Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO2 Emission for BRICS
Abstract
:1. Introduction
2. Data Collection and Methodology
2.1. Model Specification
2.2. Sample Set and Description
3. Empirical Results and Discussions
3.1. Graphical Analysis
3.2. Preliminary Testing for Panel Analysis
3.3. Empirical Analysis and Results Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hübler, M.; Baumstark, L.; Leimbach, M.; Edenhofer, O.; Bauer, N. An Integrated Assessment Model with Endogenous Growth. Ecol. Econ. 2012, 83, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Yang, T.; Zhang, M. Research on the Impact of Environmental Regulation on Enterprise Technology Innovation—An Empirical Analysis Based on Chinese Provincial Panel Data. Environ. Sci. Pollut. Res. 2019, 26, 21835–21848. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Jiang, Y.; Wang, S. Innovation Stages, Knowledge Spillover, and Green Economy Development: Moderating Role of Absorptive Capacity and Environmental Regulation. Environ. Sci. Pollut. Res. 2019, 26, 25312–25325. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulali, U.; Sheau-Ting, L.; Ozturk, I. The Global Move toward Internet Shopping and Its Influence on Pollution: An Empirical Analysis. Environ. Sci. Pollut. Res. 2015, 22, 9717–9727. [Google Scholar] [CrossRef] [PubMed]
- Gelenbe, E.; Caseau, Y. The Impact of Information Technology on Energy Consumption and Carbon Emissions. Ubiquity 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K. Smart Energy Systems for Coherent 100% Renewable Energy and Transport Solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Ishida, H. The Effect of ICT Development on Economic Growth and Energy Consumption in Japan. Telemat. Inform. 2015, 32, 79–88. [Google Scholar] [CrossRef]
- Van Heddeghem, W.; Lambert, S.; Lannoo, B.; Colle, D.; Pickavet, M.; Demeester, P. Trends in Worldwide ICT Electricity Consumption from 2007 to 2012. Comput. Commun. 2014, 50, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Asongu, S.A.; Le Roux, S.; Biekpe, N. Enhancing ICT for Environmental Sustainability in Sub-Saharan Africa. Technol. Forecast. Soc. Chang. 2018, 127, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Houghton, J.W. ICT and the environment in developing countries: A review of opportunities and developments. In What Kind of Information Society? Governance, Virtuality, Surveillance, Sustainability, Resilience; Springer: Berlin, Germany, 2010; pp. 236–247. [Google Scholar]
- Cavallaro, F.; Danielis, R.; Nocera, S.; Rotaris, L. Should BEVs Be Subsidized or Taxed? A European Perspective Based on the Economic Value of CO2 Emissions. Transp. Res. Part D Transp. Environ. 2018, 64, 70–89. [Google Scholar] [CrossRef]
- Yang, L.; Xu, M.; Yang, Y.; Fan, J.; Zhang, X. Comparison of Subsidy Schemes for Carbon Capture Utilization and Storage (CCUS) Investment Based on Real Option Approach: Evidence from China. Appl. Energy 2019, 255, 113828. [Google Scholar] [CrossRef]
- Nocera, S.; Tonin, S. A Joint Probability Density Function for Reducing the Uncertainty of Marginal Social Cost of Carbon Evaluation in Transport Planning. In Computer-Based Modelling and Optimization in Transportation; de Sousa, J.F., Rossi, R., Eds.; Springer: Cham, Switzerland, 2014; pp. 113–126. [Google Scholar]
- Higón, D.A.; Gholami, R.; Shirazi, F. ICT and Environmental Sustainability: A Global Perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Amri, F. Carbon Dioxide Emissions, Total Factor Productivity, ICT, Trade, Financial Development, and Energy Consumption: Testing Environmental Kuznets Curve Hypothesis for Tunisia. Environ. Sci. Pollut. Res. 2018, 25, 33691–33701. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Xia, E.; Saud, S.; Ahmad, A.; Khurshid, H. Does Information and Communication Technologies Improve Environmental Quality in the Era of Globalization? An Empirical Analysis. Environ. Sci. Pollut. Res. 2019, 26, 8594–8608. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.; Erdmann, L. Expected Environmental Impacts of Pervasive Computing. Hum. Ecol. Risk Assess. 2004, 10, 831–852. [Google Scholar] [CrossRef]
- Beton, A.; Abbayes, C.; Iyama, S.; Stobbe, L.; Gallehr, S.; Scheidt, L.G. Impacts of Information and Communication Technologies on Energy Efficiency; European Commission DG INFSO: Brussels, Belgium, 2008. [Google Scholar]
- Rejeski, D. E-Commerce, the Internet, and the Environment. J. Ind. Ecol. 2002, 6, 1–3. [Google Scholar] [CrossRef]
- Romm, J.; Rosenfeld, A.; Herrmann, S. The Internet Economy and Global Warming; The Center for Energy and Climate Solutions: Arlington, VA, USA, 1999. [Google Scholar]
- Kuhndt, M.; von Geibler, J.; Herrndorf, M. Assessing the ICT Sector Contribution to the Millennium Development Goals: Status Quo Analysis of Sustainability Information for the ICT Sector; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2006. [Google Scholar]
- Yao, X.-N.; Liu, J.-Y. The Potential of Economic Growth and Technology Advancement in the BRICs. In Proceedings of the IEEE 2011 International Conference on Machine Learning and Cybernetics, Guilin, China, 10–13 July 2011; pp. 1067–1071. [Google Scholar]
- Adedoyin, F.F.; Zakari, A. Energy Consumption, Economic Expansion, and CO2 Emission in the UK: The Role of Economic Policy Uncertainty. Sci. Total Environ. 2020, 738, 140014. [Google Scholar] [CrossRef]
- Ol’ga, V.B.; Matiukhina, A.I. ICT Services Trade in the BRICS Countries: Special and Common Features. J. Knowl. Econ. 2019, 10, 1080–1097. [Google Scholar]
- Dauda, L.; Long, X.; Mensah, C.N.; Salman, M. The Effects of Economic Growth and Innovation on CO2 Emissions in Different Regions. Environ. Sci. Pollut. Res. 2019, 26, 15028–15038. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Qiu, S.; Zhu, L. Effects of Environmental Regulations on Technological Innovation Efficiency in China’s Industrial Enterprises: A Spatial Analysis. Sustainability 2019, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 14 September 2020).
- Salam, S.; Hafeez, M.; Mahmood, M.T.; Akbar, K. The Dynamic Relation between Technology Adoption, Technology Innovation, Human Capital and Economy: Comparison of Lower-Middle-Income Countries. Interdiscip. Descr. Complex Syst. 2019, 17, 146–161. [Google Scholar] [CrossRef]
- Hafeez, M.; Chunhui, Y.; Strohmaier, D.; Ahmed, M.; Jie, L. Does Finance Affect Environmental Degradation: Evidence from One Belt and One Road Initiative Region? Environ. Sci. Pollut. Res. 2018, 25, 9579–9592. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, M.; Alam, K. Information and Communication Technology, Electricity Consumption and Economic Growth in OECD Countries: A Panel Data Analysis. Int. J. Electr. Power Energy Syst. 2016, 76, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-O.; Hong, A.; Hwang, J. ICT Diffusion as a Determinant of Human Progress. Inf. Technol. Dev. 2017, 23, 687–705. [Google Scholar] [CrossRef]
- Ioannides, Y.M.; Overman, H.G.; Rossi-Hansberg, E.; Schmidheiny, K. The Effect of Information and Communication Technologies on Urban Structure. Econ. Policy 2008, 23, 202–242. [Google Scholar] [CrossRef] [Green Version]
- Yasmeen, R.; Li, Y.; Hafeez, M. Tracing the Trade–Pollution Nexus in Global Value Chains: Evidence from Air Pollution Indicators. Environ. Sci. Pollut. Res. 2019, 26, 5221–5233. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, C.; Hafeez, M.; Yuan, Q. The Relationship between Environment and Logistics Performance: Evidence from Asian Countries. J. Clean. Prod. 2018, 204, 282–291. [Google Scholar] [CrossRef]
- Yao, X.; Yasmeen, R.; Li, Y.; Hafeez, M.; Padda, I.U.H. Free Trade Agreements and Environment for Sustainable Development: A Gravity Model Analysis. Sustainability 2019, 11, 597. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, M.; Yuan, C.; Shahzad, K.; Aziz, B.; Iqbal, K.; Raza, S. An Empirical Evaluation of Financial Development-Carbon Footprint Nexus in One Belt and Road Region. Environ. Sci. Pollut. Res. 2019, 26, 25026–25036. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic Growth, Energy, and Environmental Kuznets Curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of Foreign Direct Investments, Economic Development and Energy Consumption on Greenhouse Gas Emissions in Developing Countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, J.C.; Kraay, A.C. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, T.; You, J. Nonparametric Fixed Effects Model for Panel Data with Locally Stationary Regressors. J. Econom. 2018, 202, 286–305. [Google Scholar] [CrossRef]
- Hafeez, M.; Yuan, C.; Yuan, Q.; Zhuo, Z.; Stromaier, D. A Global Prospective of Environmental Degradations: Economy and Finance. Environ. Sci. Pollut. Res. 2019, 26, 25898–25915. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, R.; Li, Y.; Hafeez, M.; Ahmad, H. The Trade-Environment Nexus in Light of Governance: A Global Potential. Environ. Sci. Pollut. Res. 2018, 25, 34360–34379. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-W.; Umar, M.; Khan, Z. Does Fiscal Decentralization and Eco-Innovation Promote Renewable Energy Consumption? Analyzing the Role of Political Risk. Sci. Total Environ. 2021, 751, 142220. [Google Scholar] [CrossRef]
- Pesaran, H.M. General Diagnostic Tests for Cross-Sectional Dependence in Panels. Univ. Camb. Camb. Work. Pap. Econ. 2004, 435. [Google Scholar] [CrossRef]
- Chavanne, X.; Schinella, S.; Marquet, D.; Frangi, J.P.; Le Masson, S. Electricity Consumption of Telecommunication Equipment to Achieve a Telemeeting. Appl. Energy 2015, 137, 273–281. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hamano, J.; Tamura, T.; Iguchi, H. Impacts of Ubiquitous Society on the Global Warming Problem in 2010. In Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment, New Orleans, LA, USA, 16–19 May 2005; pp. 183–188. [Google Scholar]
- Rauf, A.; Liu, X.; Amin, W.; Ozturk, I.; Rehman, O.U.; Hafeez, M. Testing EKC Hypothesis with Energy and Sustainable Development Challenges: A Fresh Evidence from Belt and Road Initiative Economies. Environ. Sci. Pollut. Res. 2018, 25, 32066–32080. [Google Scholar] [CrossRef]
- Cao, Y.-H.; You, J.-X.; Liu, H.-C. Optimal Environmental Regulation Intensity of Manufacturing Technology Innovation in View of Pollution Heterogeneity. Sustainability 2017, 9, 1240. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The Effects of Electricity Consumption, Economic Growth, Financial Development and Foreign Direct Investment on CO2 Emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, M.; Yuan, C.; Khelfaoui, I.; Musaad, O.A.S.; Waqas Akbar, M.; Jie, L. Evaluating the Energy Consumption Inequalities in the One Belt and One Road Region: Implications for the Environment. Energies 2019, 12, 1358. [Google Scholar] [CrossRef] [Green Version]
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
LCE | 145 | 1.325 | 0.933 | −0.34 | 2.638 |
LEPC | 145 | 7.597 | 0.956 | 5.61 | 8.806 |
LFB | 145 | −0.125 | 2.534 | −7.439 | 3.29 |
LFT | 145 | 2.207 | 1.027 | −0.539 | 3.46 |
LG | 145 | 27.804 | 0.909 | 26.099 | 29.95 |
LHTE | 145 | 2.233 | 0.546 | 1.372 | 3.429 |
LMC | 145 | 1.792 | 3.48 | −8.504 | 5.112 |
TRO | 145 | 3.648 | 0.416 | 2.719 | 4.706 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
(1) LCE | 1.000 | |||||||
(2) LEPC | 0.921 | 1.000 | ||||||
(3) LFB | 0.379 | 0.395 | 1.000 | |||||
(4) LFT | 0.636 | 0.8 | 0.482 | 1.000 | ||||
(5) LG | −0.181 | −0.14 | 0.391 | 0.297 | 1.000 | |||
(6) LHTE | 0.198 | 0.189 | 0.395 | 0.572 | 0.752 | 1.000 | ||
(7) LMC | 0.204 | 0.29 | 0.559 | 0.459 | 0.315 | 0.281 | 1.000 | |
(8) TRO | 0.715 | 0.528 | 0.364 | 0.331 | −0.095 | 0.198 | 0.395 | 1.000 |
Cross-Sectional Dependence (CD) Test | Cross-Sectional Dependence (Based on Residuals) | ||||
---|---|---|---|---|---|
Null hypothesis: cross-section are independent | Null hypothesis: errors of the cross-section are independent | ||||
Variable | CD-stats | Variable | CD-stats | ||
LCE | 7.326 * | LG | 15.423 * | Pesaran’s test | −2.596 * |
(0.00) | (0.00) | (0.0094) | |||
LEPC | 9.548 * | LG2 | 15.444 * | Friedman’s test | 12.756 ** |
(0.00) | (0.00) | (0.0125) | |||
LFB | 11.258 * | LHTE | 2.927 * | Frees’ test | 0.450 * |
(0.00) | (0.003) | Critical values from Frees’ Q distribution | |||
LFT | 9.621 * | LMC | 16.072 * | alpha = 0.10 | 0.0892 |
(0.00) | (0.00) | alpha = 0.05 | 0.1160 | ||
TRO | 8.159 * | alpha = 0.01 | 0.1660 | ||
(0.00) |
LCE | LFT | LMC | LFB | LHTE | LEPC | LG | LG2 | TRO | |
---|---|---|---|---|---|---|---|---|---|
LCE (−1) | 0.513 a | ||||||||
LFT (−1) | 0.474 a | ||||||||
LMC (−1) | 0.531 a | ||||||||
LFB (−1) | 0.437 a | ||||||||
LHTE (−1) | 0.527 a | ||||||||
LEPC (−1) | 0.546 a | ||||||||
LG(−1) | 0.808 a | ||||||||
LG2(−1) | 0.795 a | ||||||||
TRO(−1) | 0.359 a | ||||||||
Wald Test | |||||||||
Chi2 | 123.58 a | 135.17 a | 116.65 a | 185.88 a | 126.62 a | 91.68 a | 12.53 a | 13.92 a | 166.99 a |
Technology Innovation Model | ||||
---|---|---|---|---|
Variables | LFT Model | LMC Model | LFB Model | All |
LFT | 0.502 * (0.00) | - | - | 0.534 * (0.00) |
LMC | - | −0.1835 (0.519) | - | −0.079 * (0.00) |
LFB | - | - | 0.084 *** (0.09) | 0.056 ** (0.04) |
LG | −6.442 * (0.004) | −7.587 * (0.00) | −6.636 * (0.00) | −6.860 * (0.00) |
LG2 | 0.110 * (0.006) | 0.134 * (0.00) | 0.1152 * (0.00) | 0.118 * (0.00) |
TRO | 1.057 * (0.00) | 1.555 * (0.00) | 1.293 * (0.00) | 1.166 * (0.00) |
Constant | 90.178 * (0.00) | 102.465 * (0.00) | 91.930 * (0.00) | 95.283 * (0.00) |
R2 | 0.7838 | 0.5492 | 0.5818 | 0.8379 |
RMSE | 0.4401 | 0.6354 | 0.6120 | 0.3838 |
F-Stats | 149.57 (0.00) | 154.87 (0.00) | 200.95 (0.00) | 72.67 (0.00) |
BRICS | 5 | 5 | 5 | 5 |
Observation | 145 | 145 | 145 | 145 |
Newey–West standard error method | ||||
LFT | 0.502 * (0.00) | - | - | 0.534 * (0.00) |
LMC | - | −0.0183 (0.375) | - | −0.079 * (0.00) |
LFB | - | - | 0.084 * (0.003) | 0.056 * (0.001) |
LG | −6.44 * (0.00) | −7.587 * (0.00) | −6.636 * (0.001) | −6.86 * (0.00) |
LG2 | 0.110 * (0.00) | 0.134 * (0.00) | 0.115 * (0.001) | 0.118 * (0.00) |
TRO | 1.057 * (0.00) | 1.555 * (0.00) | 1.293 * (0.00) | 1.166 * (0.00) |
Constant | 90.17 * (0.00) | 102.46 * (0.00) | 91.93 * (0.001) | 95.28 * (0.00) |
F-Stats | 192.59 (0.00) | 117.89 (0.00) | 92.61(0.00) | 146.46 (0.00) |
BRICS | 5 | 5 | 5 | 5 |
Observation | 145 | 145 | 145 | 145 |
Technology Adoption Model | |||
---|---|---|---|
Variables | LHTE Model | LEPC Model | All |
LHTE | 0.619 * (0.001) | - | 0.118 *** (0.1) |
LEPC | - | 0.721 * (0.00) | 0.701 * (0.00) |
LG | −5.43 * (0.002) | −3.044 * (0.002) | −2.756 ** (0.011) |
LG2 | 0.09 * (0.005) | 0.053 * (0.003) | 0.047 ** (0.016) |
TRO | 1.297 * (0.00) | 0.683 * (0.00) | 0.661 * (0.00) |
Constant | 76.486 * (0.002) | 36.354 * (0.007) | 33.06 ** (0.02) |
R2 | 0.5912 | 0.9271 | 0.9287 |
RMSE | 0.6051 | 0.2555 | 0.2537 |
F-Stats | 151.86 (0.00) | 1020.35 (0.00) | 447.20 (0.00) |
BRICS | 5 | 5 | 5 |
Observation | 145 | 145 | 145 |
Newey–West standard error method | |||
LHTE | 0.619 * (0.00) | - | 0.118** (0.04) |
LEPC | - | 0.72 * (0.00) | 0.701 * (0.00) |
LG | −5.43 * (0.002) | - | −2.756 * (0.001) |
LG2 | 0.09 * (0.004) | −3.044 * (0.00) | 0.047 * (0.002) |
TRO | 1.297 * (0.00) | 0.683 * (0.00) | 0.661 * (0.00) |
Constant | 76.48 * (0.003) | 36.35 * (0.00) | 33.06 * (0.00) |
F-Stats | 105.38 (0.00) | 538.88 (0.00) | 504.71(0.00) |
BRICS | 5 | 5 | 5 |
Observation | 145 | 145 | 145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.-W.; Xie, Y.; Shahab, S.; Faisal, C.M.N.; Hafeez, M.; Qamri, G.M. Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO2 Emission for BRICS. Int. J. Environ. Res. Public Health 2021, 18, 277. https://doi.org/10.3390/ijerph18010277
Su C-W, Xie Y, Shahab S, Faisal CMN, Hafeez M, Qamri GM. Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO2 Emission for BRICS. International Journal of Environmental Research and Public Health. 2021; 18(1):277. https://doi.org/10.3390/ijerph18010277
Chicago/Turabian StyleSu, Chi-Wei, Yannong Xie, Sadaf Shahab, Ch. Muhammad Nadeem Faisal, Muhammad Hafeez, and Ghulam Muhammad Qamri. 2021. "Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO2 Emission for BRICS" International Journal of Environmental Research and Public Health 18, no. 1: 277. https://doi.org/10.3390/ijerph18010277
APA StyleSu, C. -W., Xie, Y., Shahab, S., Faisal, C. M. N., Hafeez, M., & Qamri, G. M. (2021). Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO2 Emission for BRICS. International Journal of Environmental Research and Public Health, 18(1), 277. https://doi.org/10.3390/ijerph18010277