High Carbohydrate Diet Is Associated with Severe Clinical Indicators, but Not with Nutrition Knowledge Score in Patients with Multiple Myeloma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Samples
2.2. Clinical and Biological Evaluation
2.3. Nutritional Assessment
2.4. Nutrition Knowledge Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 9 February 2021).
- Padala, S.; Barsouk, A.; Barsouk, A.; Rawla, P.; Vakiti, A.; Kolhe, R.; Kota, V.; Ajebo, G. Epidemiology, Staging, and Management of Multiple Myeloma. Med. Sci. 2021, 9, 3. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Hoering, A.; Cavo, M.; Miguel, J.S.; Goldschimdt, H.; Hajek, R.; Turesson, I.; Lahuerta, J.J.; Attal, M.; Barlogie, B.; et al. Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma—An IMWG Research Project. Blood Cancer J. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thordardottir, M.; Lindqvist, E.K.; Lund, S.H.; Costello, R.; Burton, D.; Steingrimsdottir, L.; Korde, N.; Mailankody, S.; Eiriksdottir, G.; Launer, L.J.; et al. Dietary intake is associated with risk of multiple myeloma and its precursor disease. PLoS ONE 2018, 13, e0206047. [Google Scholar] [CrossRef] [PubMed]
- Fritschi, L.; Ambrosini, G.L.; Kliewer, E.V.; Johnson, K.C. Canadian Cancer Registries Epidemiologic Research Group. Dietary fish intake and risk of leukaemia, multiple myeloma, and non-Hodgkin lymphoma. Cancer Epidemiol. Prev. Biomark. 2004, 13, 532–537. [Google Scholar]
- Andreotti, G.; Birmann, B.; De Roos, A.J.; Spinelli, J.; Cozen, W.; Camp, N.J.; Moysich, K.; Chiu, B.; Steplowski, E.; Krzystan, J.; et al. A Pooled Analysis of Alcohol Consumption and Risk of Multiple Myeloma in the International Multiple Myeloma Consortium. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1620–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schernhammer, E.S.; Bertrand, K.; Birmann, B.M.; Sampson, L.; Willett, W.C.; Feskanich, D. Consumption of artificial sweetener- and sugar-containing soda and risk of lymphoma and leukemia in men and women. Am. J. Clin. Nutr. 2012, 96, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Fung, T.T.; Tabung, F.K.; Marinac, C.R.; Devore, E.E.; Rosner, B.A.; Ghobrial, I.M.; Colditz, G.A.; Giovannucci, E.L.; Birmann, B.M. Prediagnosis dietary pattern and survival in patients with multiple myeloma. Int. J. Cancer 2020, 147, 1823–1830. [Google Scholar] [CrossRef]
- Viechtbauer, W.; Smits, L.; Kotz, D.; Budé, L.; Spigt, M.; Serroyen, J.; Crutzen, R. A simple formula for the calculation of sample size in pilot studies. J. Clin. Epidemiol. 2015, 68, 1375–1379. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef]
- Baumgarten, M.; Gehr, T. Chronic kidney disease: Detection and evaluation. Am. Fam. Physician 2011, 84, 1138–1148. [Google Scholar]
- Jeremiah, M.P.; Unwin, B.K.; Greenawald, M.H.; Casiano, V.E. Diagnosis and Management of Osteoporosis. Am. Fam. Physician. 2015, 92, 261–268. [Google Scholar] [PubMed]
- Ng, C.W.M.; How, C.H.; Ng, Y.P. Major depression in primary care: Making the diagnosis. Singap. Med. J. 2016, 57, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Haftenberger, M.; Heuer, T.; Heidemann, C.; Kube, F.; Krems, C.; Mensink, G.B. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr. J. 2010, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serban, C.; Banu, A.; Putnoky, S.; Butica, S.I.; Niculescu, M.D.; Putnoky, S. Relative validation of a four weeks retrospective food frequency questionnaire versus 7-day paper-based food records in estimating intake of energy and nutrients in adults. Nutr. Diet. Suppl. Dove Press 2021, in press. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Guidance for Industry: Guidelines for Determining Metric Equivalents of Household Measures. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guidelines-determining-metric-equivalents-household-measures (accessed on 19 February 2021).
- Dietary Reference Values for nutrients Summary report. EFSA Support Publ. 2017, 14, e15121E.
- Halton, T.L.; Willett, W.C.; Liu, S.; Manson, J.E.; Albert, C.; Rexrode, K.; Hu, F.B. Low-Carbohydrate-Diet Score and the Risk of Coronary Heart Disease in Women. N. Engl. J. Med. 2006, 355, 1991–2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, L.; Fung, T.T.; Liao, X.; Chiuve, S.E.; Rimm, E.B.; Willett, W.C. Low-carbohydrate diet scores and risk of type 2 diabetes in men. Am. J. Clin. Nutr. 2011, 93, 844–850. [Google Scholar] [CrossRef]
- Putnoky, S.; Banu, A.M.; Moleriu, L.C.; Putnoky, S.; Șerban, D.M.; Niculescu, M.D.; Șerban, C.L. Reliability and validity of a General Nutrition Knowledge Questionnaire for adults in a Romanian population. Eur. J. Clin. Nutr. 2020, 74, 1576–1584. [Google Scholar] [CrossRef]
- Fung, T.T.; van Dam, R.M.; Hankinson, S.E.; Stampfer, M.; Willett, W.C.; Hu, F.B. Low-carbohydrate diets and all-cause and cause-specific mortality: Two cohort studies. Ann. Intern. Med. 2010, 153, 289–298. [Google Scholar] [CrossRef]
- Wardle, J.; Parmenter, K.; Waller, J. Nutrition knowledge and food intake. Appetite 2000, 34, 269–275. [Google Scholar] [CrossRef]
- Hill, C.R.; Blekkenhorst, L.C.; Radavelli-Bagatini, S.; Sim, M.; Woodman, R.J.; Devine, A.; Shaw, J.E.; Hodgson, J.M.; Daly, R.M.; Lewis, J.R. Fruit and Vegetable Knowledge and Intake within an Australian Population: The AusDiab Study. Nutrients 2020, 12, 3628. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, L.; Giskes, K.; Turrell, G. The contribution of three components of nutrition knowledge to socio-economic differences in food purchasing choices. Public Health Nutr. 2013, 17, 1814–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leblanc, V.; Bégin, C.; Corneau, L.; Dodin, S.; Lemieux, S. Gender differences in dietary intakes: What is the contribution of motivational variables? J. Hum. Nutr. Diet. 2014, 28, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Clifton, P.; Condo, D.; Keogh, J. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets—A systematic review and meta analysis. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 224–235. [Google Scholar] [CrossRef]
- Maula, A.; Kai, J.; Woolley, A.K.; Weng, S.; Dhalwani, N.; Griffiths, F.E.; Khunti, K.; Kendrick, D. Educational weight loss interventions in obese and overweight adults with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabet. Med. 2019, 37, 623–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, R.N.; Mann, N.J.; MacLean, E.; Shaw, J.E. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia 2011, 54, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Huntriss, R.; Campbell, M.; Bedwell, C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 2017, 72, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Noto, H.; Goto, A.; Tsujimoto, T.; Noda, M. Low-Carbohydrate Diets and All-Cause Mortality: A Systematic Review and Meta-Analysis of Observational Studies. PLoS ONE 2013, 8, e55030. [Google Scholar] [CrossRef] [Green Version]
- Lagiou, P.; Sandin, S.; Lof, M.; Trichopoulos, D.; Adami, H.-O.; Weiderpass, E. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: Prospective cohort study. BMJ 2012, 344, e4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fechner, E.; Smeets, E.T.; Schrauwen, P.; Mensink, R.P. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans—A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 991. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Mente, A.; Yusuf, S. Evolving evidence about diet and health. Lancet Public Health 2018, 3, e408–e409. [Google Scholar] [CrossRef] [Green Version]
- Wouters, H.J.; Van Der Klauw, M.M.; De Witte, T.; Stauder, R.; Swinkels, D.W.; Wolffenbuttel, B.H.; Huls, G. Association of anemia with health-related quality of life and survival: A large population-based cohort study. Haematologica 2018, 104, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Banaszkiewicz, M.; Małyszko, J.; Vesole, D.H.; Woziwodzka, K.; Jurczyszyn, A.; Żórawski, M.; Krzanowski, M.; Małyszko, J.; Batko, K.; Kuźniewski, M.; et al. New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. J. Clin. Med. 2019, 8, 1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogia, A.; Sikka, M.; Sharma, S.; Rusia, U. Hemostatic Abnormalities in Multiple Myeloma Patients. Asian Pac. J. Cancer Prev. 2012, 19, 127–130. [Google Scholar]
- Ay, C.; Dunkler, D.; Pirker, R.; Thaler, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012, 97, 1158–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaya, A.; Fujita, S.; Satake, A.; Nakanishi, T.; Azuma, Y.; Tsubokura, Y.; Hotta, M.; Yoshimura, H.; Ishii, K.; Ito, T.; et al. Impact of CRAB Symptoms in Survival of Patients with Symptomatic Myeloma in Novel Agent Era. Hematol. Rep. 2017, 9, 6887. [Google Scholar] [CrossRef] [Green Version]
- Cazaubiel, T.; Mulas, O.; Montes, L.; Schavgoulidze, A.; Avet-Loiseau, H.; Corre, J.; Perrot, A. Risk and Response-Adapted Treatment in Multiple Myeloma. Cancers 2020, 12, 3497. [Google Scholar] [CrossRef]
- Lyratzopoulos, G.; Neal, R.D.; Barbiere, J.M.; Rubin, G.P.; Abel, G. Variation in number of general practitioner consultations before hospital referral for cancer: Findings from the 2010 National Cancer Patient Experience Survey in England. Lancet Oncol. 2012, 13, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Lyratzopoulos, G.; Wardle, J.; Rubin, G. Rethinking diagnostic delay in cancer: How difficult is the diagnosis? BMJ 2014, 349, g7400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshiaris, C. Methods for reducing delays in the diagnosis of multiple myeloma. Int. J. Hematol. Oncol. 2019, 8, IJH13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittelman, M. The Implications of Anemia in Multiple Myeloma. Clin. Lymphoma 2003, 4, S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Maes, K.; Nemeth, E.; Roodman, G.D.; Huston, A.; Esteve, F.; Freytes, C.; Callander, N.; Katodritou, E.; Tussing-Humphreys, L.; Rivera, S.; et al. In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood 2010, 116, 3635–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rozo, M.P.; Van Campen, D.; Miller, D.D. Effects of some carbohydrates on iron absorption. Arch. Latinoam. Nutr. 1986, 36, 688–700. [Google Scholar] [PubMed]
- Wongrakpanich, S.; George, G.; Chaiwatcharayut, W.; Candelario, N.; Mittal, V.; Pomerantz, S.; Varadi, G. Frequency of folate deficiency in multiple myeloma patients: A 10-year retrospective study. Int. J. Lab. Hematol. 2015, 38, e19–e22. [Google Scholar] [CrossRef]
- Chang, J.-S.; Chen, Y.-C.; Owaga, E.; Palupi, K.C.; Pan, W.-H.; Bai, C.-H. Interactive Effects of Dietary Fat/Carbohydrate Ratio and Body Mass Index on Iron Deficiency Anemia among Taiwanese Women. Nutrients 2014, 6, 3929–3941. [Google Scholar] [CrossRef] [Green Version]
- Rho, Y.H.; Zhu, Y.; Choi, H.K. The Epidemiology of Uric Acid and Fructose. Semin. Nephrol. 2011, 31, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Juraschek, S.P.; McAdams-DeMarco, M.; Gelber, A.C.; Sacks, F.M.; Appel, L.J.; White, K.J.; Miller, E.R. Effects of Lowering Glycemic Index of Dietary Carbohydrate on Plasma Uric Acid Levels: The OmniCarb Randomized Clinical Trial. Arthritis Rheumatol. 2015, 68, 1281–1289. [Google Scholar] [CrossRef] [Green Version]
- Rock, C.L.; Doyle, C.; Demark-Wahnefried, W.; Meyerhardt, J.; Courneya, K.S.; Schwartz, A.L. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012, 62, 242–274. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther. 2011, 11, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Pedro, J.M.B.-S.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017, 16, 487–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, F.; Erustes, A.G.; Costa, A.J.; Nascimento, A.C.; Bincoletto, C.; Ureshino, R.P.; Pereira, G.J.S.; Smaili, S.S. Autophagy and intermittent fasting: The connection for cancer therapy? Clinics 2018, 73. [Google Scholar] [CrossRef] [PubMed]
- Alzrigat, M.; Párraga, A.A.; Jernberg-Wiklund, H. Epigenetics in multiple myeloma: From mechanisms to therapy. Semin. Cancer Biol. 2018, 51, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Kadayifci, F.Z.; Zheng, S.; Pan, Y.-X. Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. Int. J. Mol. Sci. 2018, 19, 4055. [Google Scholar] [CrossRef] [Green Version]
- Zintzaras, E.; Giannouli, S.; Rodopoulou, P.; Voulgarelis, M. The role of MTHFR gene in multiple myeloma. J. Hum. Genet. 2008, 53, 499–507. [Google Scholar] [CrossRef]
- Weiner, A.S.; Boyarskikh, U.A.; Voronina, E.N.; Mishukova, O.V.; Filipenko, M.L. Methylenetetrahydrofolate reductase C677T and methionine synthase A2756G polymorphisms influence on leukocyte genomic DNA methylation level. Gene 2014, 533, 168–172. [Google Scholar] [CrossRef]
Clinical Features | Measure | Disease Stages 1 and 2 (n1 = 21) | Disease Stage 3 (n2 = 40) | p-Value | Total | |
---|---|---|---|---|---|---|
Sex F | n (%) * | 12 (57.1%) | 23 (57.5%) | 0.979 | 35 (57.4%) | |
Age (years) | Mean +/− SD ** | 65.1 +/− 11.7 | 65.2 +/− 8.2 | 0.964 | 65.2 +/− 9.5 | |
Body mass index (kg/m2) | Mean +/− SD ** | 26.3 +/− 5.1 | 26.2 +/− 3.7 | 0.917 | 26.3 +/− 4.2 | |
Follow-up since diagnosis (months) | Mean +/− SD ** | 32.9 +/− 19.7 | 22.1 +/− 14.3 | 0.018 | 25.8 +/− 17.0 | |
Blood smear alterations | n (%) * | 7 (33.3%) | 34 (85.0%) | <0.001 | 41 (67.2%) | |
Anemia | n (%) * | 15 (71.4%) | 40 (100.0%) | 0.001 | 55 (90.2%) | |
Hemoglobin (g/dl) | Mean +/− SD ** | 10.9 +/− 1.7 | 7.3 +/− 0.9 | <0.001 | 8.6 +/− 2.1 | |
Hypercalcemia | n (%) * | 6 (28.6%) | 26 (65.0%) | 0.007 | 32 (52.5%) | |
Serum calcium (mg/dL) | Mean +/− SD ** | 10.6 +/− 2.3 | 12.8 +/− 3.1 | 0.004 | 12.0 +/− 3.0 | |
Alkaline Phosphatase (IU/L) | Mean +/− SD ** | 71.9 +/− 18.5 | 116.0 +/− 36.9 | <0.001 | 100.8 +/− 38.0 | |
Beta-2 microglobulin ≥ 3.5 | n (%) * | 13 (61.9%) | 40 (100.0%) | <0.001 | 53 (86.9%) | |
Beta-2 microglobulin (mg/dl) | Mean +/− SD ** | 3.7 +/− 0.9 | 11.2 +/− 3.1 | <0.001 | 8.6 +/− 4.4 | |
Percentage of plasmacytes > 60% | n (%) * | 3 (14.3%) | 28 (70.0%) | <0.001 | 31 (50.8%) | |
Plasmacytes in bone marrow (%) | Mean +/− SD ** | 36.8 +/− 20.6 | 68.1 +/− 16.2 | <0.001 | 57.3 +/− 23.2 | |
Uric acid (mg/dL) | Mean +/− SD ** | 5.1 +/− 1.4 | 7.5 +/− 1.8 | <0.001 | 6.7 +/− 2.0 | |
Creatinine (mg/dL) | Mean +/− SD ** | 1.3 +/− 0.9 | 2.5 +/− 1.3 | <0.001 | 2.1 +/− 1.3 | |
Blood urea nitrogen (mg/dL) | Mean +/− SD ** | 42.4 +/− 17.3 | 67.3 +/− 32.3 | <0.001 | 58.7 +/− 30.4 | |
Albumin (g/L) | Mean +/− SD ** | 59.7 +/− 5.7 | 51.1 +/− 3.9 | <0.001 | 54.0 +/− 6.1 | |
Total protein (g/dL) | Mean +/− SD ** | 6.6 +/− 0.9 | 9.2 +/− 3.8 | <0.001 | 8.3 +/− 3.3 | |
Erythrocyte sedimentation rate (mm/hr) | Mean +/− SD ** | 87.8 +/− 40.9 | 114.6 +/− 38.5 | 0.014 | 105.4 +/− 41.1 | |
C-reactive protein (mg/L) | Mean +/− SD ** | 8.5 +/− 9.8 | 21.7 +/− 14.4 | <0.001 | 17.2 +/− 14.4 | |
LDH (U/L) | Mean +/− SD ** | 226.0 +/− 63.0 | 359.5 +/− 121.8 | <0.001 | 313.6 +/− 122.7 | |
Fibrinogen (mg/dL) | Mean +/− SD ** | 421.4 +/− 123.6 | 507.5 +/− 152.6 | 0.030 | 477.8 +/− 148.1 | |
D-dimers (ng/mL) | Mean +/− SD ** | 220.7 +/− 59.7 | 340.4 +/− 118.4 | <0.001 | 299.1 +/− 116.5 | |
Serum-free light chain | Kappa | n (%) * | 16 (76.2%) | 26 (65.0%) | 0.370 | 42 (68.9%) |
Lambda | 5 (23.8%) | 14 (35.0%) | 19 (31.1%) | |||
Immunoglobulin type | IgG | n (%) * | 15 (71.4%) | 23 (57.5%) | 0.429 | 38 (62.3%) |
IgA | 5 (23.8%) | 16 (40.0%) | 21 (34.4%) | |||
IgM | 1 (4.8%) | 1 (2.5%) | 2 (3.3%) | |||
Infections | n (%) * | 2 (9.5%) | 7 (17.5%) | 0.479 | 9 (14.8%) | |
Myelosuppression | n (%) * | 0 (0.0%) | 10 (25.0%) | 0.011 | 10 (16.4%) | |
Chronic kidney disease | n (%) * | 3 (14.3%) | 21 (52.5%) | 0.004 | 24 (39.3%) | |
Peripheral neuropathy | n (%) * | 0 (0.0%) | 31 (77.5%) | <0.001 | 31 (50.8%) | |
Osteoporosis | n (%) * | 1 (4.8%) | 17 (42.5%) | 0.002 | 18 (29.5%) | |
Depression | n (%) * | 14 (66.7%) | 19 (47.5%) | 0.153 | 33 (54.1%) | |
Constipation/diarrhea | n (%) * | 0 (0.0%) | 16 (40.0%) | 0.001 | 16 (26.2%) | |
Autologous stem cell transplantation | n (%) * | 0 (0.0%) | 9 (22.5%) | 0.021 | 9 (14.8%) | |
Response | Partial remission | n (%) * | 8 (38.1%) | 15 (37.5%) | 0.370 | 23 (37.7%) |
Total remission | 9 (42.9%) | 10 (25.0%) | 19 (31.1%) | |||
Stable disease | 3 (14.3%) | 9 (22.5%) | 12 (19.7%) | |||
Progressive disease | 1 (4.8%) | 6 (15.0%) | 7 (11.5%) | |||
Therapeutic lines administered | Mean +/− SD *** | 3.2 +/− 1.4 | 2.8 +/− 1.6 | 0.247 | 2.9 +/− 1.5 |
Nutrient Intake | Measure | Tertiles of Energy (kcal) Intake | p-Value for Trend | |||
---|---|---|---|---|---|---|
First (n1 = 20) | Second (n2 = 21) | Third (n3 = 20) | ||||
Energy (kcal) | Mean +/− SD * | 797.6 +/− 139.2 | 1259.1 +/− 164.0 | 2296.0 +/− 1030.9 | <0.001 | |
Protein (g) | Mean +/− SD * | 39.7 +/− 9.1 | 54.8 +/− 11.8 | 92.9 +/− 34.9 | <0.001 | |
Fat total (g) | Mean +/− SD * | 31.1 +/− 6.9 | 44.8 +/− 11.5 | 80.9 +/− 34.3 | <0.001 | |
Carbohydrate (g) | Mean +/− SD * | 89.4 +/− 20.2 | 161.6 +/− 36.8 | 301.5 +/− 188.4 | <0.001 | |
Saturated fat (g) | Mean +/− SD * | 10.1 +/− 2.2 | 15.7 +/− 4.8 | 27.0 +/− 9.9 | <0.001 | |
Fiber total dietary (g) | Mean +/− SD * | 6.9 +/− 2.2 | 13.8 +/− 6.5 | 25.0 +/− 25.7 | 0.002 | |
Alcohol (g) | Mean +/− SD * | 1.2 +/− 2.0 | 1.2 +/− 1.8 | 3.1 +/− 3.6 | 0.036 | |
Percentage of energy from fat | Mean +/− SD * | 35.0 +/− 4.7 | 31.9 +/− 6.3 | 32.7 +/− 9.3 | 0.361 | |
Percentage of energy from carbohydrates | Mean +/− SD * | 44.8 +/− 6.6 | 51.3 +/− 9.3 | 50.8 +/− 12.3 | 0.057 | |
Saturated fat (g)/1000 kcal | Mean +/− SD * | 1.3 +/− 0.1 | 1.2 +/− 0.3 | 1.2 +/− 0.4 | 0.946 | |
Total fiber (g)/1000 kcal | Mean +/− SD * | 8.6 +/− 2.5 | 10.9 +/− 4.7 | 9.9 +/− 5.3 | 0.237 | |
Alcohol (g)/1000 kcal | Mean +/− SD * | 1.5 +/− 2.7 | 1.0 +/− 1.4 | 1.4 +/− 1.8 | 0.648 | |
LCD score | Mean +/− SD ** | 19.9 +/− 5.8 | 14.7 +/− 7.4 | 15.0 +/− 8.3 | 0.045 | |
Protein adequate intake n (%) | n (%) ** | 7 (35.0%) | 14 (66.7%) | 20 (100.0%) | <0.001 | |
Fat adequate intake n (%) | n (%) ** | 10 (50.0%) | 16 (76.2%) | 11 (55.0%) | 0.193 | |
Carbohydrate intake | Below adequate n (%) | n (%) ** | 9 (45.0%) | 6 (28.6%) | 7 (35.0%) | 0.185 |
Adequate n (%) | n (%) ** | 11 (55.0%) | 11 (52.4%) | 7 (35.0%) | ||
Over adequate n (%) | n (%) ** | 0 (0.0%) | 4 (19.0%) | 6 (30.0%) |
Clinical and Intake Variables | Measure | Tertiles Of LCD Score | p−Values | |||
---|---|---|---|---|---|---|
First (High Carb Diet) n1 = 21 | Second (Medium Carb Diet) n2 = 18 | Third (Low Carb Diet) n3 = 22 | ||||
Sex | M | n (%) * | 6 (28.6%) | 5 (27.8%) | 15 (68.2%) | 0.011 |
F | 15 (71.4%) | 13 (72.2%) | 7 (31.8%) | |||
Age | Mean +/− SD ** | 66.3 +/− 7.3 | 61.1 +/− 11.2 | 67.4 +/− 9.1 | 0.087 | |
Follow-up since diagnosis (months) | Mean +/− SD ** | 25.0 +/− 17.7 | 29.6 +/− 16.3 | 23.5 +/− 17.1 | 0.524 | |
Disease stage | 1 and 2 | n (%) * | 2 (9.5%) | 12 (66.7%) | 7 (31.8%) | 0.001 |
3 | 19 (90.5%) a | 6 (33.3%) | 15 (68.2%) | |||
Adequate fat intake | Increased | n (%) * | 1 (4.8%) | 4 (22.2%) | 19 (86.4%) | <0.001 |
Yes | 20 (95.2%) | 14 (77.8%) | 3 (13.6%) a | |||
Adequate carbohydrate intake | Decreased | n (%) * | 0 (0.0%) | 1 (5.6%) | 21 (95.5%) | <0.001 |
Yes | 11 (52.4%) | 17 (94.4%) | 1 (4.5%) | |||
Increased | 10 (47.6%) | 0 (0.0%) | 0 (0.0%) | |||
Adequate protein intake | Decreased | n (%) * | 10 (47.6%) | 6 (33.3%) | 4 (18.2%) | 0.125 |
Yes | 11 (52.4%) | 12 (66.7%) | 18 (81.8%) | |||
Saturated fat (g)/1000 kcal | Mean +/− SD * | 1.0 +/− 0.2 a | 1.2 +/− 0.2 | 1.5 +/− 0.2 a | <0.001 | |
Total fiber (g)/1000 kcal | Mean +/− SD * | 13.0 +/− 5.4 a | 9.8 +/− 2.5 | 6.8 +/− 1.6 a | <0.001 | |
Alcohol (g)/1000 kcal | Mean +/− SD * | 0.7 +/− 1.2 | 0.8 +/− 0.8 | 2.3 +/− 2.8 a | 0.013 | |
Hemoglobin (g/dl) | Mean +/− SD ** | 8.1 +/− 1.7 a | 9.8 +/− 2.2 | 8.0 +/− 2.0 a | 0.010 | |
Alkaline phosphatase (IU/L) | Mean +/− SD ** | 114.4 +/− 31.9 | 88.1 +/− 35.8 | 98.1 +/− 42.2 | 0.088 | |
Erythrocyte sedimentation rate (mm/hr) | Mean +/− SD ** | 104.7 +/− 46.3 | 102.8 +/− 40.9 | 108.1 +/− 37.5 | 0.919 | |
Serum calcium (mg/dL) | Mean +/− SD ** | 12.1 +/− 3.3 | 11.8 +/− 2.7 | 12.2 +/− 3.1 | 0.928 | |
Uric acid (mg/dL) | Mean +/− SD ** | 7.7 +/− 1.8 a | 5.9 +/− 2.2 | 6.3 +/− 1.7 | 0.006 | |
Creatinine (mg/dL) | Mean +/− SD ** | 2.2 +/− 0.9 | 1.6 +/− 1.2 | 2.4 +/− 1.5 | 0.131 | |
Blood urea nitrogen (mg/dL) | Mean +/− SD ** | 58.7 +/− 21.2 | 46.9 +/− 21.0 | 68.4 +/− 40.4 | 0.083 | |
Albumin (g/L) | Mean +/− SD ** | 51.3 +/− 4.1 a | 56.8 +/− 7.6 | 54.1 +/− 5.6 | 0.018 | |
Total proteins (g/dL) | Mean +/− SD ** | 9.9 +/− 3.6 a | 7.2 +/− 2.4 | 7.6 +/− 3.2 | 0.018 | |
Beta-2 microglobulin (mg/dl) | Mean +/− SD ** | 10.7 +/− 4.0 a | 5.9 +/− 3.4 | 8.8 +/− 4.5 | 0.002 | |
C-reactive protein (mg/L) | Mean +/− SD ** | 20.3 +/− 17.7 | 12.0 +/− 9.7 | 18.3 +/− 13.5 | 0.179 | |
Plasmacytes in bone marrow (%) | Mean +/− SD ** | 67.5 +/− 18.5 a | 44.4 +/− 23.5 | 58.2 +/− 22.7 | 0.006 | |
LDH (U/L) | Mean +/− SD ** | 300.7 +/− 104.2 | 276.8 +/− 107.3 | 355.9 +/− 142.0 | 0.106 | |
Fibrinogen (mg/dL) | Mean +/− SD ** | 503.1 +/− 139.9 | 453.5 +/− 149.4 | 473.5 +/− 157.4 | 0.580 | |
D-dimers (ng/mL) | Mean +/− SD ** | 346.0 +/− 122.6 a | 252.4 +/− 114.3 | 292.6 +/− 99.0 | 0.039 | |
Response n (%) | Partial remission | n (%) *** | 9 (42.9%) | 8 (44.4%) | 6 (27.3%) | 0.674 |
Total remission | 4 (19.0%) | 6 (33.3%) | 9 (40.9%) | |||
Stabile disease | 5 (23.8%) | 3 (16.7%) | 4 (18.2%) | |||
Progressive disease | 3 (14.3%) | 1 (5.6%) | 3 (13.6%) | |||
Infections | n (%) * | 6 (28.6%) | 1 (5.6%) | 2 (9.1%) | 0.087 | |
Myelosuppression | n (%) * | 6 (28.6%) | 1 (5.6%) | 3 (13.6%) | 0.144 | |
Chronic kidney disease | n (%) * | 8 (38.1%) | 7 (38.9%) | 9 (40.9%) | 0.982 | |
Peripheral neuropathy | n (%) * | 16 (76.2%) a | 3 (16.7%) | 12 (54.5%) a | 0.001 | |
Osteoporosis | n (%) * | 7 (33.3%) | 4 (22.2%) | 7 (31.8%) | 0.722 | |
Depression | n (%) * | 12 (57.1%) | 10 (55.6%) | 11 (50.0%) | 0.888 | |
Constipation/diarrhea | n (%) * | 7 (33.3%) | 1 (5.6%) | 8 (36.4%) | 0.061 | |
Therapeutic lines | Mean +/− SD * | 2.76 +/− 1.7 | 3.22 +/− 1.4 | 2.86 +/− 1.5 | 0.628 |
Factors | Section 1 Achievement (%)Expert Recommendations | Section 2 Achievement (%)Food Groups | Section 3 Achievement (%) Healthy Food Choices | Section 4 Achievement Diet, Disease and Weight Associations | Total Score Achievement (%) | |
---|---|---|---|---|---|---|
Median achievement | 64.0 +/− 9.4 * | 63.5 +/− 9.2 | 71.6 +/− 13.9 * | 65.0 +/− 11.2 * | 65.2 +/− 7.1 | |
Sex | M | 63.7 +/− 10.3 | 63.1 +/− 8.4 | 71.6 +/− 16.2 | 67.2 +/− 9.3 | 65.5 +/− 7.7 |
F | 64.3 +/− 8.8 | 63.7 +/− 9.8 | 71.6 +/− 12.2 | 63.4 +/− 12.3 | 64.9 +/− 6.8 | |
Age category | ≤65 years | 65.9 +/− 10.4 | 63.8 +/− 10.5 | 73.4 +/− 13.6 | 67.3 +/− 11.0 | 66.5 +/− 7.5 |
>65 years | 62.0 +/− 7.9 | 63.1 +/− 7.8 | 69.7 +/− 14.3 | 62.7 +/− 11.1 | 63.8 +/− 6.6 | |
Education | High school or less | 61.8 +/− 10.2 | 63.9 +/− 9.0 | 73.6 +/− 14.6 | 65.9 +/− 10.1 | 65.4 +/− 7.4 |
At least college degree | 66.5 +/− 7.9 | 63.0 +/− 9.5 | 69.5 +/− 13.1 | 64.0 +/− 12.4 | 64.9 +/− 7.0 | |
Living with underage individuals | Yes | 64.3 +/− 9.3 | 63.7 +/− 9.4 | 71.0 +/− 13.6 | 65.0 +/− 11.2 | 65.2 +/− 7.4 |
No | 61.1 +/− 10.5 | 61.6 +/− 6.4 | 76.9 +/− 16.9 | 65.1 +/− 12.3 | 64.6 +/− 4.9 | |
Percentile group of LCD score | First (high carb) | 62.4 +/− 9.1 | 62.8 +/− 8.0 | 73.3 +/− 12.6 | 61.9 +/− 12.1 | 64.1 +/− 5.2 |
Second (medium) | 67.0 +/− 8.8 | 63.1 +/− 11.7 | 68.8 +/− 13.6 | 65.3 +/− 11.4 | 65.3 +/− 8.6 | |
Third (Low carb) | 63.1 +/− 9.9 | 64.4 +/− 8.2 | 72.4 +/− 15.7 | 67.7 +/− 9.7 | 66.1 +/− 7.6 | |
Anemia | No | 66.7 +/− 7.0 | 60.2 +/− 13.1 | 70.5 +/− 13.2 | 61.9 +/− 6.0 | 63.4 +/− 7.8 |
Yes | 63.7 +/− 9.6 | 63.8 +/− 8.7 | 71.7 +/− 14.1 | 65.4 +/− 11.6 | 65.4 +/− 7.1 | |
Hypercalcemia | No | 65.5 +/− 6.4 | 62.9 +/− 9.4 | 73.2 +/− 13.6 | 63.7 +/− 9.0 | 65.2 +/− 6.8 |
Yes | 62.7 +/− 11.4 | 64.0 +/− 9.0 | 70.2 +/− 14.3 | 66.2 +/− 12.9 | 65.2 +/− 7.6 | |
Chronic kidney disease | No | 65.3 +/− 8.3 | 63.7 +/− 9.4 | 73.0 +/− 13.3 | 66.8 +/− 10.2 | 66.2 +/− 6.8 |
Yes | 62.0 +/− 10.7 | 63.1 +/− 9.0 | 69.6 +/− 15.0 | 62.3 +/− 12.3 | 63.6 +/− 7.5 | |
Infections | No | 65.2 +/− 8.9 | 64.4 +/− 9.1 | 72.0 +/− 13.6 | 65.3 +/− 11.5 | 65.9 +/− 7.2 |
Yes | 57.4 +/− 9.6 | 58.3 +/− 8.4 | 69.2 +/− 16.3 | 63.5 +/− 9.5 | 61.0 +/− 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borsi, E.; Serban, C.L.; Potre, C.; Potre, O.; Putnoky, S.; Samfireag, M.; Tudor, R.; Ionita, I.; Ionita, H. High Carbohydrate Diet Is Associated with Severe Clinical Indicators, but Not with Nutrition Knowledge Score in Patients with Multiple Myeloma. Int. J. Environ. Res. Public Health 2021, 18, 5444. https://doi.org/10.3390/ijerph18105444
Borsi E, Serban CL, Potre C, Potre O, Putnoky S, Samfireag M, Tudor R, Ionita I, Ionita H. High Carbohydrate Diet Is Associated with Severe Clinical Indicators, but Not with Nutrition Knowledge Score in Patients with Multiple Myeloma. International Journal of Environmental Research and Public Health. 2021; 18(10):5444. https://doi.org/10.3390/ijerph18105444
Chicago/Turabian StyleBorsi, Ema, Costela Lacrimioara Serban, Cristina Potre, Ovidiu Potre, Salomeia Putnoky, Miruna Samfireag, Raluca Tudor, Ioana Ionita, and Hortensia Ionita. 2021. "High Carbohydrate Diet Is Associated with Severe Clinical Indicators, but Not with Nutrition Knowledge Score in Patients with Multiple Myeloma" International Journal of Environmental Research and Public Health 18, no. 10: 5444. https://doi.org/10.3390/ijerph18105444
APA StyleBorsi, E., Serban, C. L., Potre, C., Potre, O., Putnoky, S., Samfireag, M., Tudor, R., Ionita, I., & Ionita, H. (2021). High Carbohydrate Diet Is Associated with Severe Clinical Indicators, but Not with Nutrition Knowledge Score in Patients with Multiple Myeloma. International Journal of Environmental Research and Public Health, 18(10), 5444. https://doi.org/10.3390/ijerph18105444