Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Areas
2.2. Soil and Plant Sampling
2.3. Soil Analysis
2.4. Plant Analysis
2.5. The Indices of As Uptake and Root-to-Shoot Transfer
2.6. Statistics
3. Results and Discussion
3.1. Soil Properties
3.2. Arsenic Concentrations in Plants
3.2.1. As in Plant Shoots
3.2.2. As in Plant Roots
3.3. Translocation Factor TF
3.4. Bioaccumulation Factor BAF
3.5. As Extractability and Plant Uptake. Bioconcentration Factors BCF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Chatterjee, D.; Singh, K.K.; Giri, A.K. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: An overview. Int. J. Hyg. Envnviron. Health 2013, 216, 574–586. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Buschmann, J.; Berg, M.; Stengel, C.; Winkel, L.; Sampson, M.L.; Trang, P.T.K.; Viet, P.H. Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ. Int. 2008, 34, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, H.; Van, d.K.T.J. The health effects of exposure to arsenic-contaminated drinking water: A review by global geographical distribution. Int. J. Environ. Health Res. 2015, 25, 432–452. [Google Scholar] [CrossRef] [PubMed]
- Marin, A.R.; Masscheleyn, P.H.; Patric, J.W.H. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 1993, 152, 235–253. [Google Scholar] [CrossRef]
- Xu, X.Y.; McGrath, S.P.; Meharg, A.A.; Zhao, F.J. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Tech. 2008, 42, 5574–5579. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Shen, J.; Wu, J.; Tang, Z.; Shen, Q.; Zhao, F.J. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environ. Pollut. 2014, 194, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environ. Int. 2016, 96, 139–155. [Google Scholar] [CrossRef]
- Carlin, D.J.; Naujokas, M.F.; Bradham, K.D.; Cowden, J.; Heacock, M.; Henry, H.F.; Lee, J.S.; Thomas, D.J.; Thompson, C.; Tokar, E.J.; et al. Arsenic and environmental health: State of the science and future research opportunities. Environ. Health Perspect. 2015, 124, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Casado, M.; Anawar, H.M.; Garcia-Sanchez, A.; Santa Regina, I. Antimony and arsenic uptake by plants in an abandoned mining area. Comm. Soil Sci. Plant Anal. 2007, 38, 1255–1275. [Google Scholar] [CrossRef]
- Raab, A.; Williams, P.N.; Meharg, A.; Feldmann, J. Uptake and translocation of inorganic and methylated arsenic species by plants. Environ. Chem. 2007, 4, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, W.W. Arsenic. In Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Springer: Berlin, Germany, 2013; pp. 241–282. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Álvarez-Ayuso, E.; Otones, V.; Murciego, A.; García-Sánchez, A.; Santa Regina, I. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Sci. Total Environ. 2012, 439, 35–43. [Google Scholar] [CrossRef] [PubMed]
- EU Directive 2002/32/EC of May, 7th, 2002 of the European Parliament and of the Council on Undesirable Substances in Animal Feed. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0032 (accessed on 7 May 2002).
- Adamse, P.; Van, d.F.-K.H.J.; De Jong, J. Cadmium, lead, mercury and arsenic in animal feed and feed materials–trend analysis of monitoring results. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 1298–1311. [Google Scholar] [CrossRef]
- Ernst, W.H.O. Mine vegetation in Europe. In Heavy Metal Tolerance in Plants: Evolutionary Aspects; Shaw, A.J., Ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 21–38. [Google Scholar]
- Meharg, A.; Macnair, M.R. The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L. Adaptation of the arsenate uptake system. New Phytol. 1991, 119, 291–297. [Google Scholar] [CrossRef]
- Macnair, M. The genetics of metal tolerance in vascular plants. New Phytol. 1993, 124, 541–559. [Google Scholar] [CrossRef]
- Meharg, A.A.; Hartley-Whitaker, J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 2002, 154, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 2009, 12, 364–372. [Google Scholar] [CrossRef]
- Gupta, D.K.; Corpas, F.J.; Palma, J.M. Heavy Metal Stress in Plants; Springer: Berlin, Germany, 2013; p. 240. [Google Scholar]
- Smith, S.E.; Christophersen, H.M.; Pope, S.; Smith, F.A. Arsenic uptake and toxicity in plants: Integrating mycorrhizal influences. Plant Soil 2010, 327, 1–21. [Google Scholar] [CrossRef]
- Vázquez, d.A.B.R.; Gundel, P.E.; Garcia, C.B.; García, C.A.; García, S.A.; Zabalgogeazcoa, I. Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass For. Sci. 2014, 69, 462–469. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Heavy Metal Stress in Plants: From Biomolecules to Ecosystems; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579. [Google Scholar] [CrossRef] [PubMed]
- Souri, Z.; Karimi, N.; Sandalio, L.M. Arsenic hyperaccumulation strategies: An overview. Front. Cell Develop. Biol. 2017, 5, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, E.K.; Peterson, P.J. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Environ. 1975, 4, 365–371. [Google Scholar] [CrossRef]
- Bech, J.; Poschenrieder, C.; Llugany, M.; Barcelo, J.; Tume, P.; Tobias, F.; Barranzuela, J.; Vasquez, E. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 1997, 203, 83–91. [Google Scholar] [CrossRef]
- Wong, H.; Gauthier, A.; Nriagu, J. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci. Total Environ. 1999, 228, 35–47. [Google Scholar] [CrossRef]
- Fitz, W.; Wenzel, W.W. Arsenic transformations in the soil–rhizosphere–plant system: Fundamentals and potential application to phytoremediation. J. Biotech. 2002, 99, 259–278. [Google Scholar] [CrossRef]
- Robinson, B.; Kim, N.; Marchetti, M.; Moni, C.; Schroeter, L.; Van den Dijssel, C.; Milne, G.; Clothier, B. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ. Exp. Bot. 2006, 58, 206–215. [Google Scholar] [CrossRef]
- Craw, D.; Rufaut, C.; Haffert, L.; Paterson, L. Plant colonization and arsenic uptake on high arsenic mine wastes, New Zealand. Water Air Soil Pollut. 2007, 179, 351–364. [Google Scholar] [CrossRef]
- Bergqvist, C.; Greger, M. Arsenic accumulation and speciation in plants from different habitats. Appl. Geochem. 2012, 27, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sánchez, M.J.; García-Lorenzo, M.L.; Pérez-Sirvent, C.; Bech, J. Trace element accumulation in plants from an aridic area affected by mining activities. J. Geochem. Explor. 2012, 123, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Simmler, M.; Suess, E.; Christl, I.; Kotsev, T.; Kretzschmar, R. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Sci. Total Environ. 2016, 572, 742–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewska, A.; Bogda, A.; Krysiak, A. Arsenic in soils in the areas of former arsenic mining and processing in Lower Silesia, SW Poland. In Arsenic in Soil and Groundwater Environments; Bhattacharya, P., Mukherjee, A.B., Loeppert, R.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 9, pp. 411–440. [Google Scholar]
- Karczewska, A.; Krysiak, A.; Mokrzycka, D.; Jezierski, P.; Szopka, K. Arsenic distribution in soils of former As mining area and processing. Pol. J. Environ. Stud. 2013, 22, 175–181. [Google Scholar]
- Krysiak, A.; Karczewska, A. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci. Total Environ. 2007, 379, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Lewińska, K.; Karczewska, A.; Siepak, M.; Szopka, K.; Gałka, B.; Iqbal, M. Effects of waterlogging on the solubility of antimony and arsenic in variously treated shooting range soils. Appl. Geochem. 2019, 105, 7–16. [Google Scholar] [CrossRef]
- Wojciechowski, A.; Wierchowiec, J. Auriferous wastes from the abandoned arsenic and gold mine in Złoty Stok (Sudetes Mts., SW Poland). Geol. Q. 2009, 53, 233–240. [Google Scholar]
- Karczewska, A.; Kabała, C. Environmental risk assessment as a new basis for evaluation of soil contamination in Polish law. Soil. Sci. Ann. 2017, 68, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Regulation of the Minister for the Environment of 1 September 2016, on the method how to carry out the assessment of soil contamination. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 11 May 2020).
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Buscaroli, A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes. Ecol. Indic. 2017, 82, 367–380. [Google Scholar] [CrossRef]
- Stoltz, E.; Greger, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. 2002, 47, 271–280. [Google Scholar] [CrossRef]
- Vithanage, M.; Dabrowska, B.B.; Mukherjee, A.B.; Sandhi, A.; Bhattacharya, P. Arsenic uptake by plants and possible phytoremediation applications: A brief overview. Environ. Chem. Lett. 2012, 10, 217–224. [Google Scholar] [CrossRef]
- Karczewska, A.; Gałka, B.; Dradrach, A.; Lewińska, K.; Mołczan, M.; Cuske, M.; Gersztyn, L.; Litak, K. Solubility of arsenic and its uptake by ryegrass from polluted soils amended with organic matter. J. Geochem. Explor. 2017, 182, 193–200. [Google Scholar] [CrossRef]
- Dradrach, A.; Szopka, K.; Karczewska, A. Ecotoxicity of soil pore water on historical arsenic mine dumps -the effects of forest litter. Ecotox. Environ. Saf. 2019, 181, 202–213. [Google Scholar] [CrossRef]
- Karczewska, A.; Lewińska, K.; Siepak, M.; Gałka, B. Lanthanides in Soils of Historical Mining Sites in Poland. Pol. J. Environ. Stud. 2019, 28, 1517–1522. [Google Scholar] [CrossRef]
- Garbacz-Klempka, A.; Wardas-Lasoń, M.; Rzadkosz, S. Metallurgical waste from the Złoty Stok region. Arch. Foundry Eng. 2014, 14, 23–28. [Google Scholar]
- Mikulski, S.Z. Geological, mineralogical and geochemical characteristics of the Radzimowice Au–As–Cu deposit from the Kaczawa Mountains (Western Sudetes, Poland): An example of the transition of porphyry and epithermal style. Mineral. Dep. 2005, 39, 904–920. [Google Scholar] [CrossRef]
- Marszalek, H.; Rysiukiewicz, M.; Wasik, M.; Costa, M.R. Hydrogeochemistry of groundwater from abandoned Radzimowice mine (Sudetes, SW Poland). In Proceedings of the International Multidisciplinary Scientific GeoConference (SGEM); Surveying Geology & Mining Ecology Management: Albena Resort, Bulgaria, 2012; Volume 2, p. 135. [Google Scholar]
- Mochnacka, K.; Oberc-Dziedzic, T.; Mayer, W.; Pieczka, A.; Góralski, M. New insights into the mineralization of the Czarnów ore deposit (West Sudetes, Poland). Geol. Sudet. 2009, 41, 43–56. [Google Scholar]
- Madziarz, M. Recognition formerly exploited polimetalic ore deposits as results of prospecting and mining works after II world war in Sudety Mts. Min. Sci. 2009, 128, 141. [Google Scholar]
- Papuga, K.; Kaszubkiewicz, J.; Wilczewski, W.; Staś, M.; Belowski, J.; Kawałko, D. Soil grain size analysis by the dynamometer method-a comparison to the pipette and hydrometer method. Soil Sci. Ann. 2018, 69, 17–27. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W.R. Investigations on chemical soil analysis as a basis for the assessment of soil nutrient status. II. Chemical extraction methods for determining phosphorus and potassium. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Kabala, C.; Galka, B.; Labaz, B.; Anjos, L.; De Souza, C.R. Towards more simple and coherent chemical criteria in a classification of anthropogenic soils: A comparison of phosphorus tests for diagnostic horizons and properties. Geoderma 2018, 320, 1–11. [Google Scholar] [CrossRef]
- Bolan, N.S.; Mahimairaja, S.; Kunhikrishnan, A.; Choppala, G. Phosphorus–arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Sci. Total Environ. 2013, 463, 1154–1162. [Google Scholar] [CrossRef]
- Lewińska, K.; Karczewska, A. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus). Int. J. Phytorem. 2013, 15, 91–104. [Google Scholar] [CrossRef]
- Anawar, H.M.; Rengel, Z.; Damon, P.; Tibbett, M. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environ. Pollut. 2018, 233, 1003–1012. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, W.; Lu, G.; Fan, C.; Tao, X.; Ye, H.; Xie, Y.; Shi, Z.; Yi, X.; Dang, Z. Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils. Sci. Total Environ. 2019, 657, 644–656. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Li, X.; Thornton, I. Arsenic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England. Environ. Geochem. Health 1993, 15, 135–144. [Google Scholar] [CrossRef]
- Tremlová, J.; Vašíčková, I.; Száková, J.; Goessler, W.; Steiner, O.; Najmanová, J.; Horáková, T.; Tlustoš, P. Arsenic compounds occurring in ruderal plant communities growing in arsenic contaminated soils. Environ. Exp. Bot. 2016, 123, 108–115. [Google Scholar] [CrossRef]
- Abad-Valle, P.; Álvarez-Ayuso, E.; Murciego, A.; Muñoz-Centeno, L.M.; Alonso-Rojo, P.; Villar-Alonso, P. Arsenic distribution in a pasture area impacted by past mining activities. Ecotox. Environ. Saf. 2018, 147, 228–237. [Google Scholar] [CrossRef]
- Kicińska, A. Arsenic, Cadmium, and Thallium Content in the Plants Growing in Close Proximity to a Zinc Works–Long-Term Observations. J. Ecol. Eng. 2019, 20, 61–69. [Google Scholar] [CrossRef]
- Brooks, R.R.; Holzbecher, J.; Ryan, D.E. Horsetails (Equisetum) as indirect indicators of gold mineralization. J. Geochem. Explor. 1981, 16, 21–26. [Google Scholar] [CrossRef]
- Porter, E.; Peterson, P.J. Arsenic tolerance in grasses growing on mine waste. Environ. Pollut. 1977, 14, 255–265. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Manzano, R.; Esteban, E.; Peñalosa, J. The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): Mobility and transfer to native flora. J. Soils Sed. 2010, 10, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Wanat, N.; Joussein, E.; Soubrand, M.; Lenain, J.F. Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: A case study of transfer to natural vegetation cover in temperate climates. Environ. Geochem. Health. 2014, 36, 783–795. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils—Findings from the field and greenhouse studies. Chemosphere 2020, 248, 126045. [Google Scholar] [CrossRef]
Mining Center | Area No | Description of Area, Settings | Soil Properties (Fine Soil) * | |||
---|---|---|---|---|---|---|
pH | As, mg/kg | |||||
Total | HNO3-Extract. | NH4NO3-Extract. | ||||
Złoty Stok (German: Reichenstein) | 1 | The Orchid Dump. A 2.4 ha large dump built of mine waste, covered ca. 50 years ago with a layer of humus-rich soil. It owes its name to a large population of Orchis mascula L. growing there [52,53] | 3.14–5.81 | 751–48,900 | 42–10,500 | 0.08–4.88 |
2 | Hay meadows (ca. 6.0 ha) in a floodplain of the Trująca river, flooded periodically in the past by stormwater mixed with tailings [41] | 3.53–6.66 | 102–6070 | 74–3650 | 0.30–6.04 | |
3 | Foreland of tailings impoundment, a ca. 2 m-elevated plain area (1.6 ha) built of tailings [42]; dry, unmaintained grassland | 7.22–7.60 | 7950–22,700 | 4710–9860 | 6.65–12.7 | |
4 | Deep valley in a forested area, with spread dumps of mine wastes and heaps of slag disposed in medieval times by local smelting works [54] | 3.43–4.89 | 1950–16,700 | 830–5090 | 1.45–1.52 | |
Radzimowice (German: Altenberg) | 5 | Dumps of gangue rocks disposed at the Arnold shaft–A part of the Wilhelm mine that operated until 1925. Polymetallic veins of hydrothermal origin were exploited to acquire metals, mainly Fe, Cu, Pb and As [40] | 2.90–7.26 | 1550–14,300 | 690–3320 | 0.20–1.56 |
6 | Forested area affected by acid mine and rock drainage (AMD and ARD) form Arnold shaft (Wilhelm mine) [55,56] | 2.91–4.55 | 2480–193,000 | 650–18,900 | 0.04–27.5 | |
7 | Hay meadows in the surroundings of two shafts of the Wilhelm mine. Soils contain admixtures of mine waste rocks. Additionally, they were polluted by the emissions from a local smelter that operated until 1925 [40] | 3.60–4.39 | 73–603 | 5–78 | 0.02–0.67 | |
Czarnow (German: Rothenzechau) | 8 | Dumps disposed by the Evelinensgluck mine that operated until 1925, and their close surroundings, partly forested, partly used as meadows and pastures [52,57,58] | 2.88–7.43 | 72–98,500 | 4–6570 | 0.05–38.7 |
As Parameter | Soil Parameters | ||
---|---|---|---|
Total As, mg/kg | pH | “Bioavailable” P | |
0.43M HNO3-extractable As, mg/kg | 0.835 *** | 0.316 *** | 0.811 *** |
1M NH4NO3-extractable As, mg/kg | 0.726 *** | 0.449 *** | 0.786 *** |
1M NH4NO3-extractable As, % of total | −0.445 *** | 0.275 ** | −0.057 |
Parameter of As Uptake by Plants | Soil Parameters | |||||
---|---|---|---|---|---|---|
Total As, mg/kg | 0.43M HNO3-Extractable As, mg/kg | 1M NH4NO3-Extractable As, mg/kg | pH | “Bio-Available” P, mg/kg | 1M NH4NO3-Extractable As, % of Total | |
As in shoots, mg/kg | 0.640 *** | 0.584 *** | 0.599 *** | 0.430 *** | 0.404 *** | −0.187 * |
As in roots, mg/kg | 0.645 *** | 0.576 *** | 0.503 *** | 0.427 *** | 0.485 *** | −0.227 ** |
TF | −0.274 ** | −0.207 * | −0.122 | −0.116 | −0.167 * | 0.223 ** |
BAF–shoots | −0.674 *** | −0.549 *** | −0.379 ** | −0.133 | −0.338 ** | 0.368 *** |
BAF–roots | −0.361 *** | −0.287 ** | −0.223 ** | −0.046 | −0.188 * | 0.193 |
BCF–shoots | −0.277 ** | −0.481 ** | −0.641 *** | −0.282 ** | −0.473 *** | −0.471 *** |
BCF–roots | −0.016 | −0.202 ** | −0.531 *** | −0.101 | −0.234 ** | −0.531 *** |
Species | Shoot BAF | Shoot BCF | Root BAF | Root BCF | ||||
---|---|---|---|---|---|---|---|---|
Range | Median | Range | Median | Range | Median | Range | Median | |
Acer platanoides | <0.001–0.014 | 0.001 | 1.3–103 | 3.4 | 0.001–0.131 | 0.020 | 7.2–410 | 45 |
Picea abies | <0.001–0.006 | <0.001 | 0.4–8.3 | 4.5 | <0.002–0.018 | 0.004 | 1.1–32.8 | 19 |
Holcus lanatus | <0.001–0.066 | 0.005 | 0.7–206 | 7.9 | 0.002–0.624 | 0.051 | 3.7–2910 | 78 |
Festuca rubra | <0.001–0.174 | 0.003 | <0.1–284 | 4.9 | <0.001–0.355 | 0.018 | 15.4–217 | 106 |
Agrostis capillaris | <0.001–0.116 | 0.005 | <0.1–74 | 6.4 | <0.001–0.885 | 0.054 | <0.1–8290 | 49 |
Deschampsia flexuosa | <0.001–0.015 | 0.001 | 1.3–1120 | 6.3 | <0.001–0.025 | 0.002 | 0.5–1350 | 10 |
Calamagrostis epigejos | 0.002–0.179 | 0.005 | 0.9–204 | 10.0 | 0.006–1.13 | 0.062 | 7.9–2790 | 49 |
Calamagrostis arundin. | 0.001–0.001 | 0.001 | 0.8–9.7 | 5.9 | 0.004–0.052 | 0.009 | 22.7–114 | 46 |
Lotus corniculatus | <0.001–0.164 | 0.005 | 1.4–51 | 4.5 | 0.001–0.164 | 0.059 | 7.3–1360 | 14 |
Trifolium pretense | 0.001–0.062 | 0.004 | 0.8–265 | 12.4 | 0.021–0.065 | 0.033 | 15.4–217 | 107 |
Silene vulgaris | 0.001–0.005 | 0.002 | 1.3–12 | 5.4 | 0.004–0.063 | 0.018 | 6.3–170 | 29 |
Dryopteris spp. | <0.001–0.105 | 0.002 | 2.7–1210 | 10.8 | <0.001–0.069 | 0.003 | 2.9–283 | 22 |
Equisetum spp. | <0.001–0.047 | 0.008 | 1.2–96.6 | 15.3 | 0.001–0.135 | 0.019 | 0.7–347 | 79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dradrach, A.; Karczewska, A.; Szopka, K.; Lewińska, K. Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland. Int. J. Environ. Res. Public Health 2020, 17, 3342. https://doi.org/10.3390/ijerph17093342
Dradrach A, Karczewska A, Szopka K, Lewińska K. Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland. International Journal of Environmental Research and Public Health. 2020; 17(9):3342. https://doi.org/10.3390/ijerph17093342
Chicago/Turabian StyleDradrach, Agnieszka, Anna Karczewska, Katarzyna Szopka, and Karolina Lewińska. 2020. "Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland" International Journal of Environmental Research and Public Health 17, no. 9: 3342. https://doi.org/10.3390/ijerph17093342
APA StyleDradrach, A., Karczewska, A., Szopka, K., & Lewińska, K. (2020). Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland. International Journal of Environmental Research and Public Health, 17(9), 3342. https://doi.org/10.3390/ijerph17093342