Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP
Abstract
:1. Introduction
2. Material and Methods
2.1. The Analytic Hierarchy Process Overview
- Identification of the problem: Before starting any numerical calculation, it must be verified that the problem in question can be presented as a structured model, where the criteria and the alternatives of the process are identified.
- Selection of criteria: In this stage, the criteria associated with the multi-criteria decision-making process are selected, which will be assessed and weighted in later stages.
- Pairwise comparison of criteria: Each criterion i is compared with criterion j using the relative priority Saaty’s 1–9 scale [58].
- Priority calculation: The weights of each one of the criteria are calculated.
- Coefficient of consistency calculation: This coefficient measures the degree of homogeneity between the judgments issued by the experts or stakeholders of the process. A value less than 0.1 is considered admissible.
2.2. Proposed Methodology: An AHP Modeling Approach
- 1.
- Annual relative irrigation supply, RIS (%), which measures the service delivery performance
- Pe is the annual effective precipitation or rainfall.
- I is the annual irrigation water applied to the crop.
- ETc is the annual crop evapotranspiration calculated according to FAO-56 [63].
- 2.
- Output per unit irrigation delivery, OUI (€/m3). This indicator measures the financial efficiency:
- 3.
- Overall efficiency of the irrigated crop. A physical irrigation water productivity, WUEoverall, was an indicator that was included to account for year-to-year price variation that could be remarkable for certain years. WUEoverall is defined as the ratio between the total annual mass of crop production, including all grades, and the annual volume of irrigation water applied (kg/m3).
- 4.
- The efficiency of the irrigated crop for a first-class yield: As product quality is a key performance indicator, and highly related to irrigation in Mediterranean fruticulture, WUEQuality is defined here as the ratio of the first-class yield measured from the field at harvest and the total volume of irrigation water applied to the crop (kg/m3). This latter indicator is equivalent to the water use efficiency indicator defined by Reference [64].
3. Results
- According to actual weather (rain, temperature, humidity, wind…).
- According to the forecast weather.
- According to the type of crop.
- Own criteria (timing according to personal experience).
- Starting with 2 h/day and increasing until harvest.
- By type of land (observing the soil moisture).
- By the availability of water and price.
- By the age of the crop and expected production.
- By the expected price of the product.
- According to the recommendations of IVIA (Valencian Institute of Agrarian Research) [66].
- Observing the plant appearance.
- Two patterns: before or after harvest.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Questionnaire AHP Criteria Weighting
- Cij = 1: considered equally important criterion i and criterion j
- Cij = 3: criterion i is considered slightly more important than criterion j
- Cij = 5: criterion i is considered considerably more important than criterion j
- Cij = 7: criterion i is considered much more important (or demonstrably more important) than criterion j
- Cij = 9: criterion i is considered absolutely more important than criterion j
- C1: Annual Relative Irrigation Supply, RIS (%)
- C2: Output per unit irrigation delivery, OUI (€/m3)
Which objective do you consider more important? | C1 | C2 | |||
To what extent? | 1 | 3 | 5 | 7 | 9 |
- C1: Annual Relative Irrigation Supply, RIS (%)
- C3: Overall Efficiency of the irrigated crop
Which objective do you consider more important? | C1 | C3 | |||
To what extent? | 1 | 3 | 5 | 7 | 9 |
- C1: Annual Relative Irrigation Supply, RIS (%)
- C4: Efficiency of the irrigated crop for first class yield
Which objective do you consider more important? | C1 | C4 | |||
To what extent? | 1 | 3 | 5 | 7 | 9 |
- C2: Output per unit irrigation delivery, OUI (€/m3)
- C3: Overall Efficiency of the irrigated crop
Which objective do you consider more important? | C2 | C3 | |||
To what extent? | 1 | 3 | 5 | 7 | 9 |
- C2: Output per unit irrigation delivery, OUI (€/m3)
- C4: Efficiency of the irrigated crop for first class yield
Which objective do you consider more important? | C2 | C4 | |||
To what extent? | 1 | 3 | 5 | 7 | 9 |
- C3: Overall Efficiency of the irrigated crop
- C4: Efficiency of the irrigated crop for first class yield
Which objective do you consider more important? | C3 | C4 | |||
To what extent? | 1 | 3 | 5 | 7 | 9 |
References
- FAO FAOSTAT. Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 22 February 2021).
- MAPA (Ministerio de Agricultura Pesca y Alimentación. Subsecretaría de Agricultura Pesca y Alimentación). Encuesta Sobre Superficies y Rendimientos Cultivos. Resultados Nacionales y Autonómicos 2020; MAPA: Madrid, Spain, 2020.
- García-Mollá, M.; Sanchis-Ibor, C.; Avellà-Reus, L.; Albiac, J.; Isidoro, D.; Lecina, S. Spain. In Global Issues in Water Policy; Molle, F., Sanchis-Ibor, C., Avellà-Reus, L., Eds.; Springer: Cham, Switzerland, 2019; Volume 22, pp. 89–121. [Google Scholar]
- MAPA (Ministerio de Agricultura, Pesca y Alimentación. Subsecretaría de Agricultura, Pesca y Alimentación). Encuesta Sobre Superficies y Rendimientos de Cultivos. Informe Sobre Regadíos en España 2019; MAPA: Madrid, Spain, 2019.
- Berbel, J.; Expósito, A.; Gutiérrez-Martín, C.; Mateos, L. Effects of the Irrigation Modernization in Spain 2002–2015. Water Resour. Manag. 2019, 33, 1835–1849. [Google Scholar] [CrossRef]
- Molden, D.J.; Gates, T.K. Performance Measures for Evaluation of Irrigation-Water-Delivery Systems. J. Irrig. Drain. Eng. 1990, 116, 804–823. [Google Scholar] [CrossRef]
- Rao, P.S. Review of Selected Literature on Indicators of Irrigation Performance; International Irrigation Management Institute (IIMI): Colombo, Sri Lanka, 1993. [Google Scholar]
- Bos, M.G. Performance indicators for irrigation and drainage. Irrig. Drain. Syst. 1997, 11, 119–137. [Google Scholar] [CrossRef]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Howell, T.A.; Eisenhauer, D.E. Irrigation Performance Measures: Efficiency and Uniformity. J. Irrig. Drain. Eng. 1997, 123, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Hector, M.M.; Burton, M. Guidelines for Benchmarking Performance in the Irrigation and Drainage Sector; FAO: Rome, Italy, 2001. [Google Scholar]
- Bos, M.G.; Burton, M.A.; Molden, D.J. Irrigation and Drainage Performance Assessment: Practical Guidelines; CABI Publishing: Wallingford, UK, 2005; ISBN 0851999670. [Google Scholar]
- Clemmens, A.J.; Molden, D.J. Water uses and productivity of irrigation systems. Irrig. Sci. 2007, 25, 247–261. [Google Scholar] [CrossRef]
- Mateos, L. Identifying a new paradigm for assessing irrigation system performance. Irrig. Sci. 2008, 27, 25–34. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Camacho, E.; López, R.; Pérez, L.; Roldán, J. Indicators of irrigation performance: A management tool for irrigation districts analysis. ITEA Inf. Técnica Económica Agrar. 2005, 101, 70–82. [Google Scholar]
- Moreno-Pérez, M.F.; Roldán-Cañas, J. Assessment of irrigation water management in the Genil-Cabra (Córdoba, Spain) irrigation district using irrigation indicators. Agric. Water Manag. 2013, 120, 98–106. [Google Scholar] [CrossRef]
- Sánchez, J.A.; Reca, J.; Martínez, J. Irrigation Water Management in a Mediterranean Greenhouse District: Irrigation Adequacy Assessment. Irrig. Drain. 2015, 64, 299–313. [Google Scholar] [CrossRef]
- Soto-García, M.; Martínez-Alvarez, V.; García-Bastida, P.A.; Alcon, F.; Martin-Gorriz, B. Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain. Agric. Water Manag. 2013, 124, 11–19. [Google Scholar] [CrossRef]
- Alcon, F.; García-Bastida, P.A.; Soto-García, M.; Martínez-Alvarez, V.; Martin-Gorriz, B.; Baille, A. Explaining the performance of irrigation communities in a water-scarce region. Irrig. Sci. 2017, 35, 193–203. [Google Scholar] [CrossRef]
- Merchán, D.; Causapé, J.; Abrahão, R.; García-Garizábal, I. Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. I: Water balances and irrigation performance. Agric. Water Manag. 2015, 158, 277–287. [Google Scholar] [CrossRef]
- Ruiz-Canales, A.; Albert-Jover, J.A.; Mora-Gómez, M.; Abadía-Sánchez, R.; Rocamora-Osorio, C. Irrigation characterization using performance indicators of water and energy use in irrigation water user’s associations—A case study in the irrigation water user’s association of Albatera (Alicante) Spain. Acta Hortic. 2011, 889, 529–536. [Google Scholar] [CrossRef]
- Parra, L.; Botella-Campos, M.; Puerto, H.; Roig-Merino, B.; Lloret, J. Evaluating Irrigation Efficiency with Performance Indicators: A Case Study of Citrus in the East of Spain. Agronomy 2020, 10, 1359. [Google Scholar] [CrossRef]
- Kuscu, H.; Boluktepe, F.E.; Demir, A.O. Evaluation Performance of Irrigation Water Management: A case study of the Karacabey irrigation scheme in Turkey. Int. J. Agric. Sci. 2014, 5, 824–831. [Google Scholar]
- Kartal, S.; Değirmenci, H.; Arslan, F. Assessment of irrigation schemes with performance indicators in southeastern irrigation district of Turkey. Tarim Bilim. Derg. 2020, 26, 138–146. [Google Scholar] [CrossRef]
- Awan, U.K.; Tischbein, B.; Conrad, C.; Martius, C.; Hafeez, M. Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin. Water Resour. Manag. 2011, 25, 2467–2485. [Google Scholar] [CrossRef]
- Ghahroodi, E.M.; Noory, H.; Liaghat, A.M. Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran). Agric. Water Manag. 2015, 148, 189–195. [Google Scholar] [CrossRef]
- Abera, A.; Verhoest, N.E.C.; Tilahun, S.A.; Alamirew, T.; Adgo, E.; Moges, M.M.; Nyssen, J. Performance of small-scale irrigation schemes in Lake Tana Basin of Ethiopia: Technical and socio-political attributes. Phys. Geogr. 2019, 40, 227–251. [Google Scholar] [CrossRef]
- Kassa, E.T.; Ayana, M. Hydraulic Performance Assessment of Mychew Small Scale Irrigation Scheme, North Ethiopia. Int. J. Environ. Clim. Chang. 2019, 9, 549–561. [Google Scholar] [CrossRef]
- Hakuzimana, J.; Masasi, B. Performance evaluation of irrigation schemes in Rugeramigozi Marshland, Rwanda. Water Conserv. Manag. 2020, 4, 15–19. [Google Scholar] [CrossRef]
- Al Zayed, I.S.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan. Agric. Syst. 2015, 133, 131–142. [Google Scholar] [CrossRef]
- Matekere, E.C.; Lema, N.M. Performance analysis of public funded irrigation projects in Tanzania. Irrig. Drain. Syst. 2011, 25, 237–253. [Google Scholar] [CrossRef]
- Fan, Y.; Gao, Z.; Wang, S.; Chen, H.; Liu, J. Evaluation of the water allocation and delivery performance of Jiamakou Irrigation Scheme, Shanxi, China. Water 2018, 10, 654. [Google Scholar] [CrossRef] [Green Version]
- Chandran, K.M.; Ambili, G.K. Evaluation of minor irrigation schemes using performance indicators: Case studies from South India. Sustain. Water Resour. Manag. 2016, 2, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Rani, P.; Singh, A. Evaluation of benchmarking indicators of Sanjay Sarovar Irrigation Project, India. Sustain. Water Resour. Manag. 2018, 4, 425–432. [Google Scholar] [CrossRef]
- Rath, A.; Swain, P.C. Evaluation of performance of irrigation canals using benchmarking techniques—A case study of Hirakud dam canal system, Odisha, India. ISH J. Hydraul. Eng. 2020, 26, 51–58. [Google Scholar] [CrossRef]
- De Alwis, S.M.D.L.K.; Wijesekera, N.T.S. Comparison of Performance Assessment Indicators for Evaluation of Irrigation Scheme Performances in Sri Lanka. Eng. J. Inst. Eng. 2011, 44, 39. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.-H.; Hong, E.-M.; Choi, J.-Y. Assessment of water delivery efficiency in irrigation canals using performance indicators. Irrig. Sci. 2016, 34, 129–143. [Google Scholar] [CrossRef]
- Corcoles, J.I.; Frizzone, J.A.; Lima, S.C.R.V.; Mateos, L.; Neale, C.M.U.; Snyder, R.L.; Souza, F. Irrigation Advisory Service and Performance Indicators in Baixo Acaraú Irrigation District, Brazil. Irrig. Drain. 2016, 65, 61–72. [Google Scholar] [CrossRef]
- Altamirano-Aguilar, A.; Valdez-Torres, J.B.; Valdez-Lafarga, C.; León-Balderrama, J.I.; Betancourt-Lozano, M.; Osuna-Enciso, T. Classification and evaluation of the irrigation districts in Mexico based on performance indicators. Tecnol. Cienc. Agua 2017, 8, 79–99. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Camacho-Poyato, E.; López-Luque, R.; Pérez-Urrestarazu, L. Benchmarking and multivariate data analysis techniques forimproving the efficiency of irrigation districts: An application in spain. Agric. Syst. 2008, 96, 250–259. [Google Scholar] [CrossRef]
- Ntantos, P.N.; Karpouzos, D.K. Application of data envelopment analysis and performance indicators to irrigation systems in Thessaloniki Plain (Greece). World Acad. Sci. Eng. Technol. 2010, 4, 714–720. [Google Scholar]
- Zema, D.A.; Nicotra, A.; Mateos, L.; Zimbone, S.M. Improvement of the irrigation performance in Water Users Associations integrating data envelopment analysis and multi-regression models. Agric. Water Manag. 2018, 205, 38–49. [Google Scholar] [CrossRef]
- Muema, F.M.; Home, P.G.; Raude, J.M. Application of benchmarking and principal component analysis in measuring performance of public irrigation schemes in Kenya. Agriculture 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Kartal, S.; Değirmenci, H.; Arslan, F. Ranking irrigation schemes based on principle component analysis in the arid regions of Turkey. Agron. Res. 2019, 17, 456–465. [Google Scholar]
- Zema, D.A.; Filianoti, P.; D’Agostino, D.; Labate, A.; Lucas-Borja, M.E.; Nicotra, A.; Zimbone, S.M.; D’Agostino, D.; Labate, A.; Lucas-Borja, M.E.; et al. Analyzing the Performances of Water User Associations to Increase the Irrigation Sustainability: An Application of Multivariate Statistics to a Case Study in Italy. Sustainability 2020, 12, 6327. [Google Scholar] [CrossRef]
- Shahrokhnia, M.A.; Olyan-Ghiasi, A. Determination of overall water delivery performance based on adequacy, efficiency, equity and dependability in the Doroodzan irrigation network. Irrig. Drain. 2019, 68, 637–645. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Dehnavi, S. Comparative scorecard assessment of urban water pricing policies-The case of Jordan and Iran. Water 2019, 11, 704. [Google Scholar] [CrossRef] [Green Version]
- Asaadi, M.A.; Mortazavi, S.A.; Zamani, O.; Najafi, G.H.; Yusaf, T.; Hoseini, S.S. The impacts of water pricing and non-pricing policies on sustainable water resources management: A case of Ghorveh plain at Kurdistan province, Iran. Energies 2019, 12, 2667. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, L.; Li, T. An Agricultural Interval Two-Stage Fuzzy Differential Water Price Model (ITS-DWPM) for Initial Water Rights Allocation in Hulin, China. Water 2020, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Golabi, M.; Hasili, M.A.; Boroomand Nasab, S. Study and evaluation of irrigation and drainage networks using analytic hierarchy process in Khuzestan province: A virtual water approach. Agric. Water Manag. 2020, 241, 106305. [Google Scholar]
- Alphonce, C.B. Application of the analytic Hierarchy process in agriculture in developing countries. Agric. Syst. 1997, 53, 97–112. [Google Scholar] [CrossRef]
- Karami, E. Appropriateness of farmers’ adoption of irrigation methods: The application of the AHP model. Agric. Syst. 2006, 87, 101–119. [Google Scholar] [CrossRef]
- Neissi, L.; Albaji, M.; Nasab, S.B. Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran. Agric. Water Manag. 2020, 231, 106004. [Google Scholar] [CrossRef]
- Ren, C.; Li, Z.; Zhang, H. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J. Clean. Prod. 2019, 210, 12–24. [Google Scholar] [CrossRef]
- Gao, J.; He, H.; An, Q.; Xie, J.; Cui, Y.; Xie, X. An improved fuzzy analytic hierarchy process for the allocation of water rights to industries in Northeast China. Water 2020, 12, 1719. [Google Scholar] [CrossRef]
- Bozdag, A. Combining AHP with GIS for assessment of irrigation water quality in C ¸ umra irrigation district (Konya), Central Anatolia, Turkey. Environ. Earth Sci. 2015, 73, 8217–8236. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Hao, X. An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China. Agric. Water Manag. 2017, 179, 324–337. [Google Scholar] [CrossRef]
- Okada, H.; Styles, S.W.; Grismer, M.E. Application of the Analytic Hierarchy Process to irrigation project improvement. Agric. Water Manag. 2008, 95, 199–204. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 2000. [Google Scholar]
- Saaty, T. The Analytic Hierarchy Process; Elsevier: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Instituto Valenciano de Investigaciones Económicas. Diagnóstico de la Agricultura y el Desarrollo Rural de la Comunitat Valenciana en el Horizonte 2020; IVIE: Valencia, Spain, 2015. [Google Scholar]
- Reig-Martínez, E.; Picazo-Tadeo, A.J. Analysing farming systems with Data Envelopment Analysis: Citrus farming in Spain. Agric. Syst. 2004, 82, 17–30. [Google Scholar] [CrossRef]
- Poveda-Bautista, R.; Baptista, D.C.; Garca-Melón, M. Setting competitiveness indicators using BSC and ANP. Int. J. Prod. Res. 2012, 50, 4738–4752. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Knox, J.W.; Daccache, A.; Hess, T.M.; Else, M.; Kay, M.; Burton, M.; Thelwall, D.; Malano, H. Benchmarking Agricultural Water Use and Productivity in Key Commodity Crops; Cranfield University: Cranfield, UK, 2013. [Google Scholar]
- Galindo, A.; Collado-González, J.; Griñán, I.; Corell, M.; Centeno, A.; Martín-Palomo, M.J.; Girón, I.F.; Rodríguez, P.; Cruz, Z.N.; Memmi, H.; et al. Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manag. 2018, 202, 311–324. [Google Scholar] [CrossRef]
- IVIA (Valencian Institute of Agrarian Research). Cálculo de Necesidades de Riego. Available online: http://riegos.ivia.es/calculo-de-necesidades-de-riego (accessed on 22 February 2021).
- van der Burg, S.; Wiseman, L.; Krkeljas, J. Trust in farm data sharing: Reflections on the EU code of conduct for agricultural data sharing. Ethics Inf. Technol. 2020, 1–14. [Google Scholar] [CrossRef]
Calculation of Criteria Weights and Consistency Index (Step 4) | : 15.44% : 41.08% : 27.79% : 15.69% C.I: 0.0021 R.I: 0.9 C.C: 0.0024 |
Orchard | Annual Relative Irrigation Supply RIS (%) | Output Per Unit Irrigation Delivery. OUI (€/m3) | Overall Efficiency of the Irrigated Crop. WUEoverall (kg/m3) | Efficiency of the Irrigated Crop for First Class Yield. WUEQuality (kg/m3) |
---|---|---|---|---|
1 | 49.32% | 4.48 € | 14.02 | 9.66 |
2 | 30.59% | 3.51 € | 23.06 | 9.11 |
3 | 33.71% | 2.93 € | 12.87 | 11.95 |
4 | 71.81% | 1.50 € | 6.97 | 5.54 |
5 | 37.49% | 2.57 € | 18.75 | 5.53 |
6 | 34.20% | 2.55 € | 23.41 | 2.71 |
(*) 7 | 10.40% | 7.34 € | 35.64 | 27.36 |
8 | 48.21% | 1.41 € | 10.30 | 3.04 |
9 | 45.36% | 1.37 € | 6.08 | 5.51 |
10 | 21.86% | 2.50 € | 18.25 | 5.53 |
11 | 57.79% | 0.99 € | 8.68 | 0.89 |
12 | 16.41% | 2.25 € | 19.76 | 2.03 |
13 | 26.05% | 1.49 € | 15.31 | 0.55 |
14 | 39.62% | 1.05 € | 6.27 | 3.16 |
(*) 15 | 92.18% | 0.77 € | 5.28 | 1.94 |
16 | 53.49% | 0.83 € | 4.70 | 2.61 |
17 | 32.44% | 1.12 € | 10.44 | 0.55 |
18 | 16.84% | 1.88 € | 18.62 | 1.18 |
19 | 54.78% | 0.68 € | 4.47 | 1.80 |
20 | 16.08% | 1.24 € | 7.04 | 3.91 |
21 | 36.80% | 0.61 € | 5.22 | 0.91 |
22 | 20.49% | 0.83 € | 7.67 | 0.87 |
23 | 23.14% | 0.73 € | 6.90 | 0.64 |
24 | 23.96% | 0.57 € | 2.95 | 1.97 |
Orchard | RIS Z-Score (%) | OUI Z-Score (€/m3) | WUEOverall Z-Score (kg/m3) | WUEQuality Z-Score (kg/m3) | Irrigation Efficiency Index Z-Score (IEIz) | Type of Farmer (Full-Time, Part-Time) | Size of the Orchard (Ha) |
---|---|---|---|---|---|---|---|
1 | 0.877 | 2.687 | 0.401 | 1.876 | 1.65 | FT | 0.497 |
2 | −0.350 | 1.751 | 1.808 | 1.706 | 1.44 | PT | 0.3039 |
3 | −0.145 | 1.196 | 0.222 | 2.587 | 0.94 | FT | 0.9815 |
6 | −0.113 | 0.835 | 1.862 | −0.284 | 0.80 | FT | 1.745 |
5 | 0.102 | 0.854 | 1.138 | 0.593 | 0.78 | FT | 0.5668 |
10 | −0.922 | 0.783 | 1.060 | 0.594 | 0.57 | PT | 0.5314 |
12 | −1.279 | 0.547 | 1.294 | −0.494 | 0.31 | PT | 0.6826 |
4 | 2.351 | −0.175 | −0.697 | 0.596 | 0.19 | FT | 0.514 |
18 | −1.250 | 0.189 | 1.117 | −0.758 | 0.08 | PT | 0.2822 |
8 | 0.804 | −0.263 | −0.178 | −0.182 | −0.06 | FT | 0.6568 |
13 | −0.647 | −0.192 | 0.601 | −0.954 | −0.16 | FT | 0.7179 |
9 | 0.618 | −0.309 | −0.834 | 0.586 | −0.17 | FT | 1.708 |
11 | 1.432 | −0.670 | −0.430 | −0.848 | −0.31 | PT | 0.2705 |
17 | −0.229 | −0.546 | −0.156 | −0.954 | −0.45 | FT | 1.1538 |
14 | 0.242 | −0.609 | −0.805 | −0.142 | −0.46 | PT | 1.1022 |
16 | 1.150 | −0.827 | −1.050 | −0.314 | −0.50 | PT | 0.668 |
20 | −1.300 | −0.427 | −0.686 | 0.090 | −0.55 | PT | 0.3792 |
19 | 1.235 | −0.971 | −1.085 | −0.565 | −0.60 | PT | 0.5552 |
22 | −1.012 | −0.821 | −0.587 | −0.854 | −0.79 | PT | 0.6826 |
21 | 0.057 | −1.032 | −0.969 | −0.842 | −0.82 | FT | 1.7056 |
23 | −0.838 | −0.922 | −0.706 | −0.927 | −0.85 | PT | 0.5241 |
24 | −0.784 | −1.077 | −1.322 | −0.513 | −1.01 | PT | 0.4734 |
Mean | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
SD | 1.000 | 1.000 | 1.000 | 1.000 | 0.752 |
Variable | Indicators | Total Sample | Type of Farmer | |
---|---|---|---|---|
Full Time Famers | Part Time Farmers | |||
IEI Z-Score | Mean Number of orchards | 0.0014 n = 22 | 0.2700 n = 10 | −0.2225 n = 12 |
RIS Z-Score | Mean Number of orchards | 0.0000 n = 22 | 0.3675 n = 10 | −0.3063 n = 12 |
OUI Z-Score | Mean Number of orchards | 0.0000 n = 22 | 0.3055 n = 10 | −0.2545 n = 12 |
WUEoverall Z-Score | Mean Number of orchards | −0.0001 n = 22 | 0.1390 n = 10 | −0.1160 n = 12 |
WUEQuality Z-Score | Mean Number of orchards | −0.0001 n = 22 | 0.3022 n = 10 | −0.2521 n = 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poveda-Bautista, R.; Roig-Merino, B.; Puerto, H.; Buitrago-Vera, J. Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP. Int. J. Environ. Res. Public Health 2021, 18, 5667. https://doi.org/10.3390/ijerph18115667
Poveda-Bautista R, Roig-Merino B, Puerto H, Buitrago-Vera J. Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP. International Journal of Environmental Research and Public Health. 2021; 18(11):5667. https://doi.org/10.3390/ijerph18115667
Chicago/Turabian StylePoveda-Bautista, Rocío, Bernat Roig-Merino, Herminia Puerto, and Juan Buitrago-Vera. 2021. "Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP" International Journal of Environmental Research and Public Health 18, no. 11: 5667. https://doi.org/10.3390/ijerph18115667
APA StylePoveda-Bautista, R., Roig-Merino, B., Puerto, H., & Buitrago-Vera, J. (2021). Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP. International Journal of Environmental Research and Public Health, 18(11), 5667. https://doi.org/10.3390/ijerph18115667