Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model
Abstract
:1. Introduction
2. Literature
3. Case Study
4. Methodology
4.1. The Indicator System for Evaluation of Economic Development and Environmental Quality
4.2. Data Pre-Processing
4.3. The Entropy Weight Method (EWM)
4.4. The Coupling Coordination Degree Model (CCDM)
5. Results
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
City | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.702 | 0.759 | 0.731 | 0.786 | 0.849 | 0.868 | 0.799 | 0.895 | 0.898 | 0.875 | 0.816 |
Chongqing | 0.634 | 0.627 | 0.606 | 0.682 | 0.739 | 0.769 | 0.671 | 0.766 | 0.77 | 0.716 | 0.7 |
Shanghai | 0.705 | 0.741 | 0.712 | 0.771 | 0.827 | 0.854 | 0.782 | 0.876 | 0.861 | 0.866 | 0.793 |
Tianjin | 0.719 | 0.701 | 0.692 | 0.77 | 0.818 | 0.839 | 0.76 | 0.853 | 0.827 | 0.82 | 0.74 |
Chaozhou | 0.545 | 0.545 | 0.529 | 0.605 | 0.636 | 0.643 | 0.554 | 0.626 | 0.612 | 0.581 | 0.544 |
Dongguan | 0.88 | 0.865 | 0.86 | 0.848 | 0.85 | 0.855 | 0.748 | 0.879 | 0.881 | 0.806 | 0.868 |
Foshan | 0.69 | 0.693 | 0.667 | 0.771 | 0.789 | 0.805 | 0.724 | 0.834 | 0.811 | 0.8 | 0.732 |
Guangzhou | 0.757 | 0.774 | 0.75 | 0.808 | 0.856 | 0.897 | 0.814 | 0.928 | 0.911 | 0.883 | 0.812 |
Heyuan | 0.507 | 0.539 | 0.535 | 0.536 | 0.556 | 0.559 | 0.535 | 0.642 | 0.558 | 0.645 | 0.624 |
Huizhou | 0.624 | 0.655 | 0.643 | 0.695 | 0.762 | 0.79 | 0.696 | 0.789 | 0.774 | 0.758 | 0.693 |
Jiangmen | 0.6 | 0.609 | 0.624 | 0.657 | 0.717 | 0.735 | 0.638 | 0.746 | 0.686 | 0.732 | 0.652 |
Jieyang | 0.554 | 0.513 | 0.527 | 0.538 | 0.564 | 0.576 | 0.492 | 0.505 | 0.489 | 0.53 | 0.524 |
Maoming | 0.524 | 0.512 | 0.488 | 0.57 | 0.627 | 0.64 | 0.585 | 0.661 | 0.619 | 0.575 | 0.601 |
Meizhou | 0.504 | 0.505 | 0.491 | 0.536 | 0.564 | 0.56 | 0.491 | 0.572 | 0.506 | 0.591 | 0.501 |
Qingyuan | 0.586 | 0.564 | 0.573 | 0.543 | 0.601 | 0.627 | 0.549 | 0.641 | 0.586 | 0.642 | 0.562 |
Shantou | 0.555 | 0.559 | 0.544 | 0.607 | 0.627 | 0.628 | 0.784 | 0.661 | 0.681 | 0.646 | 0.609 |
Shanwei | 0.521 | 0.514 | 0.502 | 0.561 | 0.606 | 0.596 | 0.504 | 0.561 | 0.524 | 0.58 | 0.58 |
Shaoguan | 0.571 | 0.576 | 0.56 | 0.625 | 0.635 | 0.664 | 0.583 | 0.675 | 0.637 | 0.669 | 0.613 |
Shenzhen | 0.785 | 0.815 | 0.808 | 0.861 | 0.907 | 0.929 | 0.832 | 0.939 | 0.889 | 0.885 | 0.787 |
Yangjiang | 0.56 | 0.542 | 0.561 | 0.598 | 0.665 | 0.697 | 0.587 | 0.674 | 0.649 | 0.667 | 0.652 |
Yunfu | 0.458 | 0.461 | 0.458 | 0.481 | 0.496 | 0.543 | 0.496 | 0.55 | 0.537 | 0.542 | 0.55 |
Zhanjiang | 0.525 | 0.544 | 0.534 | 0.574 | 0.597 | 0.617 | 0.587 | 0.655 | 0.647 | 0.683 | 0.623 |
Zhaoqing | 0.559 | 0.547 | 0.582 | 0.629 | 0.645 | 0.643 | 0.569 | 0.647 | 0.609 | 0.648 | 0.641 |
Zhongshan | 0.671 | 0.674 | 0.649 | 0.748 | 0.795 | 0.792 | 0.709 | 0.821 | 0.763 | 0.729 | 0.676 |
Zhuhai | 0.692 | 0.712 | 0.7 | 0.778 | 0.832 | 0.859 | 0.771 | 0.869 | 0.857 | 0.829 | 0.772 |
Ezhou | 0.571 | 0.546 | 0.529 | 0.626 | 0.674 | 0.675 | 0.585 | 0.667 | 0.665 | 0.712 | 0.59 |
Huanggang | 0.525 | 0.5 | 0.467 | 0.476 | 0.487 | 0.534 | 0.493 | 0.57 | 0.551 | 0.623 | 0.551 |
Huangshi | 0.554 | 0.555 | 0.494 | 0.587 | 0.654 | 0.674 | 0.582 | 0.648 | 0.644 | 0.688 | 0.633 |
Jingmen | 0.568 | 0.53 | 0.526 | 0.564 | 0.624 | 0.669 | 0.575 | 0.668 | 0.644 | 0.671 | 0.622 |
Jingzhou | 0.472 | 0.453 | 0.462 | 0.503 | 0.526 | 0.484 | 0.456 | 0.559 | 0.578 | 0.624 | 0.521 |
Shiyan | 0.557 | 0.594 | 0.595 | 0.606 | 0.637 | 0.664 | 0.559 | 0.671 | 0.667 | 0.707 | 0.656 |
Suizhou | 0.532 | 0.555 | 0.553 | 0.614 | 0.639 | 0.664 | 0.592 | 0.68 | 0.654 | 0.713 | 0.63 |
Wuhan | 0.698 | 0.695 | 0.682 | 0.75 | 0.8 | 0.826 | 0.753 | 0.851 | 0.84 | 0.842 | 0.735 |
Xianning | 0.484 | 0.468 | 0.52 | 0.584 | 0.605 | 0.659 | 0.535 | 0.617 | 0.652 | 0.648 | 0.577 |
Xiangfan | 0.603 | 0.598 | 0.555 | 0.646 | 0.679 | 0.71 | 0.635 | 0.713 | 0.683 | 0.732 | 0.659 |
Xiaogan | 0.516 | 0.483 | 0.467 | 0.485 | 0.607 | 0.622 | 0.513 | 0.6 | 0.577 | 0.644 | 0.607 |
Yichang | 0.59 | 0.597 | 0.573 | 0.642 | 0.662 | 0.683 | 0.628 | 0.714 | 0.707 | 0.722 | 0.662 |
Accidentally and Coordination Degree | Accidentally and Coordination Degree Grade | Accidentally and Coordination Degree Level |
---|---|---|
(0.0~0.1) | 1 | Extreme disorder |
[0.1~0.2) | 2 | Severe disorder |
[0.2~0.3) | 3 | Moderate disorder |
[0.3~0.4) | 4 | Mild disorder |
[0.4~0.5) | 5 | Endangered disorder |
[0.5~0.6) | 6 | Some coordination |
[0.6~0.7) | 7 | Primary coordination |
[0.7~0.8) | 8 | Moderate coordination |
[0.8~0.9) | 9 | Good coordination |
[0.9~1.0) | 10 | Extreme coordination |
References
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China–Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Miao, L.; Gu, H.; Zhang, X.; Zhen, W.; Wang, M. Factors causing regional differences in China’s residential CO2 emissions—evidence from provincial data. J. Clean. Prod. 2019, 224, 852–863. [Google Scholar] [CrossRef]
- Zang, J.; Wan, L.; Li, Z.; Wang, C.; Wang, S. Does emission trading scheme have spillover effect on industrial structure upgrading? Evidence from the EU based on a PSM-DID approach. Environ. Sci. Pollut. Res. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Jiang, J.; Miao, L.; Li, J.; Peng, Y. Innovative carbon allowance allocation policy for the Shenzhen emission trading scheme in China. Sustainability 2015, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Narassimhan, E.; Gallagher, K.S.; Koester, S.; Alejo, J.R. Carbon pricing in practice: A review of existing emissions trading systems. Clim. Policy 2018, 18, 967–991. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Dai, H.; Ren, S.; Zhao, D.; Masui, T. Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China. Energy 2015, 79, 212–227. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X.; Zhang, J.; Li, K. Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story. Energy Policy 2020, 138, 111282. [Google Scholar] [CrossRef]
- Ren, S.; Hu, Y.; Zheng, J.; Wang, Y. Emissions trading and firm innovation: Evidence from a natural experiment in China. Technol. Forecast. Soc. Chang. 2020, 155, 119989. [Google Scholar] [CrossRef]
- Hou, B.; Wang, B.; Du, M.; Zhang, N. Does the SO2 emissions trading scheme encourage green total factor productivity? An empirical assessment on China’s cities. Environ. Sci. Pollut. Res. 2020, 27, 6375–6388. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a north American free trade agreement. Natl. Bur. Econ. Res. Work. Pap. 1991. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shi, J.; Wu, Q. Environmental Kuznets Curve: Empirical Relationship between Energy Consumption and Economic Growth in Upper-Middle-Income Regions of China. Int. J. Environ. Res. Public Health 2020, 17, 6971. [Google Scholar] [CrossRef] [PubMed]
- Friedl, B.; Getzner, M. Determinants of CO2 emissions in a small open economy. Ecol. Econ. 2003, 45, 133–148. [Google Scholar] [CrossRef]
- Onafowora, O.A.; Owoye, O. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Econ. 2014, 44, 47–62. [Google Scholar] [CrossRef]
- Zhu, R.; Zhao, M.; Xue, J. Industrial transfer, economic growth and environmental pollution: An inspiration from the Environmental Kuznets Curve. Ecol. Econ. 2018, 34, 68–73. [Google Scholar]
- Li, C. Applicability of environmental Kuznets curve to Beijing. Urban Probl. 2017, 4, 34–40. [Google Scholar]
- Wu, Y.; Zhang, Y. Research on the Coupling and Coordinative Development of China’s Regional Economic Growth and Environment. Resour. Sci. 2008, 1, 25–30. [Google Scholar]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Dang, V.T.; Wang, J.; Dang, W.V.T. An integrated fuzzy AHP and fuzzy TOPSIS approach to assess sustainable urban development in an emerging economy. Int. J. Environ. Res. Public Health 2019, 16, 2902. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yi, P. Assessment of city sustainability—Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Tran, L. An interactive method to select a set of sustainable urban development indicators. Ecol. Indic. 2016, 61, 418–427. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.; Song, X. Association analysis of the coupling between regional urbanization and ecological environment in China. Acta Geogr. Sin. 2005, 2, 237–247. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Duan, M. Cap setting and allowance allocation in China’s emissions trading pilot programmes: Special issues and innovative solutions. Clim. Policy 2016, 16, 815–835. [Google Scholar] [CrossRef]
- Yu, Z.; Geng, Y.; Dai, H.; Wu, R.; Liu, Z.; Tian, X.; Bleischwitz, R. A general equilibrium analysis on the impacts of regional and sectoral emission allowance allocation at carbon trading market. J. Clean. Prod. 2018, 192, 421–432. [Google Scholar] [CrossRef]
- Stavins, R.N. What can we learn from the grand policy experiment? Lessons from SO2 allowance trading. J. Econ. Perspect. 1998, 12, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Jiang, J.; Miao, L.; Xie, D. Interprovincial allocation of China’s national carbon emission allowance: An uncertainty analysis based on Monte-Carlo simulations. Clim. Policy 2017, 17, 401–422. [Google Scholar] [CrossRef]
- Jotzo, F.; Löschel, A. Emissions trading in China: Emerging experiences and international lessons. Energy Policy 2014, 75, 3–8. [Google Scholar] [CrossRef]
- Wu, X.; Gao, M.; Guo, S.; Maqbool, R. Environmental and economic effects of sulfur dioxide emissions trading pilot scheme in China: A quasi-experiment. Energy Environ. 2019, 30, 1255–1274. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Z.; Fan, Y. The impact of environmental regulation on the coordinated development of environment and economy in China. Nat. Hazards 2017, 91, 473–489. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, M.; Deng, Z. Have China’s pilot emissions trading schemes promoted carbon emission reductions?—The evidence from industrial sub-sectors at the provincial level. J. Clean. Prod. 2019, 234, 912–924. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Wu, X.; Nie, X. Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis?—Empirical analysis based on the PSM-DID method. Energy Policy 2019, 129, 930–938. [Google Scholar] [CrossRef]
- Dong, F.; Dai, Y.; Zhang, S.; Zhang, X.; Long, R. Can a carbon emission trading scheme generate the Porter effect? Evidence from pilot areas in China. Sci. Total Environ. 2019, 653, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Jaraitė, J.; Di Maria, C. Efficiency, productivity and environmental policy: A case study of power generation in the EU. Energy Econ. 2012, 34, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Shi, A.; Wang, X. Carbon emission curbing effects and influencing mechanisms of China’s Emission Trading Scheme: The mediating roles of technique effect, composition effect and allocation effect. J. Clean. Prod. 2020, 121700. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, L.; Yan, J.; Wang, X.; Wang, T. Spatial–Temporal Characteristics and Influencing Factors of Coupled Coordination between Urbanization and Eco-Environment: A Case Study of 13 Urban Agglomerations in China. Sustainability 2020, 12, 8821. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators (WDI). Available online: http://data.worldbank.org/indicator/all (accessed on 6 June 2016).
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1947. [Google Scholar]
- Lu, J.; Wang, W.; Zhang, Y.; Cheng, S. Multi-objective optimal design of stand-alone hybrid energy system using entropy weight method based on HOMER. Energies 2017, 10, 1664. [Google Scholar] [CrossRef] [Green Version]
- Ruehli, A.E. Equivalent circuit models for three-dimensional multiconductor systems. IEEE Trans. Microw. Theory Tech. 1974, 22, 216–221. [Google Scholar] [CrossRef]
- Yu, F.; Hu, W.; Rong, H. Coordinated development about tourism economy and transportation in medium and small cities: Chizhou as example. Sci. Geogr. Sin. 2015, 35, 1116–1122. [Google Scholar]
- Cong, X. The form and nature of the coupling degree model and some misuses in geography. Econ. Geogr. 2019, 39, 18–25. [Google Scholar]
- Wang, J.; Wang, S.; Li, S.; Feng, K. Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province. Appl. Energy 2019, 254, 113650. [Google Scholar] [CrossRef]
- Shu, X.; Gao, Y.; Zhang, Y.; Yang, C. Research on the Coupling Relationship and Coordinated Development of Tourism Industry and Ecological Civilization City. China Popul. Resour. Environ. 2015, 25, 82–90. [Google Scholar]
- Yuan, B.; Ren, S.; Chen, X. Can environmental regulation promote the coordinated development of economy and environment in China’s manufacturing industry?–A panel data analysis of 28 sub-sectors. J. Clean. Prod. 2017, 149, 11–24. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Loewenstein, W.; Hasanli, Y. Commodity revenues, agricultural sector and the magnitude of deindustrialization: A novel multisector perspective. Economies 2019, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Sadik-Zada, E.R.; Ferrari, M. Environmental Policy Stringency, Technical Progress and Pollution Haven Hypothesis. Sustainability 2020, 12, 3880. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R. Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies. Eur. J. Dev. Res. 2020, 32, 51–98. [Google Scholar] [CrossRef]
Subsystem | Index |
---|---|
Economic development | Per capita GDP (10,000 yuan) |
Amount of Foreign Capital Act (10,000 USD) | |
GDP growth rate (%) | |
The proportion of secondary industry output value (%) | |
The proportion of tertiary industry output value (%) | |
Per capita retail sales of consumer goods (10,000 yuan) | |
Per capita passenger volume (10,000 capita) | |
Per capita freight volume (10,000 ton) | |
Environmental quality | Volume of industrial waste-water discharged per 10,000 Yuan of GDP (Ton) |
Volume of industrial sulfur dioxide emissions per 10,000 Yuan of GDP (Ton) | |
Volume of industrial smoke (dust) emissions per 10,000 Yuan of GDP (Ton) | |
Ratio of industrial solid waste comprehensively utilized (%) | |
Ratio of urban sewage treatment (%) | |
Ratio of domestic harmless garbage treatment (%) | |
Per capita green area (m2/capita) | |
Ratio of green coverage of built-up areas (%) |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CCD (2008–2010) | 111 | 0.5942973 | 0.0988561 | 0.453 | 0.88 |
CCD (2011–2018) | 296 | 0.6744223 | 0.1117855 | 0.456 | 0.939 |
City | Province | Growth Rate | Mean * | City | Province | Growth Rate | Mean * |
---|---|---|---|---|---|---|---|
Beijing | Beijing | 0.55% | 0.848 | Yangjiang | Guangdong | 1.29% | 0.649 |
Chongqing | Chongqing | 0.38% | 0.727 | Yunfu | Guangdong | 2.05% | 0.524 |
Shanghai | Shanghai | 0.41% | 0.829 | Zhanjiang | Guangdong | 1.22% | 0.623 |
Tianjin | Tianjin | −0.56% | 0.803 | Zhaoqing | Guangdong | 0.27% | 0.629 |
Chaozhou | Guangdong | −1.44% | 0.600 | Zhongshan | Guangdong | −1.38% | 0.754 |
Dongguan | Guangdong | 0.34% | 0.842 | Zhuhai | Guangdong | −0.11% | 0.821 |
Foshan | Guangdong | −0.72% | 0.783 | Ezhou | Hubei | −0.82% | 0.649 |
Guangzhou | Guangdong | 0.07% | 0.864 | Huanggang | Hubei | 2.25% | 0.536 |
Heyuan | Guangdong | 2.35% | 0.582 | Huangshi | Hubei | 1.12% | 0.639 |
Huizhou | Guangdong | −0.04% | 0.745 | Jingmen | Hubei | 1.47% | 0.630 |
Jiangmen | Guangdong | −0.11% | 0.695 | Jingzhou | Hubei | 0.51% | 0.531 |
Jieyang | Guangdong | −0.37% | 0.527 | Shiyan | Hubei | 1.18% | 0.646 |
Maoming | Guangdong | 0.78% | 0.610 | Suizhou | Hubei | 0.37% | 0.648 |
Meizhou | Guangdong | −0.93% | 0.540 | Wuhan | Hubei | −0.29% | 0.800 |
Qingyuan | Guangdong | 0.50% | 0.594 | Xianning | Hubei | −0.17% | 0.610 |
Shantou | Guangdong | 0.05% | 0.655 | Xiangfan | Hubei | 0.29% | 0.682 |
Shanwei | Guangdong | 0.48% | 0.564 | Xiaogan | Hubei | 3.59% | 0.582 |
Shaoguan | Guangdong | −0.27% | 0.638 | Yichang | Hubei | 0.45% | 0.678 |
Shenzhen | Guangdong | −1.23% | 0.879 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Shen, J.; Miao, L. Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model. Int. J. Environ. Res. Public Health 2021, 18, 89. https://doi.org/10.3390/ijerph18010089
Huang J, Shen J, Miao L. Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model. International Journal of Environmental Research and Public Health. 2021; 18(1):89. https://doi.org/10.3390/ijerph18010089
Chicago/Turabian StyleHuang, Jingru, Jie Shen, and Lu Miao. 2021. "Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model" International Journal of Environmental Research and Public Health 18, no. 1: 89. https://doi.org/10.3390/ijerph18010089
APA StyleHuang, J., Shen, J., & Miao, L. (2021). Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model. International Journal of Environmental Research and Public Health, 18(1), 89. https://doi.org/10.3390/ijerph18010089