Socioeconomic and Behavioral Correlates of COVID-19 Infections among Hospital Workers in the Greater Jakarta Area, Indonesia: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data
2.2. Study Variables
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 17 February 2021).
- COVID-19 and the Least Developed Countries. Available online: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/PB_66.pdf (accessed on 10 May 2021).
- Minister of Health of the Republic of Indonesia. Available online: https://app.glueup.com/resources/protected/edm/48950/73317dab-06cf-45b5-a602-cc915fc87504.pdf (accessed on 10 May 2021).
- Jakarta GoSCRo. Regional Regulations of the Special Capital Region of Jakarta; Jakarta GoSCRo: Jakarta, Indonesia, 2020. [Google Scholar]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- World Health Organization. Prevention, Identification and Management of Health Worker Infection in the Context of COVID-19. Available online: https://www.who.int/publications/i/item/10665-336265 (accessed on 23 January 2020).
- Martin, C.; Montesinos, I.; Dauby, N.; Gilles, C.; Dahma, H.; Van Den Wijngaert, S.; De Wit, S.; Delforge, M.; Clumeck, N.; Vandenberg, O. Dynamics of SARS-CoV-2 RT-PCR positivity and seroprevalence among high-risk healthcare workers and hospital staff. J. Hosp. Infect. 2020, 106, 102–106. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Drew, D.A.; Graham, M.S.; Joshi, A.D.; Guo, C.-G.; Ma, W.; Mehta, R.S.; Warner, E.T.; Sikavi, D.R.; Lo, C.-H.; et al. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health 2020, 5, 475–483. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Baticulon, R.E.; Kadhum, M.; Alser, M.; Ojuka, D.K.; Badereddin, Y.; Kamath, A.; Parepalli, S.A.; Brown, G.; Iharchane, S.; et al. Infection and mortality of healthcare workers worldwide from COVID-19: A systematic review. BMJ Glob. Health 2020, 5, 003097. [Google Scholar] [CrossRef]
- Andrea, L. 654 Tenaga Kesehatan Gugur Lawan Pandemi Covid-19 di Indonesia. Available online: https://databoks.katadata.co.id/datapublish/2021/01/28/654-tenaga-kesehatan-gugur-lawan-pandemi-covid-19-di-indonesia (accessed on 19 February 2021).
- Coronavirus Kills 647 Health Workers in Indonesia. Available online: https://www.aa.com.tr/en/asia-pacific/coronavirus-kills-647-health-workers-in-indonesia/2125642 (accessed on 10 May 2021).
- PAIR. Occupational Health and Safety (OHS) Risks among Indonesian Healthcare Workers during the COVID-19 Pandemic. Available online: https://pair.australiaindonesiacentre.org/news/occupational-health-and-safety-ohs-risks-among-indonesian-healthcare-workers-during-the-covid-19-pandemic/ (accessed on 10 January 2020).
- Alraddadi, B.M.; Al-Salmi, H.S.; Jacobs-Slifka, K.; Slayton, R.B.; Estivariz, C.F.; Geller, A.I.; Al-Turkistani, H.H.; Al-Rehily, S.S.; Alserehi, H.A.; Wali, G.Y.; et al. Risk Factors for Middle East Respiratory Syndrome Coronavirus Infection among Healthcare Personnel. Emerg. Infect. Dis. 2016, 22, 1915–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, R.; Dana, T.; Buckley, D.I.; Selph, S.; Fu, R.; Totten, A.M. Epidemiology of and Risk Factors for Coronavirus Infection in Health Care Workers: A Living Rapid Review. Ann. Intern. Med. 2020, 173, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, F.; Fang, L.-Q.; De Vlas, S.J.; Ma, H.-J.; Zhou, J.-P.; Looman, C.W.N.; Richardus, J.H.; Cao, W.-C. Risk factors for SARS infection among hospital healthcare workers in Beijing: A case control study. Trop. Med. Int. Health 2009, 14, 52–59. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Huang, Q.; Wang, H.; Gurarie, D.; Ndeffo-Mbah, M.; Fan, F.; Fu, P.; Horn, M.A.; Xu, S.; et al. SARS-CoV-2 infection in health care workers: A retrospective analysis and model study. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Firew, T.; Sano, E.D.; Lee, J.W.; Flores, S.; Lang, K.; Salman, K.; Greene, M.C.; Chang, B.P. Protecting the front line: A cross-sectional survey analysis of the occupational factors contributing to healthcare workers’ infection and psychological distress during the COVID-19 pandemic in the USA. BMJ Open 2020, 10, 042752. [Google Scholar] [CrossRef]
- Hoernke, K.; Djellouli, N.; Andrews, L.; Lewis-Jackson, S.; Manby, L.; Martin, S.; Vanderslott, S.; Vindrola-Padros, C. Frontline healthcare workers’ experiences with personal protective equipment during the COVID-19 pandemic in the UK: A rapid qualitative appraisal. BMJ Open 2021, 11, 046199. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hegde, S.; LaFiura, C.; Raghavan, M.; Sun, N.; Cheng, S.; Rebholz, C.M.; Seidelmann, S.B. Access to personal protective equipment in exposed healthcare workers and COVID-19 illness, severity, symptoms and duration: A population-based case-control study in six countries. BMJ Glob. Health 2021, 6, 004611. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; He, P.; Liu, H.G.; Wang, X.J.; Li, F.J.; Chen, S.; Lin, J.; Chen, P.; Liu, J.H.; Li, C.H. Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia. Chin. J. Tuberc. Respir. Dis. 2020, 43, 209–214. [Google Scholar] [CrossRef]
- Ran, L.; Chen, X.; Wang, Y.; Wu, W.; Zhang, L.; Tan, X. Risk Factors of Healthcare Workers with Corona Virus Disease 2019: A Retrospective Cohort Study in a Designated Hospital of Wuhan in China. Clin. Infect. Dis. 2020, 71, 2218–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.T.; Liu, Z.D.; Fan, Z.W.; Zhao, L.; Cao, W.C. Epidemiology of and Risk Factors for COVID-19 Infection among Health Care Workers: A Multi-Centre Comparative Study. Int. J. Environ. Res. Public Health 2020, 17, 7149. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Islam, F. The Effects of Air Pollution on COVID-19 Infection and Mortality—A Review on Recent Evidence. Front. Public Health 2020, 8, 580057. [Google Scholar] [CrossRef]
- Coker, E.S.; Cavalli, L.; Fabrizi, E.; Guastella, G.; Lippo, E.; Parisi, M.L.; Pontarollo, N.; Rizzati, M.; Varacca, A.; Vergalli, S. The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy. Environ. Resour. Econ. 2020, 76, 611–634. [Google Scholar] [CrossRef]
- Harlem, G. Corrigendum to: Descriptive analysis of social determinant factors in urban communities affected by COVID-19. J. Public Health 2020, 43, 112. [Google Scholar] [CrossRef] [PubMed]
- National Health Service. Symptoms of Coronavirus. Available online: https://www.nhs.uk/conditions/coronavirus-covid-19/symptoms/ (accessed on 10 May 2021).
- The World Bank. Aspiring Indonesia-Ecpnading the Middle Class. Available online: https://www.worldbank.org/en/country/indonesia/publication/aspiring-indonesia-expanding-the-middle-class (accessed on 10 May 2021).
- Central Bureau of Statistics. Persentase Penduduk Miskin Maret 2019 Sebesar 9,41 Persen. Available online: https://www.bps.go.id/pressrelease/2019/07/15/1629/persentase-penduduk-miskin-maret-2019-sebesar-9-41-persen.html (accessed on 10 May 2021).
- Centers for Disease Control and Prevention. When and How to Wash Your Hands. Available online: https://www.cdc.gov/handwashing/when-how-handwashing.html (accessed on 10 May 2021).
- Zheng, L.; Wang, X.; Zhou, C.; Liu, Q.; Li, S.; Sun, Q.; Wang, M.; Zhou, Q.; Wang, W. Analysis of the Infection Status of Healthcare Workers in Wuhan During the COVID-19 Outbreak: A Cross-sectional Study. Clin. Infect. Dis. 2020, 71, 2109–2113. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. 2020, 26, 767–772. [Google Scholar] [CrossRef]
- Borjas, G.J. Demographic Determinants of Testing Incidence and Covid-19 Infections in New York City Neighborhoods. Available online: https://ssrn.com/abstract=3574417 (accessed on 10 May 2021).
- Figueroa, J.F.; Wadhera, R.K.; Mehtsun, W.T.; Riley, K.; Phelan, J.; Jha, A.K. Association of race, ethnicity, and community-level factors with COVID-19 cases and deaths across U.S. counties. Healthcare 2021, 9, 100495. [Google Scholar] [CrossRef]
- Martin, C.A.; Jenkins, D.R.; Minhas, J.S.; Gray, L.J.; Tang, J.; Williams, C.; Sze, S.; Pan, D.; Jones, W.; Verma, R.; et al. Socio-demographic heterogeneity in the prevalence of COVID-19 during lockdown is associated with ethnicity and household size: Results from an observational cohort study. EClinicalMedicine 2020, 25, 100466. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Jian, S.-W.; Liu, D.-P.; Ng, T.-C.; Huang, W.-T.; Lin, H.-H. High transmissibility of COVID-19 near symptom onset. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.; Morbey, R.; de Lusignan, S.; Pebody, R.G.; Smith, G.E.; Elliot, A.J. Investigating regional variation of respiratory infections in a general practice syndromic surveillance system. J. Public Health 2020. [Google Scholar] [CrossRef] [Green Version]
- Papageorge, N.W.; Zahn, M.V.; Belot, M.; van den Broek-Altenburg, E.; Choi, S.; Jamison, J.C.; Tripodi, E. Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic. J. Popul. Econ. 2021, 34, 691–738. [Google Scholar] [CrossRef]
- Peltzer, K.; Pengpid, S. Oral and hand hygiene behaviour and risk factors among in-school adolescents in four Southeast Asian countries. Int. J. Environ. Res. Public Health 2014, 11, 2780–2792. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Fisher, E.B.; Bacharier, L.B.; Strunk, R.C. Socioeconomic status, stress, and immune markers in adolescents with asthma. Psychosom. Med. 2003, 65, 984–992. [Google Scholar] [CrossRef] [Green Version]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef]
- Jiang, Y.; Zilioli, S.; Rodriguez-Stanley, J.; Peek, K.M.; Cutchin, M.P. Socioeconomic status and differential psychological and immune responses to a human-caused disaster. Brain Behav. Immun. 2020, 88, 935–939. [Google Scholar] [CrossRef]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Johnson, J.; Gaines, C.; Israel, B.A. Associations between socioeconomic status and allostatic load: Effects of neighborhood poverty and tests of mediating pathways. Am. J. Public Health 2012, 102, 1706–1714. [Google Scholar] [CrossRef]
- Loeb, M.; McGeer, A.; Henry, B.; Ofner, M.; Rose, D.; Hlywka, T.; Levie, J.; McQueen, J.; Smith, S.; Moss, L.; et al. SARS among critical care nurses, Toronto. Emerg. Infect. Dis. 2004, 10, 251–255. [Google Scholar] [CrossRef]
- Lau, J.T.; Fung, K.S.; Wong, T.W.; Kim, J.H.; Wong, E.; Chung, S.; Ho, D.; Chan, L.Y.; Lui, S.F.; Cheng, A. SARS transmission among hospital workers in Hong Kong. Emerg. Infect. Dis. 2004, 10, 280–286. [Google Scholar] [CrossRef]
- Nishiyama, A.; Wakasugi, N.; Kirikae, T.; Quy, T.; Ha, L.D.; Ban, V.V.; Long, H.T.; Keicho, N.; Sasazuki, T.; Kuratsuji, T. Risk factors for SARS infection within hospitals in Hanoi, Vietnam. Jpn. J. Infect. Dis. 2008, 61, 388–390. [Google Scholar]
- Reilly, J.S.; Price, L.; Lang, S.; Robertson, C.; Cheater, F.; Skinner, K.; Chow, A. A Pragmatic Randomized Controlled Trial of 6-Step vs. 3-Step Hand Hygiene Technique in Acute Hospital Care in the United Kingdom. Infect. Control Hosp. Epidemiol. 2016, 37, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Dalewski, B.; Palka, L.; Kiczmer, P.; Sobolewska, E. The Impact of SARS-CoV-2 Outbreak on the Polish Dental Community’s Standards of Care—A Six-Month Retrospective Survey-Based Study. Int. J. Environ. Res. Public Health 2021, 18, 1281. [Google Scholar] [CrossRef]
- Sunjaya, D.K.; Herawati, D.M.D.; Siregar, A.Y.M. Depressive, anxiety, and burnout symptoms on health care personnel at a month after COVID-19 outbreak in Indonesia. BMC Public Health 2021, 21, 227. [Google Scholar] [CrossRef]
- Peters, A.; Lotfinejad, N.; Simniceanu, A.; Pittet, D. The economics of infection prevention: Why it is crucial to invest in hand hygiene and nurses during the novel coronavirus pandemic. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef]
- Stone, P.W. Economic burden of healthcare-associated infections: An American perspective. Expert Rev. Pharmacoecon. Outcomes Res. 2009, 9, 417–422. [Google Scholar] [CrossRef] [Green Version]
Variables | (1) | (2) | (3) | |||
---|---|---|---|---|---|---|
Hospital Workers (N = 1397) | Healthcare Workers (N = 1154) | Non-Healthcare Workers (N = 243) | ||||
n | % | n | % | n | % | |
(A) Demographics | ||||||
Sex | ||||||
Female | 869 | 62.2 | 762 | 66.03 | 107 | 44.03 |
Male | 528 | 37.8 | 392 | 33.97 | 136 | 55.97 |
Age group | ||||||
19–24 years | 126 | 9.020 | 83 | 7.190 | 43 | 17.700 |
25–44 years | 1084 | 77.59 | 921 | 79.81 | 163 | 67.08 |
>44 years | 187 | 13.39 | 150 | 13 | 37 | 15.23 |
Household size | ||||||
1–2 | 268 | 19.18 | 229 | 19.84 | 39 | 16.05 |
3–4 | 761 | 54.47 | 636 | 55.11 | 125 | 51.44 |
≥5 | 368 | 26.34 | 289 | 25.04 | 79 | 32.51 |
Expenditure class | ||||||
Poor | 202 | 14.46 | 163 | 14.12 | 39 | 16.05 |
Vulnerable | 299 | 21.4 | 226 | 19.58 | 73 | 30.04 |
Aspiring middle class | 600 | 42.95 | 502 | 43.5 | 98 | 40.33 |
Middle and upper class | 296 | 21.19 | 263 | 22.79 | 33 | 13.58 |
Active smoking status | ||||||
No | 1254 | 89.76 | 1087 | 94.19 | 167 | 68.72 |
Yes | 143 | 10.24 | 67 | 5.81 | 76 | 31.28 |
(B) Protective behavior | ||||||
Knowledge of PPE standards | ||||||
No | 22 | 1.570 | 8 | 0.690 | 14 | 5.760 |
Yes | 1375 | 98.43 | 1146 | 99.31 | 229 | 94.24 |
Application of the six-step hand washing technique | ||||||
Otherwise | 294 | 21.050 | 238 | 20.620 | 56 | 23.050 |
Always | 1103 | 78.95 | 916 | 79.38 | 187 | 76.95 |
The use of PPEs when in contact with suspected/positive COVID-19 patients | ||||||
Otherwise | 627 | 44.880 | 479 | 41.510 | 148 | 60.910 |
Always | 770 | 55.12 | 675 | 58.49 | 95 | 39.09 |
Index of hand-washing frequency | ||||||
Low | 535 | 38.300 | 441 | 38.210 | 94 | 38.680 |
High | 862 | 61.7 | 713 | 61.79 | 149 | 61.32 |
Physical distancing | ||||||
Otherwise | 814 | 58.27 | 698 | 60.49 | 116 | 47.74 |
Always | 583 | 41.73 | 456 | 39.51 | 127 | 60.49 |
The use of a mask outside of the home | ||||||
Otherwise | 108 | 7.73 | 91 | 7.89 | 17 | 7 |
Always | 1289 | 92.27 | 1063 | 92.11 | 226 | 93 |
(C) Signs and symptoms | ||||||
Fever | 58 | 4.15 | 47 | 4.07 | 11 | 4.53 |
Cough | 236 | 16.89 | 197 | 17.07 | 39 | 16.05 |
Runny nose | 198 | 14.17 | 175 | 15.16 | 23 | 9.47 |
Sore throat | 198 | 14.17 | 175 | 15.16 | 23 | 9.47 |
Shortness of breath | 24 | 1.72 | 18 | 1.56 | 6 | 2.47 |
Common cold | 58 | 4.15 | 51 | 4.42 | 7 | 2.88 |
Headache | 171 | 12.24 | 139 | 12.05 | 32 | 13.17 |
Muscle ache | 129 | 9.23 | 109 | 9.45 | 20 | 8.23 |
Nausea | 70 | 5.01 | 59 | 5.11 | 11 | 4.53 |
Watery eyes | 22 | 1.57 | 20 | 1.73 | 2 | 0.82 |
Sputum production | 125 | 8.95 | 102 | 8.84 | 23 | 9.47 |
Dizziness | 79 | 5.65 | 61 | 5.29 | 18 | 7.41 |
Rash on skin | 20 | 1.43 | 18 | 1.56 | 2 | 0.82 |
Loss of appetite | 41 | 2.93 | 33 | 2.86 | 8 | 3.29 |
Anosmia | 12 | 0.86 | 11 | 0.95 | 1 | 0.41 |
Ageusia | 12 | 0.86 | 11 | 0.95 | 1 | 0.41 |
Tingling sensation | 26 | 1.86 | 20 | 1.73 | 6 | 2.47 |
Delirium | 6 | 0.43 | 1 | 0.09 | 5 | 2.06 |
(D) Dependent variables | ||||||
RT-PCR result | ||||||
Negative | 1375 | 98.43 | 1134 | 98.27 | 241 | 99.18 |
Positive | 22 | 1.57 | 20 | 1.73 | 2 | 0.82 |
Having at least one main symptom | ||||||
No | 1124 | 80.46 | 923 | 79.98 | 201 | 82.72 |
Yes | 273 | 19.54 | 231 | 20.02 | 42 | 17.28 |
Data are n/N (%) if not specified |
Variables | (1) | (2) | (3) | (4) | ||||
---|---|---|---|---|---|---|---|---|
Healthcare Workers | Healthcare Workers | Hospital Workers | Hospital Workers | |||||
(N = 1154) | (N = 1007) | (N = 1397) | (N = 1397) | |||||
OR (CI 95%) | p-Value | AOR (CI 95%) | p-Value | OR (CI 95%) | p-Value | AOR (CI 95%) | p-Value | |
(A) Demographics | ||||||||
Sex | ||||||||
Female | Ref | Ref | Ref | Ref | ||||
Male | 1.05 (0.41–2.65) | 0.922 | 1.90 (0.68–5.29) | 0.222 | 1.14 (0.48–2.69) | 0.762 | 1.91 (0.71–5.16) | 0.201 |
Age group | ||||||||
19–24 years | Ref | Ref | Ref | Ref | ||||
25–44 years | 0.58 (0.13–2.62) | 0.478 | 0.75 (0.16–3.63) | 0.723 | 0.54 (0.15–1.89) | 0.333 | 0.66 (0.19–2.32) | 0.513 |
>44 years | 1.40 (0.26–7.37) | 0.694 | 2.31 (0.40–13.38) | 0.351 | 1.13 (0.26–4.80) | 0.872 | 2.16 (0.50–9.35) | 0.301 |
Status of being a healthcare worker | ||||||||
No | Ref | Ref | ||||||
Yes | NA | NA | NA | NA | 2.13 (0.49–9.16) | 0.312 | 8.31 (1.27–54.54) | 0.027 |
Household size | ||||||||
1–2 | Ref | Ref | Ref | Ref | ||||
3–4 | 2.00 (0.44–9.09) | 0.371 | 2.94 (0.76–11.42) | 0.12 | 2.13 (0.47–9.59) | 0.324 | 3.03 (0.75–12.15) | 0.118 |
≥5 | 2.82 (0.58–13.70) | 0.199 | 3.69 (0.92–14.84) | 0.066 | 2.96 (0.62–14.04) | 0.173 | 4.09 (1.02–16.43) | 0.047 |
Expenditure class | ||||||||
Poor | Ref | Ref | Ref | Ref | ||||
Vulnerable | 1.21 (0.28–5.13) | 0.799 | 0.79 (0.17–3.70) | 0.768 | 0.67 (0.19–2.35) | 0.531 | 0.50 (0.14–1.76) | 0.282 |
Aspiring middle class | 1.19 (0.33–4.34) | 0.787 | 0.68 (0.16–2.99) | 0.613 | 0.74 (0.25–2.14) | 0.574 | 0.44 (0.13–1.45) | 0.175 |
Middle and upper class | 0.20 (0.02–1.98) | 0.17 | 0.084 (0.01–1.21) | 0.069 | 0.13 (0.02–1.15) | 0.067 | 0.06 (0.01–0.66) | 0.022 |
Active smoking status | ||||||||
No | Ref | Ref | ||||||
Yes | NA | NA | NA | NA | 0.41 (0.06–3.10) | 0.39 | 0.43 (0.07–2.58) | 0.355 |
(B) Protective behavior | ||||||||
Knowledge of PPE standards | ||||||||
No | Ref | Ref | Ref | Ref | ||||
Yes | 0.12 (0.01–1.01) | 0.051 | 0.06 (0.00–0.63) | 0.02 | 0.15 (0.03–0.67) | 0.014 | 0.08 (0.01–0.54) | 0.01 |
Application of the six-step hand washing technique | ||||||||
Otherwise | Ref | Ref | Ref | Ref | ||||
Always | 0.48 (0.19–1.20) | 0.117 | 0.30 (0.11–0.83) | 0.02 | 0.46 (0.19–1.11) | 0.083 | 0.32 (0.12–0.83) | 0.019 |
The use of PPEs when in contact with suspected/positive COVID-19 patients | ||||||||
Otherwise | Ref | Ref | Ref | Ref | ||||
Always | 0.47 (0.19–1.15) | 0.098 | 0.38 (0.13–1.09) | 0.073 | 0.46 (0.19–1.10) | 0.082 | 0.37 (0.13–1.02) | 0.055 |
Index of hand-washing frequency | ||||||||
Low | Ref | Ref | Ref | Ref | ||||
High | 0.75 (0.31–1.83) | 0.53 | 0.75 (0.26–2.12) | 0.587 | 0.62 (0.27–1.43) | 0.26 | 0.61 (0.23–1.60) | 0.317 |
Physical distancing | ||||||||
Otherwise | Ref | Ref | Ref | Ref | ||||
Always | 1.54 (0.64–3.74) | 0.337 | 2.42 (0.81–7.22) | 0.114 | 1.40 (0.60–3.26) | 0.43 | 2.52 (0.6–7.42) | 0.092 |
The use of a mask outside of the home | ||||||||
Otherwise | Ref | Ref | ||||||
Always | NA | NA | NA | NA | 1.77 (0.24–13.31) | 0.578 | 3.44 (0.42–27.99) | 0.248 |
Variables | (1) | (2) | (3) | |||
---|---|---|---|---|---|---|
Healthcare Workers | Non-Healthcare Workers | All Samples | ||||
N = 1154 | N = 243 | (N = 1397) | ||||
AOR (CI 95%) | p-Value | AOR (CI 95%) | p-Value | AOR (CI 95%) | p-Value | |
(A) Demographics | ||||||
Sex | ||||||
Female | Ref | Ref | Ref | |||
Male | 0.84 (0.60–1.19) | 0.329 | 1.01 (0.43–2.37) | 0.974 | 0.84 (0.61–1.14) | 0.26 |
Age group | ||||||
19–24 years | Ref | Ref | Ref | |||
25–44 years | 0.58 (0.33–1.00) | 0.051 | 1.58 (0.40–5.01) | 0.438 | 0.73 (0.45–1.19) | 0.213 |
>44 years | 0.68 (0.34–1.35) | 0.267 | 2.03 (0.51–8.10) | 0.313 | 0.87 (0.47–1.62) | 0.671 |
Status of being a healthcare worker | ||||||
No | Ref | |||||
Yes | NA | NA | NA | NA | 1.36 (0.89–2.08) | 0.153 |
Household size | ||||||
1–2 | Ref | Ref | Ref | |||
3–4 | 0.91 (0.62–1.34) | 0.637 | 0.57 (0.23–1.40) | 0.219 | 0.84 (0.59–1.19) | 0.332 |
≥5 | 0.79 (0.50–1.25) | 0.316 | 0.78 (0.27–2.29) | 0.656 | 0.78 (0.52–1.17) | 0.232 |
Expenditure class | ||||||
Poor | Ref | Ref | Ref | |||
Vulnerable | 1.38 (0.81–2.37) | 0.239 | 2.48 (0.69–9.96) | 0.201 | 1.46 (0.90–2.36) | 0.127 |
Aspiring middle class | 1.56 (0.95–2.55) | 0.076 | 2.94 (0.71–12.16) | 0.136 | 1.66 (1.06–2.59) | 0.027 |
Middle and upper class | 1.13 (0.64–2.00) | 0.664 | 2.16 (0.42–11.06) | 0.353 | 1.20 (0.71–2.02) | 0.489 |
Active smoking status | ||||||
No | Ref | Ref | Ref | |||
Yes | 1.40 (0.73–2.65) | 0.31 | 0.78 (0.28–2.16) | 0.63 | 1.13 (0.66–1.93) | 0.658 |
(B) Protective behavior | ||||||
Knowledge of PPE standards | ||||||
No | Ref | Ref | Ref | |||
Yes | 0.27 (0.07–1.07) | 0.063 | 1.35 (0.24–7.72) | 0.735 | 0.63 (0.24–1.66) | 0.348 |
Application of WHO hand-washing steps | ||||||
Otherwise | Ref | Ref | Ref | |||
Always | 0.85 (0.58–1.23) | 0.386 | 0.63 (0.30–1.33) | 0.224 | 0.82 (0.59–1.15) | 0.258 |
The use of PPE when in contact with suspected/positive COVID-19 patients | ||||||
Otherwise | Ref | Ref | Ref | |||
Always | 0.61 (0.45–0.83) | 0.002 | 0.64 (0.30–1.38) | 0.254 | 0.63 (0.47–0.83) | 0.001 |
Index of hand-washing frequency | ||||||
Low | Ref | Ref | Ref | |||
High | 0.73 (0.53–1.01) | 0.06 | 1.60 (0.71–3.61) | 0.254 | 0.81 (0.6–1.10) | 0.178 |
Physical distancing | ||||||
Otherwise | Ref | Ref | Ref | |||
Always | 1.00 (0.71–1.42) | 0.993 | 0.64 (0.29–1.40) | 0.264 | 0.93 (0.68–1.27) | 0.646 |
The use of a mask outside of the home | ||||||
Otherwise | Ref | Ref | Ref | |||
Always | 0.68 (0.41–1.14) | 0.142 | 0.76 (0.22–2.70) | 0.676 | 0.67 (0.42–1.07) | 0.095 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bella, A.; Akbar, M.T.; Kusnadi, G.; Herlinda, O.; Regita, P.A.; Kusuma, D. Socioeconomic and Behavioral Correlates of COVID-19 Infections among Hospital Workers in the Greater Jakarta Area, Indonesia: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 5048. https://doi.org/10.3390/ijerph18105048
Bella A, Akbar MT, Kusnadi G, Herlinda O, Regita PA, Kusuma D. Socioeconomic and Behavioral Correlates of COVID-19 Infections among Hospital Workers in the Greater Jakarta Area, Indonesia: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(10):5048. https://doi.org/10.3390/ijerph18105048
Chicago/Turabian StyleBella, Adrianna, Mochamad Thoriq Akbar, Gita Kusnadi, Olivia Herlinda, Putri Aprilia Regita, and Dian Kusuma. 2021. "Socioeconomic and Behavioral Correlates of COVID-19 Infections among Hospital Workers in the Greater Jakarta Area, Indonesia: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 18, no. 10: 5048. https://doi.org/10.3390/ijerph18105048
APA StyleBella, A., Akbar, M. T., Kusnadi, G., Herlinda, O., Regita, P. A., & Kusuma, D. (2021). Socioeconomic and Behavioral Correlates of COVID-19 Infections among Hospital Workers in the Greater Jakarta Area, Indonesia: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 18(10), 5048. https://doi.org/10.3390/ijerph18105048