Association between Frequency of Breakfast Consumption and Insulin Resistance Using Triglyceride-Glucose Index: A Cross-Sectional Study of the Korea National Health and Nutrition Examination Survey (2016–2018)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Study Population
2.2. Insulin Resistance Using the TyG Index
2.3. Frequency of Breakfast Consumption
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Park, I.B.; Kim, J.; Kim, D.J.; Chung, C.H.; Oh, J.-Y.; Park, S.W.; Lee, J.; Choi, K.M.; Min, K.W.; Park, J.H.; et al. Diabetes Epidemics in Korea: Reappraise Nationwide Survey of Diabetes “Diabetes in Korea 2007”. Diabetes Metab. J. 2013, 37, 233–239. [Google Scholar]
- Yoon, K.-H.; Lee, J.-H.; Kim, J.-W.; Cho, J.H.; Choi, Y.-H.; Ko, S.-H.; Zimmet, P.; Son, H.-Y. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar] [CrossRef]
- Lee, J.-E.; Jung, S.-C.; Jung, G.-H.; Ha, S.-W.; Kim, B.-W.; Chae, S.-C.; Park, W.-H.; Lim, J.-S.; Yang, J.-H.; Kam, S.; et al. Prevalence of Diabetes Mellitus and Prediabetes in Dalseong-gun, Daegu City, Korea. Diabetes Metab. J. 2011, 35, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFronzo, R.A. The triumvirate: β-cell, muscle, liver: A collusion responsible for NIDDM. Diabetes 1988, 37, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Olver, R. Fluid secretion and absorption in the fetus. Lung Biol. Health Dis. 1994, 70, 281–302. [Google Scholar]
- Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin Resistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of Pima Indians. N. Engl. J. Med. 1993, 329, 1988–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaven, G.M. Pathophysiology of insulin resistance in human disease. Physiol. Rev. 1995, 75, 473–486. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214. [Google Scholar] [CrossRef]
- Morris, A.D.; Ueda, S.; Petrie, J.R.; Connell, J.M.; Elliott, H.L.; Donnelly, R. The Euglycaemic Hyperinsulinaemic Clamp: An Evaluation of Current Methodology. Clin. Exp. Pharmacol. Physiol. 1997, 24, 513–518. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-H.; Kwon, H.-S.; Park, Y.-M.; Ha, H.-S.; Jeong, S.H.; Yang, H.K.; Lee, J.-H.; Yim, H.-W.; Kang, M.-I.; Lee, W.-C.; et al. Predicting the development of diabetes using the product of triglycerides and glucose: The Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE 2014, 9, e90430. [Google Scholar] [CrossRef] [PubMed]
- Vasques, A.C.J.; Novaes, F.S.; de Oliveira, M.d.S.; Matos Souza, J.R.; Yamanaka, A.; Pareja, J.C.; Tambascia, M.A.; Saad, M.J.A.; Geloneze, B. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study. Diabetes Res. Clin. Pract. 2011, 93, e98–e100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Ahn, C.W.; Kang, S.; Nam, J.S.; Kim, K.R.; Park, J.S. Relationship between the triglyceride glucose index and coronary artery calcification in Korean adults. Cardiovasc. Diabetol. 2017, 16, 108. [Google Scholar] [CrossRef]
- Lee, S.B.; Ahn, C.W.; Lee, B.K.; Kang, S.; Nam, J.S.; You, J.H.; Kim, M.J.; Kim, M.K.; Park, J.S. Association between triglyceride glucose index and arterial stiffness in Korean adults. Cardiovasc. Diabetol. 2018, 17, 41. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Yang, Y.; Lee, E.Y.; Yang, H.K.; Kim, H.S.; Lim, S.Y.; Lee, J.H.; Lee, S.S.; Suh, B.K.; Yoon, K.H. Triglycerides/glucose index is a useful surrogate marker of insulin resistance among adolescents. Int. J. Obes. (Lond.) 2017, 41, 789–792. [Google Scholar] [CrossRef]
- Ley, S.H.; Pan, A.; Li, Y.; Manson, J.E.; Willett, W.C.; Sun, Q.; Hu, F.B. Changes in Overall Diet Quality and Subsequent Type 2 Diabetes Risk: Three U.S. Prospective Cohorts. Diabetes Care 2016, 39, 2011–2018. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, C.E.; Byrd-Bredbenner, C.; Hayes, D.; Jana, L.; Klinger, S.E.; Stephenson-Martin, S. The Role of Breakfast in Health: Definition and Criteria for a Quality Breakfast. J. Acad. Nutr. Diet. 2014, 114, S8–S26. [Google Scholar] [CrossRef]
- Kobayashi, F.; Ogata, H.; Omi, N.; Nagasaka, S.; Yamaguchi, S.; Hibi, M.; Tokuyama, K. Effect of breakfast skipping on diurnal variation of energy metabolism and blood glucose. Obes. Res. Clin. Pract. 2014, 8, e249–e257. [Google Scholar] [CrossRef]
- Lee, S.A.; Park, E.-C.; Ju, Y.J.; Lee, T.H.; Han, E.; Kim, T.H. Breakfast consumption and depressive mood: A focus on socioeconomic status. Appetite 2017, 114, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Choi, D.-W.; Ju, Y.J.; Lee, S.A.; Park, E.-C. The association between low frequency of having breakfast and dyslipidemia in South Korean men and women. Eur. J. Clin. Nutr. 2019, 73, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.-B.; Suh, H.-J.; Lee, M.; Kim, J.-H.; Kwon, J.A.; Park, E.-C. Breakfast Eating Patterns and the Metabolic Syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) 2007–2009; HEC Press: Jouy-en-Josas, France, 2014. [Google Scholar]
- Lee, H.J.; Jang, J.; Lee, S.A.; Choi, D.-W.; Park, E.-C. Association between Breakfast Frequency and Atherosclerotic Cardiovascular Disease Risk: A Cross-Sectional Study of KNHANES Data, 2014–2016. Int. J. Environ. Res. Public Health 2019, 16, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leidy, H.J. The Benefits of Breakfast Consumption to Combat Obesity and Diabetes in Young People. Am. J. Lifestyle Med. 2013, 7, 99–103. [Google Scholar] [CrossRef]
- Smith, K.J.; Gall, S.L.; McNaughton, S.A.; Blizzard, L.; Dwyer, T.; Venn, A.J. Skipping breakfast: Longitudinal associations with cardiometabolic risk factors in the Childhood Determinants of Adult Health Study. Am. J. Clin. Nutr. 2010, 92, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, G.; Kelishadi, R.; Qorbani, M.; Motlagh, M.E.; Taheri, M.; Ardalan, G.; Taslimi, M.; Poursafa, P.; Heshmat, R.; Larijani, B. Association of breakfast intake with cardiometabolic risk factors. J. Pediatr. 2013, 89, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, T. Skipping breakfast is associated with dysmenorrhea in young women in Japan. Int. J. Food Sci. Nutr. 2003, 54, 505–509. [Google Scholar] [CrossRef]
- Ren, Z.; Cao, J.; Cheng, P.; Shi, D.; Cao, B.; Yang, G.; Liang, S.; Du, F.; Su, N.; Yu, M.; et al. Association between Breakfast Consumption and Depressive Symptoms among Chinese College Students: A Cross-Sectional and Prospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1571. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, H.R.; Grunwald, G.K.; Mosca, C.L.; Klem, M.L.; Wing, R.R.; Hill, J.O. Long-Term Weight Loss and Breakfast in Subjects in the National Weight Control Registry. Obes. Res. 2002, 10, 78–82. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, L.; Zeng, T.; Xiang, H.; Min, J.; Huiqing, L.; Chen, L. The relationship between breakfast frequency and dyslipidemia. Chin. J. Endocrinol. Metab. 2015, 31, 684–689. [Google Scholar]
- Gibney, M.J.; Barr, S.I.; Bellisle, F.; Drewnowski, A.; Fagt, S.; Livingstone, B.; Masset, G.; Varela Moreiras, G.; Moreno, L.A.; Smith, J.; et al. Breakfast in Human Nutrition: The International Breakfast Research Initiative. Nutrients 2018, 10, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dea, J.A.; Wagstaff, S. Increased breakfast frequency and nutritional quality among schoolchildren after a national breakfast promotion campaign in Australia between 2000 and 2006. Health Educ. Res. 2011, 26, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekary, R.A.; Giovannucci, E.; Cahill, L.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in older women: Breakfast consumption and eating frequency. Am. J. Clin. Nutr. 2013, 98, 436–443. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Jacobs, D.R.; Steffen, L.M.; Van Horn, L.; Ludwig, D.S.; Pereira, M.A. Breakfast Frequency and Development of Metabolic Risk. Diabetes Care 2013, 36, 3100–3106. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.-j.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M. Triglyceride-Glucose Index Simulation. JCBR 2017, 1, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Timlin, M.T.; Pereira, M.A.; Story, M.; Neumark-Sztainer, D. Breakfast Eating and Weight Change in a 5-Year Prospective Analysis of Adolescents: Project EAT (Eating Among Teens). Pediatrics 2008, 121, e638–e645. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.-H.; Lee, J.S.; Ahn, H.J.; Choi, J.-S.; Noh, M.Y.; Lee, J.J.; Lee, E.Y.; Lim, J.H.; Lee, Y.R.; Yoon, S.Y.; et al. Association of meal frequency with metabolic syndrome in Korean adults: From the Korea National Health and Nutrition Examination Survey (KNHANES). Diabetol. Metab. Syndr. 2017, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Zhou, D.; Li, Y.; Wang, Y.; Xu, S.-C.; Zhao, X.-H. The triglyceride-glucose index predicts coronary artery disease severity and cardiovascular outcomes in patients with non-st-segment elevation acute coronary syndrome. Dis. Markers 2019, 2019, 6891537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.; Kim, W.; Lee, S.A.; Choi, D.; Park, E.-C. Effects of different types and frequencies of physical activity on the homeostatic model assessment of insulin resistance. J. Investig. Med. 2019, 67, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Risérus, U.; Ärnlöv, J.; Berglund, L. Long-Term Predictors of Insulin Resistance: Role of lifestyle and metabolic factors in middle-aged men. Diabetes Care 2007, 30, 2928–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farin, H.M.; Abbasi, F.; Reaven, G.M. Body mass index and waist circumference both contribute to differences in insulin-mediated glucose disposal in nondiabetic adults. Am. J. Clin. Nutr. 2006, 83, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Unger, G.; Benozzi, S.F.; Perruzza, F.; Pennacchiotti, G.L. Triglycerides and glucose index: A useful indicator of insulin resistance. Endocrinol. Nutr. (Engl. Ed.) 2014, 61, 533–540. [Google Scholar] [CrossRef]
- Shigeta, H.; Shigeta, M.; Nakazawa, A.; Nakamura, N.; Yoshikawa, T. Lifestyle, obesity, and insulin resistance. Diabetes Care 2001, 24, 608. [Google Scholar] [CrossRef] [Green Version]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am. J. Clin. Nutr. 2007, 85, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, C.; Kodama, S.; Yachi, Y.; Heianza, Y.; Hirasawa, R.; Ibe, Y.; Saito, K.; Shimano, H.; Yamada, N.; Sone, H. Skipping breakfast and prevalence of overweight and obesity in Asian and Pacific regions: A meta-analysis. Prev. Med. 2011, 53, 260–267. [Google Scholar] [CrossRef]
- Timlin, M.T.; Pereira, M.A. Breakfast Frequency and Quality in the Etiology of Adult Obesity and Chronic Diseases. Nutr. Rev. 2007, 65, 268–281. [Google Scholar] [CrossRef]
- Levitsky, D.A.; Pacanowski, C.R. Effect of skipping breakfast on subsequent energy intake. Physiol. Behav. 2013, 119, 9–16. [Google Scholar] [CrossRef]
- Farshchi, H.R.; Taylor, M.A.; Macdonald, I.A. Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. Am. J. Clin. Nutr. 2005, 81, 388–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.-H.; Suh, Y.S.; Chung, Y.-J. Metabolic risk and nutritional state according to breakfast energy level of Korean adults: Using the 2007~2009 Korea National Health and Nutrition Examination Survey. J. Nutr. Health 2015, 48, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Erickson, E.; McKee, P.; Schrankler, K.; Raatz, S.K.; Lytle, L.A.; Pellegrini, A.D. Breakfast Frequency and Quality May Affect Glycemia and Appetite in Adults and Children. J. Nutr. 2010, 141, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, D.; Malkin, C.J.; Channer, K.S.; Jones, T.H. Androgens, insulin resistance and vascular disease in men. Clin. Endocrinol. 2005, 63, 239–250. [Google Scholar] [CrossRef]
- Barr, S.I.; DiFrancesco, L.; Fulgoni, V.L. Association of breakfast consumption with body mass index and prevalence of overweight/obesity in a nationally-representative survey of Canadian adults. Nutr. J. 2015, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K.; Andon, M.B.; Angelopoulos, T.J.; Rippe, J.M. Association of breakfast energy density with diet quality and body mass index in American adults: National Health and Nutrition Examination Surveys, 1999–2004. Am. J. Clin. Nutr. 2008, 88, 1396–1404. [Google Scholar]
- Witbracht, M.; Keim, N.L.; Forester, S.; Widaman, A.; Laugero, K. Female breakfast skippers display a disrupted cortisol rhythm and elevated blood pressure. Physiol. Behav. 2015, 140, 215–221. [Google Scholar] [CrossRef]
- Deshmukh-Taskar, P.; Nicklas, T.A.; Radcliffe, J.D.; O’Neil, C.E.; Liu, Y. The relationship of breakfast skipping and type of breakfast consumed with overweight/obesity, abdominal obesity, other cardiometabolic risk factors and the metabolic syndrome in young adults. The National Health and Nutrition Examination Survey (NHANES): 1999–2006. Public Health Nutr. 2013, 16, 2073–2082. [Google Scholar]
- Kim, B.; Choi, H.Y.; Kim, W.; Ahn, C.; Lee, J.; Kim, J.G.; Kim, J.; Shin, H.; Yu, J.M.; Moon, S. The cut-off values of surrogate measures for insulin resistance in the Korean population according to the Korean Genome and Epidemiology Study (KOGES). PLoS ONE 2018, 13, e0206994. [Google Scholar] [CrossRef]
Variables | Insulin Resistance (TyG Index) | ||||||
---|---|---|---|---|---|---|---|
Total | Low (<8.5) | High (≥8.5) | p-Value 4 | ||||
N | % | N | % | N | % | ||
Breakfast per week | <0.0001 | ||||||
0 times | 1761 | 13.7 | 919 | 52.2 | 842 | 47.8 | |
1–4 times | 2960 | 23.0 | 1626 | 54.9 | 1334 | 45.1 | |
5–7 times | 8135 | 63.3 | 4039 | 49.6 | 4096 | 50.4 | |
Sex | <0.0001 | ||||||
Male | 5278 | 41.1 | 2029 | 38.4 | 3249 | 61.6 | |
Female | 7578 | 58.9 | 4555 | 60.1 | 3023 | 39.9 | |
Age | <0.0001 | ||||||
<30 | 1913 | 14.9 | 1363 | 71.2 | 550 | 28.8 | |
30–39 | 2262 | 17.6 | 1309 | 57.9 | 953 | 42.1 | |
40–49 | 2532 | 19.7 | 1268 | 50.1 | 1264 | 49.9 | |
50–59 | 2352 | 18.3 | 1063 | 45.2 | 1289 | 54.8 | |
60–69 | 2045 | 15.9 | 831 | 40.6 | 1214 | 59.4 | |
≥70 | 1752 | 13.6 | 750 | 42.8 | 1002 | 57.2 | |
Marital status | <0.0001 | ||||||
Single, separated, divorced | 4041 | 31.4 | 2270 | 56.2 | 1771 | 43.8 | |
Married | 8815 | 68.6 | 4314 | 48.9 | 4501 | 51.1 | |
Educational level | <0.0001 | ||||||
College or over | 6155 | 47.9 | 3452 | 56.1 | 2703 | 43.9 | |
Highschool or less | 6701 | 52.1 | 3132 | 46.7 | 3569 | 53.3 | |
Household income | <0.0001 | ||||||
Low | 2081 | 16.2 | 954 | 45.8 | 1127 | 54.2 | |
Lower middle | 3111 | 24.2 | 1550 | 49.8 | 1561 | 50.2 | |
Upper middle | 3666 | 28.5 | 1923 | 52.5 | 1743 | 47.5 | |
High | 3998 | 31.1 | 2157 | 54.0 | 1841 | 46.0 | |
Region | 0.0277 | ||||||
Rural | 7131 | 55.5 | 3590 | 50.3 | 3541 | 49.7 | |
Metropolitan | 5725 | 44.5 | 2994 | 52.3 | 2731 | 47.7 | |
Occupational categories 1 | <0.0001 | ||||||
White-collar | 3391 | 26.4 | 1829 | 53.9 | 1562 | 46.1 | |
Pink-collar | 1657 | 12.9 | 870 | 52.5 | 787 | 47.5 | |
Blue-collar | 2816 | 21.9 | 1281 | 45.5 | 1535 | 54.5 | |
Unemployed or other | 4992 | 38.8 | 2604 | 52.2 | 2388 | 47.8 | |
BMI 2 | <0.0001 | ||||||
Obese (≥25.0) | 4091 | 31.8 | 1345 | 32.9 | 2746 | 67.1 | |
Overweight (23.0–24.9) | 2911 | 22.6 | 1301 | 44.7 | 1610 | 55.3 | |
Underweight or Normal (<23.0) | 5854 | 45.5 | 3938 | 67.3 | 1916 | 32.7 | |
Waist circumference 3 | <0.0001 | ||||||
Abdominal obesity | 4524 | 35.2 | 1353 | 29.9 | 3171 | 70.1 | |
Normal | 8330 | 64.8 | 5231 | 62.8 | 3099 | 37.2 | |
Subjective health status | <0.0001 | ||||||
Bad | 2148 | 16.7 | 997 | 46.4 | 1151 | 53.6 | |
Normal | 6711 | 52.2 | 3306 | 49.3 | 3405 | 50.7 | |
Good | 3997 | 31.1 | 2281 | 57.1 | 1716 | 42.9 | |
Smoking status | <0.0001 | ||||||
Current smoker | 2089 | 16.2 | 701 | 33.6 | 1388 | 66.4 | |
Ex-smoker | 2576 | 20.0 | 1087 | 42.2 | 1489 | 57.8 | |
Non-smoker | 8191 | 63.7 | 4796 | 58.6 | 3395 | 41.4 | |
Drinking status | <0.0001 | ||||||
Frequently | 2755 | 21.4 | 1127 | 40.9 | 1628 | 59.1 | |
Occasionally | 6714 | 52.2 | 3715 | 55.3 | 2999 | 44.7 | |
Never | 3387 | 26.3 | 1742 | 51.4 | 1645 | 48.6 | |
Physical activity | <0.0001 | ||||||
Inactive | 7044 | 54.8 | 3409 | 48.4 | 3635 | 51.6 | |
Active | 5812 | 45.2 | 3175 | 54.6 | 2637 | 45.4 | |
Lunch per week | <0.0001 | ||||||
0 times | 210 | 1.6 | 98 | 46.7 | 112 | 53.3 | |
1–4 times | 1103 | 8.6 | 574 | 52.0 | 529 | 48.0 | |
5–7 times | 11,543 | 89.8 | 5912 | 51.2 | 5631 | 48.8 | |
Dinner per week | <0.0001 | ||||||
0 times | 59 | 0.5 | 31 | 52.5 | 28 | 47.5 | |
1–4 times | 1262 | 9.8 | 733 | 58.1 | 529 | 41.9 | |
5–7 times | 11,535 | 89.7 | 5820 | 50.5 | 5715 | 49.5 | |
Calorie intake (kcal/day) * | 1937.5 | ± 879.9 | 1879.6 | ± 848.4 | 1998.4 | ± 907.9 | <0.0001 |
Carbohydrate intake (g/day) * | 294.4 | ± 123.9 | 286.5 | ± 121.4 | 302.7 | ± 125.9 | <0.0001 |
Protein intake (g/day) * | 70.6 | ± 40.5 | 69.5 | ± 39.5 | 71.7 | ± 41.6 | 0.003 |
Fat intake (g/day) * | 45.1 | ± 35.0 | 45.7 | ± 35.1 | 44.5 | ± 35.0 | 0.056 |
Year | 0.3168 | ||||||
2016 | 4323 | 33.6 | 2254 | 52.1 | 2069 | 47.9 | |
2017 | 4201 | 32.7 | 2126 | 50.6 | 2075 | 49.4 | |
2018 | 4332 | 33.7 | 2204 | 50.9 | 2128 | 49.1 | |
Total | 12,856 | 100.0 | 6584 | 51.2 | 6272 | 48.8 |
Variables | Insulin Resistance | ||
---|---|---|---|
OR 1 | 95% CI | p-Value 7 | |
Breakfast per week | |||
0 times | 1.42 | (1.24–1.64) | <0.0001 |
1–4 times | 1.17 | (1.03–1.32) | 0.0153 |
5–7 times | 1.00 | ||
Sex | |||
Male | 1.95 | (1.72–2.22) | <0.0001 |
Female | 1.00 | ||
Age | |||
<30 | 1.00 | ||
30–39 | 1.91 | (1.59–2.29) | <0.0001 |
40–49 | 2.90 | (2.41–3.48) | <0.0001 |
50–59 | 3.54 | (2.90–4.32) | <0.0001 |
60–69 | 3.82 | (3.06–4.77) | <0.0001 |
≥70 | 3.20 | (2.52–4.07) | <0.0001 |
Marital status | |||
Single, separated, divorced | 1.17 | (1.03–1.32) | 0.0143 |
Married | 1.00 | ||
Educational level | |||
College or over | 1.02 | (0.91–1.14) | 0.7084 |
Highschool or less | 1.00 | ||
Household income | |||
Low | 1.00 | (0.85–1.19) | 0.8698 |
Lower middle | 1.02 | (0.86–1.22) | 0.8620 |
Upper middle | 1.02 | (0.85–1.21) | 0.8982 |
High | 1.00 | ||
Region | |||
Rural | 1.00 | (0.90–1.10) | 0.9723 |
Metropolitan | 1.00 | ||
Occupational categories 2 | |||
White-collar | 0.91 | (0.81–1.03) | 0.1352 |
Pink-collar | 0.87 | (0.74–1.01) | 0.0589 |
Blue-collar | 0.66 | (0.58–0.76) | <0.0001 |
Unemployed or other | 1.00 | ||
BMI 3 | |||
Obese (≥25.0) | 2.51 | (2.17–2.91) | <0.0001 |
Overweight (23.0–24.9) | 1.85 | (1.63–2.09) | <0.0001 |
Underweight or Normal (<23.0) | 1.00 | ||
Waist circumference 4 | |||
Abdominal obesity | 1.83 | (1.59–2.11) | <0.0001 |
Normal | 1.00 | ||
Subjective health status | |||
Bad | 1.24 | (1.07–1.43) | 0.0048 |
Normal | 1.28 | (1.16–1.42) | <0.0001 |
Good | 1.00 | ||
Smoking status | |||
Current smoker | 1.68 | (1.45–1.96) | <0.0001 |
Ex-smoker | 1.05 | (0.91–1.20) | 0.5072 |
Non-smoker | 1.00 | ||
Drinking status | |||
Frequently | 1.13 | (0.97–1.31) | 0.1196 |
Occasionally | 0.92 | (0.82–1.04) | 0.1767 |
Never | 1.00 | ||
Physical activity | |||
Inactive | 1.19 | (1.07–1.31) | 0.0011 |
Active | 1.00 | ||
Lunch per week | |||
0 times | 0.92 | (0.65–1.31) | 0.6493 |
1–4 times | 1.07 | (0.90–1.28) | 0.4239 |
5–7 times | 1.00 | ||
Dinner per week | |||
0 times | 1.11 | (0.58–2.11) | 0.7609 |
1–4 times | 0.90 | (0.77–1.05) | 0.1751 |
5–7 times | 1.00 | ||
Carbohydrate intake (g/day) 5 | 0.999 | (0.998–1.000) | 0.0083 |
Protein intake (g/day) 5 | 0.996 | (0.994–0.998) | 0.0009 |
Fat intake (g/day) 5 | 0.996 | (0.993–0.998) | 0.0015 |
Calorie intake (kcal/day) 6 | 1.000 | (1.000–1.001) | <0.0001 |
Variables | Insulin Resistance | ||||||
---|---|---|---|---|---|---|---|
5–7 | 0 | 1–4 | |||||
OR 1 | OR 1 | 95% CI | p-Value 5 | OR 1 | 95% CI | p-Value 5 | |
Sex | |||||||
Male | 1.00 | 1.47 | (1.18–1.84) | 0.0007 | 1.18 | (0.96–1.44) | 0.1214 |
Female | 1.00 | 1.37 | (1.14–1.64) | 0.001 | 1.15 | (0.98–1.35) | 0.0805 |
Age | |||||||
<30 | 1.00 | 1.61 | (1.16–2.25) | 0.0048 | 1.16 | (0.84–1.35) | 0.3650 |
30–39 | 1.00 | 1.34 | (0.99–1.80) | 0.0582 | 1.18 | (0.91–1.53) | 0.2163 |
40–49 | 1.00 | 1.75 | (1.28–2.38) | 0.0004 | 1.42 | (1.10–1.83) | 0.0065 |
50–59 | 1.00 | 1.25 | (0.88–1.76) | 0.2096 | 0.84 | (0.63–1.13) | 0.2450 |
60–69 | 1.00 | 0.91 | (0.54–1.56) | 0.7385 | 1.20 | (0.79–1.83) | 0.4025 |
≥70 | 1.00 | 1.15 | (0.50–2.63) | 0.7453 | 1.01 | (0.58–1.76) | 0.9732 |
BMI 3 | |||||||
Obese | 1.00 | 1.70 | (1.29–2.24) | 0.0002 | 1.16 | (0.93–1.46) | 0.1926 |
Overweight | 1.00 | 1.45 | (1.08–1.94) | 0.0137 | 0.90 | (0.69–1.17) | 0.4195 |
Underweight or Normal | 1.00 | 1.31 | (1.07–1.61) | 0.0092 | 1.36 | (1.14–1.64) | 0.0009 |
Waist circumference 4 | |||||||
Abdominal obesity | 1.00 | 1.50 | (1.14–1.97) | 0.0040 | 1.15 | (0.92–1.43) | 0.2332 |
Normal | 1.00 | 1.42 | (1.20–1.68) | 0.0001 | 1.19 | (1.02–1.38) | 0.0234 |
Physical activity | |||||||
Inactive | 1.00 | 1.52 | (1.26–1.84) | <0.0001 | 1.22 | (1.04–1.43) | 0.0172 |
Active | 1.00 | 1.34 | (1.08–1.66) | 0.0073 | 1.12 | (0.93–1.34) | 0.2475 |
Lunch per week | |||||||
0 times | 1.00 | 7.31 | (1.50–35.7) | 0.0141 | 1.59 | (0.39–6.46) | 0.5155 |
1–4 times | 1.00 | 1.28 | (0.76–2.13) | 0.3508 | 1.13 | (0.78–1.64) | 0.5093 |
5–7 times | 1.00 | 1.41 | (1.21–1.63) | <0.0001 | 1.16 | (1.02–1.32) | 0.0296 |
Dinner per week | |||||||
0 times | 1.00 | –2 | – | – | –2 | – | – |
1–4 times | 1.00 | 1.24 | (0.81–1.89) | 0.3190 | 0.93 | (0.66–1.33) | 0.6966 |
5–7 times | 1.00 | 1.45 | (1.25–1.68) | <0.0001 | 1.20 | (1.05–1.36) | 0.0087 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, H.J.; Kim, G.R.; Park, E.-C.; Jang, S.-I. Association between Frequency of Breakfast Consumption and Insulin Resistance Using Triglyceride-Glucose Index: A Cross-Sectional Study of the Korea National Health and Nutrition Examination Survey (2016–2018). Int. J. Environ. Res. Public Health 2020, 17, 3322. https://doi.org/10.3390/ijerph17093322
Joo HJ, Kim GR, Park E-C, Jang S-I. Association between Frequency of Breakfast Consumption and Insulin Resistance Using Triglyceride-Glucose Index: A Cross-Sectional Study of the Korea National Health and Nutrition Examination Survey (2016–2018). International Journal of Environmental Research and Public Health. 2020; 17(9):3322. https://doi.org/10.3390/ijerph17093322
Chicago/Turabian StyleJoo, Hye Jin, Gyu Ri Kim, Eun-Cheol Park, and Sung-In Jang. 2020. "Association between Frequency of Breakfast Consumption and Insulin Resistance Using Triglyceride-Glucose Index: A Cross-Sectional Study of the Korea National Health and Nutrition Examination Survey (2016–2018)" International Journal of Environmental Research and Public Health 17, no. 9: 3322. https://doi.org/10.3390/ijerph17093322
APA StyleJoo, H. J., Kim, G. R., Park, E. -C., & Jang, S. -I. (2020). Association between Frequency of Breakfast Consumption and Insulin Resistance Using Triglyceride-Glucose Index: A Cross-Sectional Study of the Korea National Health and Nutrition Examination Survey (2016–2018). International Journal of Environmental Research and Public Health, 17(9), 3322. https://doi.org/10.3390/ijerph17093322