Dealing with COVID-19 Epidemic in Italy: Responses from Regional Organizational Models during the First Phase of the Epidemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Online Focus Group
2.2. Expert Panel Selection
2.3. Approach
2.4. First Synchronous Online Focus Group
2.5. Second Synchronous Online Focus Group
2.6. Monitoring Indicators
2.7. Correlation Analysis
3. Results
3.1. Core Indicators
- Point prevalence in the Italian Regions (‰)This indicator represents the extent of contagion at the time of detection; the numerator gives the number of cases currently positive for the Sars-CoV-2 infection, while the denominator gives the regional population. The series of the values of Indicator 1 is shown in Table 1. On the basis of the data of point prevalence, it was possible to divide the 21 regions and autonomous provinces into three basic tertiles, at the beginning of the observation; regions with high prevalence were Piemonte, Lombardia, Valle d’Aosta, Veneto, Emilia-Romagna, Marche, P.A. of Trento (Table 1).Data show an evident north-south gradient in the spread of the contagion, which remained almost unchanged during the period of observation (Liguria and Provincia Autonoma (P.A.) of Bolzano risen among the regions with high prevalence, Lazio risen among the regions with intermediate prevalence, while Veneto fell from the high prevalence tertile to the intermediate one). Considering the average values for the period under examination, regions with the highest prevalence were: Lombardia, Piemonte, Emilia-Romagna, P.A. of Trento and Bolzano, Liguria, Marche, and Veneto (with the exception of Val d’Aosta, a small Special Statute Region).
- Cumulative number of performed nasopharyngeal swabs/Resident population × 1000.This indicator stands for the regional testing policy; its values are shown in (Table 2).The use of shades of grey is, therefore, useful in interpreting the data based on their meaning rather than their value: The regions offering a limited number of tampons are in dark grey, just as in the previous table (Table 1) the regions with a high prevalence; thus, dark grey marks a possible criticality. Vice versa, in Table 2, the regions in white are those that were able to offer a greater number of diagnostic tests, just as in Table 1, the white regions were those with low prevalence, thus highlighting situations of minor criticality for the considered aspect.As regards Indicator 2, it is possible to see that Veneto, Friuli Venezia Giulia (FVG), Emilia Romagna, and P.A. of Trento are constantly placed in the first tertile, as well as the southern regions are mainly placed in the third tertile. With regard to the final value achieved by the Veneto region, first among the regions with the ordinary statute in Italy (and absolutely second only to the P.A. of Bolzano), it should be noted that Veneto has distinguished itself for a peculiar policy in the case research, offering the diagnostic test also to asymptomatic subjects since the beginning of the epidemic [33]. It was considered necessary by local decision-makers, since asymptomatic people were proved to transmit the Sars-CoV-2 virus [34].Considering the trend of diagnostic tests carried out in the group of the regions with infection high prevalence, we find the regions of Liguria and Piemonte among those that carried out the lowest number of diagnostic tests in relation to the population together with the Marche and Lombardia region, which is not only the largest region in Italy, but also the region with the highest prevalence of confirmed cases.
- Saturation of Intensive Care Unit (ICU) beds.The indicator is calculated from the ratio between the number of COVID patients admitted to intensive care and the official number of beds available in ICUs before the outbreak of the epidemic: In Italy, before the epidemic, there were 5179 intensive care beds, an average of 8.6 beds per 100,000 inhabitants, with considerable regional variability (range: 11.8–5.9; SD: 1.5) [31]. This indicator highlights the pressure of COVID patients under serious clinical conditions on the healthcare system, in particular on hospital care, considering its capacities when the country was hit by the epidemic and how well prepared it was to withstand the shock; values are shown in Table 3.It can be noted that the north-south gradient already highlighted for the cumulative number of performed nasopharyngeal swabs is also present for this indicator. The regions Piemonte, Lombardia, and Marche are placed constantly in the first tertile of ICU beds saturation values; the Lombardia region, in particular, has reached 150% saturation (which is a theoretical value referring to the existing equipment, which does not take into account the expansion of the hospital network that had to be carried out in the course of the emergency), even if starting from an ICU bedding that was and still is the highest in the country—861 ICU beds before the outbreak of the epidemic, 8.6 per 100,000 inhabitants, perfectly in accordance with the national average. Conversely, among the regions with a high prevalence of infection, the saturation of ICU beds Veneto, Emilia-Romagna, and Liguria assume the lowest values, being among the regions with the highest standards of intensive care beds in Italy.
- Currently hospitalized cases/currently confirmed casesThis indicator expresses the propensity to treat patients in a hospital setting; values assumed by this indicator are shown in Table 4.In the case of this indicator, the north-south gradient is less evident. This indicator makes it possible to highlight an important difference in the management of COVID patients by the regions. Thanks to the division into tertile, it is, in fact, possible to identify three approaches: Hospital-centered approach for the regions in the first tertile (e.g., Piemonte), community-based approach for the regions the third tertile (e.g., Veneto), integrated approach for the regions in the second tertile (e.g., Emilia-Romagna).
3.2. Correlation Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Indolfi, C.; Spaccarotella, C. The outbreak of COVID-19 in Italy: Fighting the pandemic. JACC Case Rep. 2020, 2, 1656. [Google Scholar] [CrossRef]
- Nurchis, M.C.; Pascucci, D.; Sapienza, M.; Villani, L.; D’Ambrosio, F.; Castrini, F.; Specchia, M.L.; Laurenti, P.; Damiani, G. Impact of the burden of COVID-19 in Italy: Results of disability-adjusted life years (DALYs) and productivity loss. Int. J. Environ. Res. Public Health 2020, 17, 4233. [Google Scholar] [CrossRef] [PubMed]
- Nioi, M.; Napoli, P.E.; Lobina, J.; Fossarello, M.; d’Aloja, E. COVID-19 and Italian healthcare workers from the initial sacrifice to the MRNA vaccine: Pandemic chrono-history, epidemiological data, ethical dilemmas, and future challenges. Front. Public Health 2021, 8. [Google Scholar] [CrossRef]
- D’Aloja, E.; Finco, G.; Demontis, R.; Napoli, P.E.; Fossarello, M.; Nioi, M. COVID-19 and medical liability: Italy denies the shield to its heroes. EClinicalMedicine 2020, 25. [Google Scholar] [CrossRef]
- Smith, K.F.; Goldberg, M.; Rosenthal, S.; Carlson, L.; Chen, J.; Chen, C.; Ramachandran, S. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 2014, 11, 20140950. [Google Scholar] [CrossRef]
- World Health Organization. Strengthening Response to Pandemics and Other Public-Health Emergencies: Report of the Review Committee on the Functioning of the International Health Regulations (2005) and on Pandemic Influenza (H1N1) 2009. Available online: https://apps.who.int/iris/bitstream/handle/10665/75235/9789241564335_eng.pdf (accessed on 18 February 2021).
- Chiquoine, R. The 2014–2016 West Africa Ebola Epidemic: Social, Political, Economic, and Ecological Factors of the Outbreak and Resulting Response. Available online: https://d1wqtxts1xzle7.cloudfront.net/57469074/Chiquoine_-_2014-2016_West_Africa_Ebola_Epidemic.pdf?1538221027=&response-content-disposition=inline%3B+filename%3DWest_Africa_Ebola_Epidemic.pdf&Expires=1616270420&Signature=QfMB1dLSvXYc1tOPegt1qqotnqhZT81L1tR8DXlCrFioLSx~v62apJTIRi-GXUgbn~pjquel8Z8afK6JvpBF0Ckkq6FCi~FKCD~9c7mvPj~AHuCuTVZLHsMKgGTIgkFBwW4fWCyBvSiJPZAjbT5W~TopD-wfOCapuyqDOFNa7FdMOk66~kfkbfYpqPZlqlL~v5YcqjgE5IkqENdEB6q~XabEVB08CCOucK3th05~A5zvaaxHcDRkyKDz9bmVQHNVEMuX7yyiJ3VrvSEKli0LYcXjjuf-OBmjFIfV3Woa3b-48x6Pv2SWW3~4rnSnJQ3V45eexMB3eC0O9nx4TrKuYA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 18 February 2021).
- Ministry of Health, Singapore Communicable Diseases Surveillance in Singapore 2003, Singapore, 2004. Available online: https://www.moh.gov.sg/docs/librariesprovider5/resources-statistics/reports/special_feature_sars.pdf (accessed on 18 February 2021).
- World Health Organization. Managing Epidemics: Key Facts About Major Deadly Diseases; World Health Organization: Geneva, Switzerland, 2018; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://apps.who.int/iris/handle/10665/272442 (accessed on 18 February 2021).
- Belfroid, E.; Timen, A.; van Steenbergen, J.E.; Huis, A.; Hulscher, M.E.J.L. Which recommendations are considered essential for outbreak preparedness by first responders? BMC Infect. Dis. 2017, 17, 195. [Google Scholar] [CrossRef] [Green Version]
- Kinsman, J.; Angrén, J.; Elgh, F.; Furberg, M.; Mosquera, P.A.; Otero-García, L.; Snacken, R.; Derrough, T.; Carrillo Santisteve, P.; Ciotti, M.; et al. Preparedness and response against diseases with epidemic potential in the European Union: A qualitative case study of middle east respiratory syndrome (MERS) and poliomyelitis in five member states. BMC Health Serv. Res. 2018, 18, 528. [Google Scholar] [CrossRef]
- Tartari, E.; Allegranzi, B.; Ang, B.; Calleja, N.; Collignon, P.; Hopman, J.; Lang, L.; Lee, L.C.; Ling, M.L.; Mehtar, S.; et al. Preparedness of institutions around the world for managing patients with ebola virus disease: An infection control readiness checklist. Antimicrob. Resist. Infect. Control 2015, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Rebmann, T.; Citarella, B.; Subramaniam, D.S.; Subramaniam, D.P. A home health agency’s pandemic preparedness and experience with the 2009 H1N1 pandemic. Am. J. Infect. Control 2011, 39, 725–731. [Google Scholar] [CrossRef]
- Sun, K.; Chen, J.; Viboud, C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: A population-level observational study. Lancet Digit. Health 2020. [Google Scholar] [CrossRef]
- Spina, S.; Marrazzo, F.; Migliari, M.; Stucchi, R.; Sforza, A.; Fumagalli, R. The response of milan’s emergency medical system to the covid-19 outbreak in Italy. Lancet 2020, 395, 49–50. [Google Scholar] [CrossRef] [Green Version]
- Pavolini, E.; Vicarelli, G. Is decentralization good for your health? Transformations in the Italian NHS. Curr. Sociol. 2012, 60, 472–488. [Google Scholar] [CrossRef]
- Saltman, R.; Bankauskaite, V.; Vrangbaek, K. Decentralization in Health Care. Strategies and Outcomes; McGraw-Hill: London, UK, 2007; Available online: https://www.euro.who.int/en/publications/abstracts/decentralization-in-health-care.-strategies-and-outcomes-2007 (accessed on 20 February 2021).
- Di Novi, C.; Piacenza, M.; Robone, S.; Turati, G. How does fiscal decentralization affect within-regional disparities in well-being? Evidence from health inequalities in Italy. Univ. Ca’Foscari Venice Dept. Econ. Res. Pap. Ser. No. 2015, 21. [Google Scholar] [CrossRef] [Green Version]
- Baldini, G.; Baldi, B. Decentralization in Italy and the troubles of federalization. Reg. Fed. Stud. 2013, 24, 87–108. [Google Scholar] [CrossRef]
- Di Novi, C.; Piacenza, M.; Robone, S.; Turati, G. Does fiscal decentralization affect regional disparities in health? Quasi-experimental evidence from Italy. Reg. Sci. Urban Econ. 2019, 78, 103465. [Google Scholar] [CrossRef]
- Buja, A.; Gini, R.; Visca, M.; Damiani, G.; Federico, B.; Donato, D.; Francesconi, P.; Marini, A.; Donatini, A.; Brugaletta, S.; et al. Need and disparities in primary care management of patients with diabetes. Bmc Endocr. Disord. 2014, 14, 56. [Google Scholar] [CrossRef] [Green Version]
- Regione Lombardia. DELIBERAZIONE N° XI/2906 Seduta del 08/03/2020. Available online: https://www.regione.lombardia.it/wps/wcm/connect/5e0deec4-caca-409c-825b-25f781d8756c/DGR+2906+8+marzo+2020.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-5e0deec4-caca-409c-825b-25f781d8756c-n7b4lOB (accessed on 24 February 2021).
- Ministero della Salute. Raccolta Degli Atti Recanti Misure Urgenti in Materia di Contenimento e Gestione Dell’emergenza Epidemiologica da COVID-19. Gazzetta Ufficiale. Updated 2021. Available online: https://www.gazzettaufficiale.it/attiAssociati/1?areaNode=17 (accessed on 23 February 2021).
- Stewart, D.W.; Shamdasani, P. Online focus groups. J. Advert. 2016, 46, 48–60. [Google Scholar] [CrossRef]
- Lange, J. Review: Richard A. Krueger & Mary Anne Casey (2000). Focus groups. A practical guide for applied research (3rd edition). Forum Qual. Soz. Forum: Qual. Soc. Res. 2002, 3. [Google Scholar] [CrossRef]
- Nyumba, T.O.; Wilson, K.; Derrick, C.J.; Mukherjee, N. The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods Ecol. Evol. 2018, 9, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, A.L.; Cooney, E.E.; Chaudhry, A.; Reisner, S.L. Computer-mediated communication to facilitate synchronous online focus group discussions: Feasibility study for qualitative HIV research among transgender women across the United States. J. Med. Internet Res. 2019, 21, e12569. [Google Scholar] [CrossRef]
- Guest, C.; Ricciardi, W.; Kawachi, I.; Lang, I. Oxford Handbook of Public Health Practice; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Protezione Civile. COVID 19 Situazione Italia. Available online: http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1 (accessed on 17 July 2020).
- L’Istituto Nazionale di Statistica (Istat). Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 (accessed on 8 February 2021).
- Ministero della Salute. Linee di Indirizzo Organizzative per il Potenziamento Della Rete Ospedaliera per Emergenza Covid-19. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2020&codLeg=74348&parte=1%20&serie=null (accessed on 8 February 2021).
- Ministero della Salute. DECRETO 2 Aprile 2015, n. 70. Regolamento Recante Definizione Degli Standard Qualitativi, Strutturali, Tecnologici e Quantitativi Relativi All’Assistenza Ospedaliera. Available online: http://www.regioni.it/news/2015/06/05/d-m-7002-04-2015-regolamento-recante-definizione-degli-standard-qualitativi-strutturali-tecnologici-e-quantitativi-relativi-allassistenza-ospedaliera-407117/ (accessed on 9 February 2021).
- Regione Veneto. Procedura Regionale Nuovo Coronavirus (SARS-CoV-2) Rev. 03 del 13.03.2020. Available online: https://hsancamillo.it/wp-content/uploads/2020/03/Procedura-regionale-Covid-19-rev._03-13.3.2020.pdf (accessed on 9 February 2021).
- Yu, X.; Yang, R. COVID-19 transmission through asymptomatic carriers is a challenge to containment. Influenza Other Respir. Viruses 2020. [Google Scholar] [CrossRef] [Green Version]
- Quotidiano Sanità. “Griglia Lea 2018. Emilia Romagna, Veneto e Trento, le migliori. Le peggiori, Bolzano, Molise e Calabria. Le Maggiori Carenze Nell’Assistenza Territoriale. I Dati Dell’Ultimo Rapporto”. Available online: http://www.quotidianosanita.it/allegati/allegato6001007.pdf (accessed on 20 February 2021).
- Ministero della Salute. Decreto del 12 Marzo 2019. “Nuovo Sistema Di Garanzia Per Il Monitoraggio Dell’assistenza Sanitaria”. Available online: https://www.gazzettaufficiale.it/eli/id/2019/06/14/19A03764/sg (accessed on 20 February 2021).
- Ministero della Salute, Mantenimento dell’Erogazione dei LEA-Griglia LEA. Available online: http://www.salute.gov.it/portale/lea/dettaglioContenutiLea.jsp?lingua=italiano&id=4747&area=Lea&menu=monitoraggioLea (accessed on 14 December 2020).
- Callaway, E.; Ledford, H.; Viglione, G.; Watson, T.; Witze, A. COVID and 2020: An extraordinary year for science. Nature 2020, 588, 550–552. [Google Scholar] [CrossRef]
- Marvaldi, M.; Mallet, J.; Dubertret, C.; Moro, M.R.; Guessoum, S.B. Anxiety, depression, trauma-related, and sleep disorders among healthcare workers duirng the covid-19 pandemic: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What Next? Lancet 2020, 395. [Google Scholar] [CrossRef]
- Paranjape, N.; Staples, L.L.; Stradwick, C.Y.; Ray, H.G.; Saldanha, I.J. Development and validation of a predictive model for critical illness in adult patients requiring hospitalization for COVID-19. PLoS ONE 2021, 16, e0248891. [Google Scholar] [CrossRef] [PubMed]
- Caramello, V.; Maciotta, A.; De Salve, A.V.; Gobbi, V.; Ruffino, T.M.; Mazzetti, G.; Ricagni, L.; Ling, C.; Arione, R.; Boccuzzi, A.; et al. Clinical characteristics and management of covid-19 patients accessing the emergency department in a hospital in northern italy in march and april 2020. Epidemiol. E Prev. 2020, 44 (Suppl. S2), 208–215. [Google Scholar] [CrossRef]
- Lavezzo, E.; Franchin, E.; Ciavarella, C.; Cuomo-Dannenburg, G.; Barzon, L.; Del Vecchio, C.; Rossi, L.; Manganelli, R.; Loregian, A.; Navarin, N.; et al. Suppression of a SARS-CoV-2 Outbreak in the Italian Municipality of Vo’. Nature 2020, 584, 425–429. [Google Scholar] [CrossRef]
- Quotidianosanita.it, “Coronavirus. La Sanità Italiana Divisa Anche Su Come Combatterlo. A Confronto i Modelli di Assistenza di Lombardia, Veneto, Piemonte, Emilia Romagna e Lazio. Il Report di Altems”. Available online: https://www.quotidianosanita.it/studi-e-analisi/articolo.php?articolo_id=83813 (accessed on 22 November 2020).
- The Guardian, 20 Marzo 2020. In one Italian Town, We Showed Mass Testing Could Eradicate the Coronavirus. Available online: https://www.theguardian.com/commentisfree/2020/mar/20/eradicated-coronavirus-mass-testing-covid-19-italy-vo (accessed on 24 October 2020).
- Huff, H.V.; Singh, A. Asymptomatic transmission during the COVID-19 pandemic and implications for public health strategies. Clin. Infect. Dis. 2020, 71, 2752–2756. [Google Scholar] [CrossRef]
- Center for Biosecurity September 8, 2011. Crossroads in Biosecurity: Steps to Strengthen U.S. Preparedness. Available online: https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2011/2011-09-08-Crossroads-in-Biosecurity.pdf (accessed on 15 November 2020).
- Alta Scuola di Economia e Management dei Sistemi Sanitari. Instant REPORT#6: 8 Maggio 2020. Analisi dei Modelli Organizzativi di Risposta al Covid-19. Available online: https://altems.unicatt.it/altems-6REPORT%20ALTEMS.pdf (accessed on 17 November 2020).
- L’Istituto Nazionale di Statistica (Istat). Impatto dell’Epidemia Covid-19 Sulla Mortalità Totale Della Popolazione Residente Primo Quadrimestre 2020. Available online: https://www.istat.it/it/files/2020/06/Rapp_Istat_Iss_3Giugno.pdf (accessed on 18 November 2020).
- American University of Beirut. K2P Covid-19 Rapid Response Series—Suppressing Covid-19 Epidemic through Community-Centered Care Approach. Available online: https://www.aub.edu.lb/k2p/Documents/K2P%20Corona%20Rapid%20Response%20Series%20Suppressing%20COVID19%20Epidemic%20through%20community%20centered%20approach.pdf (accessed on 19 November 2020).
- Qualls, N.; Levitt, A.; Kanade, N.; Wright-Jegede, N.; Dopson, S.; Biggerstaff, M.; Reed, C.; Uzicanin, A.; Levitt, A.; Dopson, S.; et al. Community mitigation guidelines to prevent pandemic influenza—United States, 2017. MMWR Recomm. Rep. 2017, 66, 1–34. [Google Scholar] [CrossRef]
- Rugarabamu, S.; Mboera, L.; Rweyemamu, M.; Mwanyika, G.; Lutwama, J.; Paweska, J.; Misinzo, G. Forty-two years of responding to ebola virus outbreaks in Sub-Saharan Africa: A review. BMJ Glob. Health 2020, 5, e001955. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, S.A.; McLean, K.E.; McKune, S.L.; Bardosh, K.L.; Fallah, M.; Monger, J.; Tehoungue, K.; Omidian, P.A. Community-centered responses to ebola in urban Liberia: The view from below. PLoS Negl. Trop. Dis. 2015, 9, e0003706. [Google Scholar] [CrossRef] [Green Version]
- Rapporto Osservasalute 2019, Stato di Salute e Qualità dell’Assistenza Nelle Regioni Italiane. In Osservatorio Nazionale Sulla Salute Nelle Regione Italiane; Università Cattolica: Roma, Italy, 2019.
- Ferguson, N.M.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G.; et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. IMP Coll. Lond. 2020. [Google Scholar] [CrossRef]
- Brenna, E. Quasi-market and cost-containment in beveridge systems: The lombardy model of Italy. Health Policy (Amst. Neth.) 2011, 103, 209–218. [Google Scholar] [CrossRef]
- Toniolo, F.; Mantoan, D.; Maresso, A. Veneto region, Italy. Health system review. Health Syst. Transit. 2012, 14, 1–138. [Google Scholar]
- Del Vecchio, M.; Fenech, L.; Prenestini, A. Private health care expenditure and quality in beveridge systems: Cross-regional differences in the Italian NHS. Health Policy 2015, 119, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, M.; Hitiris, T. The regional impact of health care expenditure: The case of Italy. Appl. Econ. 2002, 34, 1829–1836. [Google Scholar] [CrossRef]
- Cepiku, D.; Giordano, F.; Bovaird, T.; Loeffler, E. New development: Managing the Covid-19 pandemic—From a hospital-centred model of care to a community co-production approach. Public Money Manag. 2020, 1–4. [Google Scholar] [CrossRef]
09-Mar | 16-Mar | 23-Mar | 30-Mar | 06-Apr | 13-Apr | 20-Apr | 27-Apr | 04-Mag | |
---|---|---|---|---|---|---|---|---|---|
Piemonte | 0.08 | 0.34 | 1.06 | 1.78 | 2.42 | 2.95 | 3.39 | 3.60 | 3.57 |
Valle d’Aosta | 0.11 | 0.81 | 2.85 | 4.16 | 4.64 | 4.58 | 4.25 | 1.83 | 0.88 |
Lombardia | 0.42 | 1.09 | 1.88 | 2.50 | 2.81 | 3.16 | 3.42 | 3.53 | 3.59 |
Veneto | 0.15 | 0.47 | 1.02 | 1.55 | 1.98 | 2.20 | 2.08 | 1.82 | 1.47 |
FVG | 0.07 | 0.29 | 0.65 | 0.95 | 1.14 | 1.05 | 1.07 | 1.02 | 0.86 |
Liguria | 0.07 | 0.38 | 1.00 | 1.56 | 2.04 | 2.22 | 2.28 | 2.31 | 2.28 |
Emilia-Romagna | 0.28 | 0.70 | 1.58 | 2.40 | 2.89 | 3.06 | 3.00 | 2.69 | 1.99 |
Toscana | 0.06 | 0.24 | 0.63 | 1.08 | 1.44 | 1.69 | 1.75 | 1.61 | 1.42 |
Umbria | 0.04 | 0.20 | 0.65 | 0.99 | 1.00 | 0.74 | 0.48 | 0.33 | 0.21 |
Marche | 0.22 | 0.78 | 1.55 | 2.14 | 2.39 | 2.07 | 2.12 | 2.19 | 2.12 |
Lazio | 0.02 | 0.08 | 0.24 | 0.43 | 0.57 | 0.68 | 0.76 | 0.79 | 0.76 |
Abruzzo | 0.02 | 0.14 | 0.47 | 0.89 | 1.11 | 1.37 | 1.58 | 1.56 | 1.42 |
Molise | 0.05 | 0.06 | 0.17 | 0.37 | 0.60 | 0.67 | 0.70 | 0.66 | 0.60 |
Campania | 0.02 | 0.06 | 0.16 | 0.30 | 0.47 | 0.54 | 0.53 | 0.50 | 0.46 |
Puglia | 0.01 | 0.06 | 0.21 | 0.39 | 0.53 | 0.63 | 0.71 | 0.74 | 0.74 |
Basilicata | 0.01 | 0.03 | 0.16 | 0.37 | 0.47 | 0.49 | 0.44 | 0.38 | 0.33 |
Calabria | 0.01 | 0.05 | 0.15 | 0.31 | 0.38 | 0.42 | 0.44 | 0.41 | 0.36 |
Sicilia | 0.01 | 0.04 | 0.14 | 0.29 | 0.37 | 0.42 | 0.46 | 0.44 | 0.45 |
Sardegna | 0.01 | 0.06 | 0.22 | 0.38 | 0.51 | 0.56 | 0.53 | 0.48 | 0.41 |
P.A. Bolzano | 0.05 | 0.47 | 1.27 | 1.99 | 2.36 | 2.81 | 2.90 | 1.77 | 1.20 |
P.A. Trento | 0.07 | 0.64 | 1.66 | 2.48 | 3.37 | 3.81 | 3.54 | 3.00 | 2.09 |
09-Mar | 16-Mar | 23-Mar | 30-Mar | 06-Apr | 13-Apr | 20-Apr | 27-Apr | 04-Mag | |
---|---|---|---|---|---|---|---|---|---|
Piemonte | 0.43 | 1.30 | 3.21 | 5.97 | 9.73 | 16.03 | 23.43 | 32.52 | 41.10 |
Valle d’Aosta | 0.53 | 2.63 | 8.48 | 12.35 | 20.74 | 29.18 | 38.31 | 52.23 | 66.34 |
Lombardia | 2.03 | 4.31 | 7.33 | 11.11 | 15.45 | 20.95 | 27.08 | 34.38 | 41.86 |
Veneto | 3.45 | 7.05 | 12.73 | 20.64 | 30.22 | 41.68 | 53.66 | 65.96 | 78.86 |
FVG | 1.12 | 3.54 | 6.33 | 11.78 | 18.79 | 25.90 | 38.41 | 51.24 | 63.31 |
Liguria | 0.40 | 1.49 | 3.61 | 6.40 | 10.31 | 15.23 | 21.56 | 28.94 | 36.85 |
Emilia-Romagna | 1.13 | 2.94 | 6.97 | 12.01 | 16.25 | 22.20 | 29.19 | 37.32 | 45.14 |
Toscana | 0.56 | 1.63 | 3.95 | 8.32 | 14.59 | 21.90 | 28.90 | 35.35 | 41.75 |
Umbria | 0.25 | 1.33 | 4.20 | 9.32 | 14.73 | 21.65 | 29.67 | 38.17 | 45.39 |
Marche | 0.82 | 2.13 | 4.51 | 7.30 | 10.54 | 17.26 | 28.39 | 35.23 | 43.49 |
Lazio | 0.45 | 1.58 | 3.13 | 5.54 | 8.38 | 12.46 | 16.83 | 21.78 | 26.74 |
Abruzzo | 0.20 | 1.23 | 2.99 | 6.34 | 11.03 | 16.09 | 22.04 | 26.81 | 32.16 |
Molise | 0.60 | 0.95 | 1.79 | 3.24 | 5.39 | 8.36 | 12.67 | 18.74 | 24.49 |
Campania | 0.18 | 0.43 | 1.01 | 2.30 | 4.29 | 6.43 | 8.92 | 12.05 | 15.78 |
Puglia | 0.18 | 0.62 | 1.73 | 3.35 | 5.52 | 8.09 | 11.20 | 14.49 | 17.15 |
Basilicata | 0.23 | 0.41 | 1.26 | 3.31 | 5.51 | 8.22 | 12.64 | 19.02 | 26.87 |
Calabria | 0.12 | 0.60 | 2.16 | 4.70 | 7.19 | 9.82 | 12.98 | 17.01 | 20.96 |
Sicilia | 0.18 | 0.56 | 1.34 | 3.03 | 4.82 | 7.59 | 10.77 | 14.67 | 18.12 |
Sardegna | 0.11 | 0.51 | 1.63 | 3.05 | 4.68 | 6.94 | 9.56 | 13.46 | 17.58 |
P.A. Bolzano | 0.14 | 3.55 | 11.36 | 19.97 | 31.61 | 44.84 | 58.37 | 72.08 | 84.16 |
P.A. Trento | 0.59 | 2.48 | 6.15 | 11.94 | 20.81 | 33.48 | 46.71 | 60.53 | 77.13 |
09-Mar | 16-Mar | 23-Mar | 30-Mar | 06-Apr | 13-Apr | 20-Apr | 27-Apr | 04-Mag | ICU Beds/105 in | |
---|---|---|---|---|---|---|---|---|---|---|
Piemonte | 16.93% | 57.74% | 103.75% | 136.87% | 133.60% | 114.68% | 91.44% | 65.75% | 49.75% | 7.6 |
Valle d’Aosta | 0.00% | 38.75% | 197.50% | 259.38% | 208.13% | 146.25% | 87.50% | 60.63% | 25.00% | 8.0 |
Lombardia | 51.59% | 95.80% | 135.82% | 154.19% | 152.59% | 132.08% | 103.16% | 78.98% | 60.57% | 8.6 |
Veneto | 11.08% | 31.22% | 56.84% | 71.20% | 63.17% | 48.48% | 36.01% | 24.72% | 20.24% | 10.1 |
FVG | 2.45% | 15.00% | 37.29% | 49.74% | 38.85% | 23.49% | 18.80% | 10.99% | 3.65% | 9.9 |
Liguria | 10.73% | 42.53% | 76.25% | 95.69% | 89.65% | 75.31% | 54.97% | 44.55% | 37.33% | 11.8 |
Emilia-Romagna | 19.21% | 43.85% | 62.22% | 76.36% | 81.68% | 73.91% | 63.70% | 53.19% | 42.79% | 10.1 |
Toscana | 6.07% | 32.20% | 61.55% | 75.82% | 73.01% | 61.23% | 49.06% | 40.39% | 28.94% | 10.1 |
Umbria | 3.93% | 22.95% | 55.18% | 64.82% | 62.32% | 53.93% | 38.04% | 24.02% | 16.96% | 8.0 |
Marche | 42.01% | 92.99% | 126.90% | 145.27% | 124.62% | 96.14% | 70.92% | 49.40% | 37.61% | 7.6 |
Lazio | 1.98% | 6.09% | 15.38% | 26.94% | 34.14% | 34.98% | 32.46% | 26.01% | 16.48% | 9.9 |
Abruzzo | 2.90% | 25.36% | 42.89% | 57.27% | 54.12% | 41.92% | 30.64% | 18.34% | 11.33% | 9.5 |
Molise | 7.92% | 15.42% | 22.92% | 27.92% | 17.71% | 13.33% | 8.96% | 3.33% | 2.71% | 10.0 |
Campania | 2.05% | 6.77% | 34.61% | 38.49% | 31.12% | 24.63% | 18.32% | 11.70% | 7.85% | 5.9 |
Puglia | 1.36% | 3.89% | 15.69% | 33.84% | 37.81% | 22.88% | 20.48% | 16.12% | 12.69% | 7.7 |
Basilicata | 0.38% | 4.34% | 22.58% | 35.59% | 36.35% | 24.49% | 15.18% | 13.14% | 6.38% | 8.9 |
Calabria | 0.51% | 5.22% | 13.31% | 12.71% | 9.80% | 8.60% | 4.67% | 4.49% | 2.53% | 7.7 |
Sicilia | 0.19% | 4.96% | 14.22% | 17.39% | 17.30% | 12.65% | 9.33% | 8.07% | 6.49% | 8.6 |
Sardegna | 0.00% | 1.63% | 13.15% | 18.19% | 19.40% | 19.03% | 15.95% | 13.76% | 7.56% | 8.3 |
P.A. Bolzano | 2.53% | 27.36% | 92.74% | 155.91% | 157.94% | 115.54% | 58.78% | 39.86% | 28.72% | 6.9 |
P.A. Trento | 7.42% | 59.18% | 151.76% | 237.70% | 245.12% | 176.17% | 121.48% | 73.63% | 50.39% | 5.9 |
09-Mar | 16-Mar | 23-Mar | 30-Mar | 06-Apr | 13-Apr | 20-Apr | 27-Apr | 04-Mag | |
---|---|---|---|---|---|---|---|---|---|
Piemonte | 81.52% | 89.10% | 56.00% | 45.93% | 37.61% | 29.59% | 24.03% | 19.41% | 16.49% |
Valle d’Aosta | 16.89% | 28.82% | 24.26% | 22.23% | 21.35% | 22.14% | 20.57% | 38.60% | 61.45% |
Lombardia | 77.03% | 63.97% | 55.62% | 51.77% | 46.94% | 41.33% | 31.84% | 23.86% | 19.10% |
Veneto | 33.67% | 28.80% | 29.62% | 26.20% | 20.24% | 15.55% | 14.12% | 13.59% | 14.49% |
FVG | 22.29% | 33.81% | 28.70% | 24.59% | 16.66% | 15.17% | 12.52% | 11.64% | 12.50% |
Liguria | 68.15% | 62.44% | 59.48% | 53.70% | 41.29% | 34.09% | 28.26% | 23.10% | 19.28% |
Emilia-Romagna | 53.89% | 51.18% | 42.84% | 38.33% | 32.31% | 27.86% | 25.39% | 23.71% | 24.10% |
Toscana | 51.88% | 41.27% | 45.30% | 34.81% | 25.93% | 19.52% | 15.90% | 13.45% | 11.58% |
Umbria | 22.91% | 29.07% | 25.48% | 24.82% | 23.29% | 25.76% | 32.14% | 36.36% | 37.95% |
Marche | 58.06% | 54.75% | 42.47% | 35.50% | 31.10% | 33.44% | 27.06% | 21.57% | 13.33% |
Lazio | 66.78% | 63.97% | 56.93% | 49.63% | 43.51% | 38.52% | 35.81% | 35.03% | 32.59% |
Abruzzo | 77.85% | 63.28% | 46.10% | 34.46% | 28.22% | 22.07% | 17.45% | 16.93% | 16.77% |
Molise | 41.56% | 54.85% | 59.93% | 32.80% | 20.96% | 15.52% | 13.47% | 10.07% | 5.61% |
Campania | 37.62% | 35.53% | 42.73% | 35.38% | 26.19% | 22.00% | 21.03% | 19.99% | 17.92% |
Puglia | 57.78% | 54.57% | 40.01% | 44.47% | 34.86% | 27.13% | 22.90% | 17.28% | 14.77% |
Basilicata | 33.72% | 30.53% | 29.16% | 25.18% | 24.62% | 27.08% | 27.86% | 29.42% | 28.86% |
Calabria | 70.69% | 48.80% | 36.39% | 25.25% | 26.03% | 21.74% | 17.64% | 15.57% | 14.34% |
Sicilia | 32.26% | 46.01% | 43.01% | 39.06% | 34.81% | 29.54% | 24.97% | 21.77% | 18.37% |
Sardegna | 37.71% | 32.23% | 25.53% | 21.54% | 17.99% | 14.94% | 15.47% | 14.52% | 15.15% |
P.A. Bolzano | 39.60% | 26.36% | 27.95% | 28.31% | 26.25% | 15.78% | 11.93% | 16.21% | 17.85% |
P.A. Trento | 42.41% | 31.84% | 34.39% | 31.54% | 23.48% | 18.27% | 15.74% | 13.14% | 12.80% |
Primary Care and Community Health Services Score | Swabs/1000 in | Currently Hospitalized Cases/Currently Confirmed Cases | |
---|---|---|---|
Piemonte | 88.31 | 14.86 | 44.41% |
Lombardia | 83.44 | 18.28 | 45.72% |
Veneto | 94.65 | 34.92 | 21.81% |
Liguria | 86.84 | 13.87 | 43.31% |
Emilia-Romagna | 94.32 | 19.24 | 35.51% |
Marche | 76.7 | 16.63 | 35.25% |
Toscana | 89.79 | 17.44 | 28.85% |
Pearson | 0.521 | −0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Specchia, M.L.; Di Pilla, A.; Sapienza, M.; Riccardi, M.T.; Cicchetti, A.; Damiani, G.; Group, I.R. Dealing with COVID-19 Epidemic in Italy: Responses from Regional Organizational Models during the First Phase of the Epidemic. Int. J. Environ. Res. Public Health 2021, 18, 5008. https://doi.org/10.3390/ijerph18095008
Specchia ML, Di Pilla A, Sapienza M, Riccardi MT, Cicchetti A, Damiani G, Group IR. Dealing with COVID-19 Epidemic in Italy: Responses from Regional Organizational Models during the First Phase of the Epidemic. International Journal of Environmental Research and Public Health. 2021; 18(9):5008. https://doi.org/10.3390/ijerph18095008
Chicago/Turabian StyleSpecchia, Maria Lucia, Andrea Di Pilla, Martina Sapienza, Maria Teresa Riccardi, Americo Cicchetti, Gianfranco Damiani, and Instant Report Group. 2021. "Dealing with COVID-19 Epidemic in Italy: Responses from Regional Organizational Models during the First Phase of the Epidemic" International Journal of Environmental Research and Public Health 18, no. 9: 5008. https://doi.org/10.3390/ijerph18095008
APA StyleSpecchia, M. L., Di Pilla, A., Sapienza, M., Riccardi, M. T., Cicchetti, A., Damiani, G., & Group, I. R. (2021). Dealing with COVID-19 Epidemic in Italy: Responses from Regional Organizational Models during the First Phase of the Epidemic. International Journal of Environmental Research and Public Health, 18(9), 5008. https://doi.org/10.3390/ijerph18095008