Statistical Analyses
4. Results
4.1. VP/VLBW Birth and Early Motor Difficulties
Effects of VP/VLBW Birth and Early Motor Difficulties on Motor and Cognitive Outcomes in Adulthood
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Indicator | Term Controls n = 226 | VP/VLBW n = 192 |
---|---|---|
Suboptimal functioning for ambulation a | 0 (0.0%) | 2 (1.3%) |
Suboptimal functioning for dexterity a | 1 (0.5%) | 4 (2.6%) |
Low self-esteem regarding sports (<2 SD, standardised on controls) b | 9 (4.0%) | 15 (8.3%) |
Somewhat or very poorly coordinated or clumsy c | 13 (5.8%) | 17 (9.4%) |
Not able to ride a bicycle d | 0 (0.0%) | 7 (3.6%) |
Not able to swim d | 1 (0.4%) | 4 (2.1%) |
References
- Allotey, J.; Zamora, J.; Cheong-See, F.; Kalidindi, M.; Arroyo-Manzano, D.; Asztalos, E.; van der Post, J.; Mol, B.W.; Moore, D.; Birtles, D.; et al. Cognitive, motor, behavioural and academic performances of children born preterm: A meta-analysis and systematic review involving 64 061 children. BJOG 2018, 125, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Ream, M.A.; Lehwald, L. Neurologic Consequences of Preterm Birth. Curr. Neurol. Rep. 2018, 18, 48. [Google Scholar] [CrossRef]
- Jaekel, J.; Scott, M. Preterm and Low-Birth-Weight Birth. In Neuropsychological Conditions across the Lifespan; Donders, J., Hunter, S.J., Eds.; Cambridge University Press: Cambridge, UK, 2018; p. 2201323. [Google Scholar]
- Goodman, A.; Joyce, R.; Smith, J.P. The long shadow cast by childhood physical and mental problems on adult life. Proc. Natl. Acad. Sci. USA 2011, 108, 6032–6037. [Google Scholar] [CrossRef] [Green Version]
- de Kieviet, J.F.; Piek, J.P.; Aarnoudse-Moens, C.S.; Oosterlaan, J. Motor Development in Very Preterm and Very Low-Birth-Weight Children from Birth to Adolescence: A Meta-analysis. JAMA 2009, 302, 2235–2242. [Google Scholar] [CrossRef]
- Husby, I.M.; Skranes, J.; Olsen, A.; Brubakk, A.M.; Evensen, K.A.I. Motor skills at 23 years of age in young adults born preterm with very low birth weight. Early Hum. Dev. 2013, 89, 747–754. [Google Scholar] [CrossRef]
- Linsell, L.; Johnson, S.; Wolke, D.; O’Reilly, H.; Morris, J.K.; Kurinczuk, J.J.; Marlow, N. Cognitive trajectories from infancy to early adulthood following birth before 26 weeks of gestation: A prospective, population-based cohort study. Arch. Dis. Child. 2017, 103, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Poole, K.L.; Schmidt, L.A.; Missiuna, C.; Saigal, S.; Boyle, M.H.; Van Lieshout, R.J. Motor Coordination Difficulties in Extremely Low Birth Weight Survivors across Four Decades. J. Dev. Behav. Pediatr. 2015, 36, 521–528. [Google Scholar] [CrossRef]
- Wolke, D.; Johnson, S.; Mendonca, M. The life course consequences of very preterm birth. Ann. Rev. Dev. Psychol. 2019, 1, 66–92. [Google Scholar] [CrossRef] [Green Version]
- Adolph, K.E.; Hoch, J.E. Motor Development: Embodied, Embedded, Enculturated, and Enabling. Ann. Rev. Psychol. 2018, 70, 141–164. [Google Scholar] [CrossRef]
- Pangelinan, M.M.; Zhang, G.; VanMeter, J.W.; Clark, J.E.; Hatfield, B.D.; Haufler, A.J. Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neuroimage 2011, 54, 3093–3100. [Google Scholar] [CrossRef] [Green Version]
- Pulvermuller, F. Neural reuse of action perception circuits for language, concepts and communication. Prog. Neurobiol. 2018, 160, 1–44. [Google Scholar] [CrossRef]
- Abdelkarim, O.; Ammar, A.; Chtourou, H.; Wagner, M.; Knisel, E.; Hökelmann, A.; Bös, K. Relationship between motor and cognitive learning abilities among primary school-aged children. Alex. J. Med. 2017, 53, 325–331. [Google Scholar] [CrossRef]
- Ludyga, S.; Puhse, U.; Gerber, M.; Herrmann, C. Core executive functions are selectively related to different facets of motor competence in preadolescent children. Eur. J. Sport Sci. 2019, 19, 375–383. [Google Scholar] [CrossRef]
- Rigoli, D.; Piek, J.P.; Kane, R.; Oosterlaan, J. An examination of the relationship between motor coordination and executive functions in adolescents. Dev. Med. Child Neurol. 2012, 54, 1025–1031. [Google Scholar] [CrossRef] [Green Version]
- van der Fels, I.M.; Te Wierike, S.C.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef]
- Marlow, N.; Hennessy, E.M.; Bracewell, M.A.; Wolke, D.; Grp, E.P.S. Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics 2007, 120, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Domellof, E.; Johansson, A.M.; Farooqi, A.; Domellof, M.; Ronnqvist, L. Relations among upper-limb movement organization and cognitive function at school age in children born preterm. J. Dev. Behav. Pediatr. 2013, 34, 344–352. [Google Scholar] [CrossRef]
- Oudgenoeg-Paz, O.; Mulder, H.; Jongmans, M.J.; van der Ham, I.J.M.; Van der Stigchel, S. The link between motor and cognitive development in children born preterm and/or with low birth weight: A review of current evidence. Neurosci. Biobehav. Rev. 2017, 80, 382–393. [Google Scholar] [CrossRef]
- Murray, G.K.; Veijola, J.; Moilanen, K.; Miettunen, J.; Glahn, D.C.; Cannon, T.D.; Jones, P.B.; Isohanni, M. Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study. J. Child Psychol. Psychiatry 2006, 47, 25–29. [Google Scholar] [CrossRef]
- Murray, G.K.; Jones, P.B.; Kuh, D.; Richards, M. Infant developmental milestones and subsequent cognitive function. Ann. Neurol. 2007, 62, 128–136. [Google Scholar] [CrossRef]
- Flensborg-Madsen, T.; Mortensen, E.L. Infant developmental milestones and adult intelligence: A 34-year follow-up. Early Hum. Dev. 2015, 91, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Flensborg-Madsen, T.; Mortensen, E.L. Developmental milestones during the first three years as precursors of adult intelligence. Dev. Psychol. 2018, 54, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Riegel, K.; Ohrt, B.; Wolke, D.; Österlund, K. Die Entwicklung Gefährdet Geborener Kinder bis zum Fünften Lebensjahr: Die Arvo Ylppö-Neugeborenen-Nachfolgestudie in Südbayern und Südfinnland [The Development of at-Disk Children until the Fifth Year of Life. The Arvo Ylppö Longitudinal Study in South Bavaria and South Finland]; Ferdinand Enke Verlag: Stuttgart, Germany, 1995. [Google Scholar]
- Prechtl, H. The Neurological Examination of the Full Term Newborn Infant, 2nd ed.; Spastics International Medical Publications: London, UK, 1977. [Google Scholar]
- Baumann, N.; Tresilian, J.; Heinonen, K.; Raikkonen, K.; Wolke, D. Predictors of early motor trajectories from birth to 5 years in neonatal at-risk and control children. Acta Paediatr. 2019, 109, 728–737. [Google Scholar] [CrossRef] [PubMed]
- von Aster, M.; Neubauer, A.; Horn, R. Wechsler-Intelligenztest für Erwachsene WIE; Manual—Übersetzung und Adaption der WAIS-III von David Wechsler: Frankfurt, Germany, 2009. [Google Scholar]
- Wechsler, D. Wechsler Adult Intelligence Scale—Third Edition (WAIS III): Administration and Scoring Manual; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Eryigit Madzwamuse, S.; Baumann, N.; Jaekel, J.; Bartmann, P.; Wolke, D. Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. J. Child Psychol. Psychiatry 2015, 56, 857–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggert, D. Die Columbia Mental Maturity Scale als individualtest für normalentwickelte Kinder im Alter von 3–10 Jahren. [The Columbia Mental Maturity Scales as an individual test for normally developing children aged 3–10 years.]. In Zur Diagnose der Minderbegabung; Eggert, D., Ed.; Beltz: Weinheim, Germany, 1972; pp. 185–201. [Google Scholar]
- Burgemeister, B.B.; Blum, L.H.; Lorge, I. The Columbia Mental Maturity Scale (Manual); Yonkers-on-Hudson: New York, NY, USA, 1954. [Google Scholar]
- Kiese, C.; Kozielski, P.M. Aktiver Wortschatztest für drei-bis Sechsjährige Kinder (AWST 3–6). [Active Vocabulary Test for 3–6 Year Olds]; Beltz: Weinheim, Germany, 1979. [Google Scholar]
- Beery, K.E. Revised Administration, Scoring, and Teaching Manual for the Developmental Test of Visual-Motor Integration; Modern Curriculum Press: Toronto, ON, Canada, 1982. [Google Scholar]
- Hagberg, B.; Hagberg, G.; Olow, I.; von Wendt, L. The changing panorama of cerebral palsy in Sweden. V. The birth year period 1979–1982. Acta Paediatr. Scand. 1989, 78, 283–290. [Google Scholar] [CrossRef]
- Wolke, D.; Meyer, R. Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: The Bavarian Longitudinal Study. Dev. Med. Child Neurol. 1999, 41, 94–109. [Google Scholar] [CrossRef]
- Hu, L.-T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Spittle, A.; Orton, J. Cerebral palsy and developmental coordination disorder in children born preterm. Semin. Fetal Neonatal Med. 2014, 19, 84–89. [Google Scholar] [CrossRef]
- Williams, J.; Lee, K.J.; Anderson, P.J. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2010, 52, 232–237. [Google Scholar] [CrossRef]
- Cousins, M.; Smyth, M.M. Developmental coordination impairments in adulthood. Hum. Mov. Sci. 2003, 22, 433–459. [Google Scholar] [CrossRef]
- Su, Y.-H.; Jeng, S.-F.; Hsieh, W.-S.; Tu, Y.-K.; Wu, Y.-T.; Chen, L.-C. Gross Motor Trajectories during the First Year of Life for Preterm Infants with Very Low Birth Weight. Phys. Ther. 2017, 97, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Burns, Y.; O’Callaghan, M.; McDonell, B.; Rogers, Y. Movement and motor development in ELBW infants at 1 year is related to cognitive and motor abilities at 4 years. Early Hum. Dev. 2004, 80, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Piek, J.P.; Dawson, L.; Smith, L.M.; Gasson, N. The role of early fine and gross motor development on later motor and cognitive ability. Hum. Mov. Sci. 2008, 27, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Ghassabian, A.; Sundaram, R.; Bell, E.; Bello, S.C.; Kus, C.; Yeung, E. Gross Motor Milestones and Subsequent Development. Pediatrics 2016, 138, e20154372. [Google Scholar] [CrossRef] [Green Version]
- Hitzert, M.M.; Roze, E.; Van Braeckel, K.N.; Bos, A.F. Motor development in 3-month-old healthy term-born infants is associated with cognitive and behavioural outcomes at early school age. Dev. Med. Child Neurol. 2014, 56, 869–876. [Google Scholar] [CrossRef]
- Losse, A.; Henderson, S.E.; Elliman, D.; Hall, D.; Knight, E.; Jongmans, M. Clumsiness in children—Do they grow out of it? A 10-year follow-up study. Dev. Med. Child Neurol. 1991, 33, 55–68. [Google Scholar] [CrossRef]
- Breeman, L.D.; Jaekel, J.; Baumann, N.; Bartmann, P.; Wolke, D. Preterm Cognitive Function Into Adulthood. Pediatrics 2015, 136, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Gillberg, C.; Kadesjo, B. Why bother about clumsiness? The implications of having developmental coordination disorder (DCD). Neural Plast. 2003, 10, 59–68. [Google Scholar] [CrossRef]
- Geldof, C.J.; van Hus, J.W.; Jeukens-Visser, M.; Nollet, F.; Kok, J.H.; Oosterlaan, J.; van Wassenaer-Leemhuis, A.G. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children. Res. Dev. Disabil. 2016, 53, 258–266. [Google Scholar] [CrossRef]
- Foulder-Hughes, L.A.; Cooke, R.W. Motor, cognitive, and behavioural disorders in children born very preterm. Dev. Med. Child Neurol. 2003, 45, 97–103. [Google Scholar] [CrossRef]
- Aylward, G.P. Developmental screening and assessment: What are we thinking? J. Dev. Behav. Pediatr. 2009, 30, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.; Evans, S.; Crowley, K. An Introduction to Child Development; SAGE Publicatons Ltd.: London, UK, 2016. [Google Scholar]
- Williams, J.; Hyde, C.; Spittle, A. Developmental Coordination Disorder and Cerebral Palsy: Is There a Continuum? Curr. Dev. Disord. Rep. 2014, 1, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Butcher, P.R.; van Braeckel, K.; Bouma, A.; Einspieler, C.; Stremmelaar, E.F.; Bos, A.F. The quality of preterm infants’ spontaneous movements: An early indicator of intelligence and behaviour at school age. J. Child Psychol. Psychiatry 2009, 50, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Taanila, A.; Murray, G.K.; Jokelainen, J.; Isohanni, M.; Rantakallio, P. Infant developmental milestones: A 31-year follow-up. Dev. Med. Child Neurol. 2005, 47, 581–586. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Hahn, C.S.; Suwalsky, J.T. Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychol. Sci. 2013, 24, 1906–1917. [Google Scholar] [CrossRef] [Green Version]
- Furlong, W.; Feeny, D.; Torrance, G.; Goldsmith, C.; DePauw, S.; Boyle, M.; Denton, M.; Zhu, Z. Multiplicative Multi-Attribute Utility Function for the Health Utilities Index Mark 3 (HUI3) System: A Technical Report; McMaster University Centre for Health Economics and Policy Analysis: Hamilton, ON, Canada, 1998. [Google Scholar]
- Nicholls, J.G. The Development of the Concepts of Effort and Ability, Perception of Academic Attainment, and the Understanding That Difficult Tasks Require More Ability. Child Dev. 1978, 49, 800–814. [Google Scholar] [CrossRef]
- Achenbach, T.M. Manual for the Young Adult Selt-Report and Young Adult Behavior Checklist; University of Vermont, Department of Psychiatry: Burlington, VT, USA, 1997. [Google Scholar]
Neonatal Characteristics, Early Childhood Function and Adult Outcomes | Term Controls | VP/VLBW | |
---|---|---|---|
n = 226 | n = 192 | p-value | |
Neonatal Characteristics | |||
Gestational Age (GA), in Weeks, Mean (SD) | 39.66 (1.16) | 30.51 (2.11) | <0.001 |
Birth Weight (BW), in Grams, Mean (SD) | 3367 (441) | 1344 (328) | <0.001 |
Small For GA <10%, n (%) | 23 (10.2) | 73 (38.0) | <0.001 |
Multiple, n (%) | 6 (2.7) | 50 (26.0) | <0.001 |
Sex, n (%) | 0.059 | ||
Male | 105 (46.5) | 107 (55.7) | |
Female | 121 (53.5) | 85 (43.3) | |
Socioeconomic Status at Birth, n (%) | 0.010 | ||
High | 77 (34.1) | 42 (21.9) | |
Middle | 95 (42.0) | 85 (44.3) | |
Low | 54 (23.9) | 65 (33.9) | |
Early Childhood Function | |||
Early Motor Trajectories, n (%) | <0.001 | ||
Low Degree of Difficulties | 222 (98.2) | 152 (79.2) | |
High Degree of Difficulties | 4 (1.8) | 40 (20.8) | |
General Intelligence (IQ) at 56 Months, Mean (SD) | 101.92 (12.94) | 87.92 (19.82) | <0.001 |
Neurological Impairments at 56 Months, n (%) | 2 (0.9) | 23 (12.0) | <0.001 |
Epilepsy | 1 (0.4) | 2 (1.0) | 0.470 |
Hydrocephalus | 0 (0.0) | 2 (1.0) | 0.124 |
Cerebral Palsy (CP) | 0 (0.0) | 20 (10.4) | <0.001 |
CP Stage 1 | 0 (0.0) | 10 (5.2) | |
CP Stage 2 | 0 (0.0) | 7 (3.6) | |
CP Stage 3 | 0 (0.0) | 3 (1.6) | |
CP Stage 4 | 0 (0.0) | 0 (0.0) | |
Blindness | 0 (0.0) | 1 (0.5) | 0.227 |
Deafness | 1 (0.4) | 0 (0.0) | 0.356 |
Adulthood Outcomes at 26 Years | |||
Motor Competence, n (%) | 0.003 | ||
High Motor Competence | 204 (90.3) | 154 (80.2) | |
Low Motor Competence | 22 (9.7) | 38 (19.8) | |
Cognitive Function, Mean (SD) | |||
General Intelligence (Full-Scale IQ) | 102.62 (12.57) | 91.21 (17.05) | <0.001 |
Direct and Indirect Effects | Unstandardized | Standardized | ||||
---|---|---|---|---|---|---|
B | Standard Error | 95% CI | β | p-Value | R2 | |
Direct Effects | ||||||
Motor Competence at 26 Years | 0.14 | |||||
Motor Difficulties from Birth to 56 Months | 0.77 | 0.22 | (0.41, 1.13) | 0.22 | <0.001 | |
IQ at 56 Months | −0.11 | 0.07 | (−0.23, 0.01) | −0.10 | 0.137 | |
VP/VLBW | 0.28 | 0.20 | (−0.05, 0.60) | 0.13 | 0.151 | |
SGA | 0.03 | 0.20 | (−0.29, 0.35) | 0.01 | 0.884 | |
Multiple Births | 0.13 | 0.24 | (−0.26, 0.53) | 0.04 | 0.582 | |
Sex (Male) | −0.35 | 0.17 | (−0.62, −0.07) | −0.16 | 0.032 | |
SES Low | −0.05 | 0.20 | (−0.37, 0.27) | −0.02 | 0.794 | |
SES High | 0.28 | 0.20 | (−0.05, 0.60) | 0.12 | 0.162 | |
Motor Difficulties from Birth to 56 Months | 0.13 | |||||
VP/VLBW | 0.22 | 0.05 | (0.14, 0.30) | 0.35 | <0.001 | |
SGA | 0.03 | 0.03 | (−0.02, 0.08) | 0.05 | 0.291 | |
Multiple Births | −0.17 | 0.06 | (−0.26, −0.08) | −0.19 | 0.002 | |
Sex (Male) | 0.00 | 0.03 | (−0.05, 0.05) | 0.00 | 0.979 | |
SES Low | 0.01 | 0.03 | (−0.04, 0.07) | 0.02 | 0.724 | |
SES High | −0.03 | 0.04 | (−0.10, 0.04) | −0.04 | 0.482 | |
Full-Scale IQ at 26 Years | 0.47 | |||||
Motor Difficulties from Birth to 56 Months | −0.24 | 0.09 | (−0.39, −0.08) | −0.07 | 0.010 | |
IQ at 56 Mon | 0.51 | 0.04 | (0.44, 0.58) | 0.51 | <0.001 | |
VP/VLBW | −0.25 | 0.12 | (−0.45, −0.04) | −0.12 | 0.044 | |
SGA | −0.09 | 0.12 | (−0.28, 0.10) | −0.04 | 0.424 | |
Multiple Births | 0.11 | 0.13 | (−0.10, 0.32) | 0.04 | 0.384 | |
Sex (Male) | 0.15 | 0.08 | (0.01, 0.28) | 0.07 | 0.075 | |
SES Low | −0.12 | 0.10 | (−0.28, 0.04) | −0.05 | 0.220 | |
SES High | 0.35 | 0.11 | (0.17, 0.53) | 0.16 | 0.001 | |
IQ at 56 Mon | 0.25 | |||||
VP/VLBW | −0.64 | 0.11 | (−0.81, −0.46) | −0.32 | <0.001 | |
SGA | −0.20 | 0.11 | (−0.38, −0.03) | −0.09 | 0.059 | |
Multiple Births | −0.02 | 0.13 | (−0.22, 0.19) | −0.00 | 0.922 | |
Sex (Male) | −0.01 | 0.09 | (−0.16, 0.13) | −0.01 | 0.883 | |
SES Low | −0.45 | 0.11 | (−0.63, −0.27) | −0.20 | <0.001 | |
SES High | 0.34 | 0.11 | (0.17, 0.52) | 0.16 | 0.001 | |
Indirect Effects | ||||||
Full-Scale IQ at 26 Years Via Motor Difficulties from Birth to 56 Months | ||||||
From VP/VLBW | −0.05 | 0.02 | (−0.09, −0.01) | −0.03 | 0.023 |
Direct and Indirect Effects | Unstandardized | Standardized | ||||
---|---|---|---|---|---|---|
B | Standard Error | 95% CI | Β | p-Value | R2 | |
Direct Effects | ||||||
Motor Competence at 26 Years | 0.08 | |||||
Motor Difficulties from Birth to 56 Months | 0.57 | 0.26 | (0.13, 1.00) | 0.13 | 0.029 | |
IQ at 56 Months | −0.09 | 0.08 | (−0.21, 0.04) | −0.08 | 0.253 | |
VP/VLBW | 0.21 | 0.21 | (−0.13, 0.55) | 0.10 | 0.311 | |
SGA | −0.07 | 0.22 | (−0.43, 0.28) | −0.03 | 0.732 | |
Multiple Births | 0.12 | 0.27 | (−0.32, 0.56) | 0.04 | 0.653 | |
Sex (Male) | −0.26 | 0.18 | (−0.56, 0.04) | −0.13 | 0.142 | |
SES Low | 0.12 | 0.21 | (−0.23, 0.47) | 0.05 | 0.566 | |
SES High | 0.38 | 0.22 | (0.02, 0.73) | 0.16 | 0.076 | |
Motor Difficulties from Birth to 56 Months | 0.09 | |||||
VP/VLBW | 0.12 | 0.04 | (0.06, 0.18) | 0.24 | 0.001 | |
SGA | 0.05 | 0.03 | (−0.00, 0.09) | 0.08 | 0.103 | |
Multiple Births | −0.12 | 0.06 | (−0.21, −0.02) | −0.16 | 0.050 | |
Sex (Male) | 0.01 | 0.03 | (−0.03, 0.06) | 0.02 | 0.675 | |
SES Low | 0.04 | 0.03 | (−0.01, 0.08) | 0.07 | 0.151 | |
SES High | −0.01 | 0.04 | (−0.07, 0.05) | −0.01 | 0.850 | |
Full-Scale IQ at 26 Years | 0.42 | |||||
Motor Difficulties from Birth to 56 Months | 0.07 | 0.11 | (−0.10, 0.24) | 0.02 | 0.520 | |
IQ at 56 Months | 0.49 | 0.05 | (0.41, 0.56) | 0.49 | <0.001 | |
VP/VLBW | −0.26 | 0.13 | (−0.47, −0.05) | −0.13 | 0.044 | |
SGA | −0.10 | 0.13 | (−0.32, 0.11) | −0.04 | 0.433 | |
Multiple Births | 0.14 | 0.15 | (−0.10, 0.38) | 0.05 | 0.345 | |
Sex (Male) | 0.12 | 0.09 | (−0.03, 0.27) | 0.06 | 0.171 | |
SES Low | −0.21 | 0.11 | (−0.39, −0.02) | −0.09 | 0.069 | |
SES High | 0.32 | 0.11 | (0.14, 0.51) | 0.15 | 0.003 | |
IQ at 56 Months | 0.24 | |||||
VP/VLBW | −0.57 | 0.11 | (−0.75, −0.38) | −0.28 | <0.001 | |
SGA | −0.16 | 0.11 | (−0.35, 0.02) | −0.07 | 0.149 | |
Multiple Births | −0.12 | 0.13 | (−0.33, 0.10) | −0.04 | 0.362 | |
Sex (Male) | −0.04 | 0.09 | (−0.20, 0.11) | −0.02 | 0.664 | |
SES Low | −0.50 | 0.11 | (−0.68, −0.31) | −0.22 | <0.001 | |
SES High | 0.33 | 0.11 | (0.15, 0.52) | 0.15 | 0.002 | |
Indirect Effects | ||||||
Full-Scale IQ at 26 Years Via Motor Difficulties from Birth to 56 Months | ||||||
From VP/VLBW | 0.01 | 0.01 | (−0.01, 0.03) | 0.00 | 0.527 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumann, N.; Tresilian, J.; Bartmann, P.; Wolke, D. Early Motor Trajectories Predict Motor but not Cognitive Function in Preterm- and Term-Born Adults without Pre-existing Neurological Conditions. Int. J. Environ. Res. Public Health 2020, 17, 3258. https://doi.org/10.3390/ijerph17093258
Baumann N, Tresilian J, Bartmann P, Wolke D. Early Motor Trajectories Predict Motor but not Cognitive Function in Preterm- and Term-Born Adults without Pre-existing Neurological Conditions. International Journal of Environmental Research and Public Health. 2020; 17(9):3258. https://doi.org/10.3390/ijerph17093258
Chicago/Turabian StyleBaumann, Nicole, James Tresilian, Peter Bartmann, and Dieter Wolke. 2020. "Early Motor Trajectories Predict Motor but not Cognitive Function in Preterm- and Term-Born Adults without Pre-existing Neurological Conditions" International Journal of Environmental Research and Public Health 17, no. 9: 3258. https://doi.org/10.3390/ijerph17093258
APA StyleBaumann, N., Tresilian, J., Bartmann, P., & Wolke, D. (2020). Early Motor Trajectories Predict Motor but not Cognitive Function in Preterm- and Term-Born Adults without Pre-existing Neurological Conditions. International Journal of Environmental Research and Public Health, 17(9), 3258. https://doi.org/10.3390/ijerph17093258