Multidimensional Urban Exposure Analysis of Industrial Chemical Risk Scenarios in Mexican Metropolitan Areas
Abstract
:1. Introduction
1.1. Regulations of Major Hazards and Land Use Planning in Mexico
1.2. Industrialization and Mixland Use in Mexican Metropolises during the 20th Century
1.3. Area of Study
2. Materials and Methods
2.1. Chemical Hazard Assessment Map
2.2. Vulnerability Assessment
2.3. Analysis
3. Results
3.1. Guadalajara City
3.2. Monterrey City
3.3. Mexico City
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liñayo, A. Identificación y Tratamiento del Riesgo Tecnológico Urbano de la Ciudad de Mérida (Venenzuela). In Urban Risk Management in Latin America: Compendium of Articles; United Nations Office for Disaster Risk Reduction—Regional Office for the Americas (UNISDR AM): Geneva, Switzerland, 2009; pp. 174–190. [Google Scholar]
- Ríos, D. Ciudad, Técnicas Hidráulicas y Riesgo de Desastres por Inundaciones. In Riesgos al sur. Diversidad de Riesgos de Desastres en América Latina; Viand, J., Briones, F., Eds.; Ediciones Imago Mundi: Buenos Aires, Argentina, 2015; pp. 3–20. [Google Scholar]
- March, A.; Leon, J. Urban Planning for Disaster Risk Reduction: Establishing 2nd Wave Criteria. In Proceedings of the 6th State of Australian Cities Conference, Sydney, Australia, 2013; Ruming, K., Randolph, B., Gurran, N., Eds.; Australian Cities Research Network: Sydney, Australia, 2013. [Google Scholar]
- Grembo, N. When industrial risk is synonymous with urban dynamics. The case of the spirits activity in a recovering city: Cognac. Territ. Mouv. 2014, 143–155. [Google Scholar] [CrossRef]
- Elliott, J.R.; Frickel, S. The Historical Nature of Cities: A Study of Urbanization and Hazardous Waste Accumulation. Am. Sociol. Rev. 2013, 78, 521–543. [Google Scholar] [CrossRef]
- Renn, O.; Klinke, A. A Framework of Adaptive Risk Governance for Urban Planning. Sustainability 2013, 5, 2036–2059. [Google Scholar] [CrossRef] [Green Version]
- Suraud, M.-G. The implementation of a technological risks prevention plan: Economic acceptability vs. risk reduction. Nat. Sci. Soc. 2019, 27, 267. [Google Scholar] [CrossRef]
- Kasharina, T.P.; Sidenko, E.S.; Valuysky, K.P. Tecnical systems and measures to ensure the quality of the living environment of the population in conditions of negative impacts. Constr. Geotech. 2019, 10, 44–52. [Google Scholar] [CrossRef]
- Laurent, A.; Pey, A.; Gurtel, P.; Fabiano, B. A critical perspective on the implementation of the EU Council Seveso Directives in France, Germany, Italy and Spain. Process Saf. Environ. Prot. 2021, 148, 47–74. [Google Scholar] [CrossRef]
- Taveau, J. Risk assessment and land-use planning regulations in France following the AZF disaster. J. Loss Prev. Process Ind. 2010, 23, 813–823. [Google Scholar] [CrossRef]
- Cozzani, V.; Bandini, R.; Basta, C.; Christou, M.D. Application of land-use planning criteria for the control of major accident hazards: A case-study. J. Hazard. Mater. 2006, 136, 170–180. [Google Scholar] [CrossRef]
- Caragliano, S.; Manca, D. Emergency Management and Land Use Planning in Industrial Hazardous Areas: Learning from an Italian Experience. J. Contingen. Cris. Manag. 2007, 15, 194–207. [Google Scholar] [CrossRef]
- Demichela, M.; Pilone, E.; Camuncoli, G. Land use planning around major risk installations: From EC directives to local regulations in Italy. Land Use Policy 2014, 38, 657–665. [Google Scholar] [CrossRef]
- Fàbrega, J.C.; Sanchez, J.A.V. El riesgo químico y el territorio. Rev. Catalana Rev. Catalana Segur. Pública 2011, 23, 127–154. [Google Scholar]
- Török, Z.; Petrescu-Mag, R.-M.; Mereuță, A.; Maloș, C.V.; Arghiuș, V.-I.; Ozunu, A. Analysis of territorial compatibility for Seveso-type sites using different risk assessment methods and GIS technique. Land Use Policy 2020, 95, 103878. [Google Scholar] [CrossRef]
- Sebos, I.; Progiou, A.; Symeonidis, P.; Ziomas, I. Land-use planning in the vicinity of major accident hazard installations in Greece. J. Hazard. Mater. 2010, 179, 901–910. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Ley General de Asentamientos Humanos, Ordenamiento Territorial y Desarrollo Urbano; Diario Oficial de la Federación: Mexico City, Mexico, 2020.
- Gaceta Oficial de la Ciudad de México. Reglamento de la Ley de Desarrollo Urbano del Distrito Federal; Gaceta Oficial de la Ciudad de México: Mexico City, Mexico, 2018.
- Periodico Oficial del Estado de Jalisco. Código Urbano para el Estado de Jalisco; Periodico Oficial del Estado de Jalisco: Guadalajara, Mexico, 2020.
- POENL. Ley de Asentamientos Humanos, Ordenamiento Territorial y Desarrollo Urbano para el Estado de Nuevo León. 2019. Available online: www.hcnl.gob.mx/trabajo_legislativo/leyes/leyes/ley_de_asentamientos_humanos_ordenamiento_territorial_y_desarrollo_urbano_para_el_estado_de_nuevo_le/ (accessed on 5 April 2021).
- Amin, I.A.M.; Hashim, H.S. Disaster risk reduction in Malaysian urban planning. Plan. Malays. 2014, 12. [Google Scholar] [CrossRef]
- Pontiggia, M.; Derudi, M.; Alba, M.; Scaioni, M.; Rota, R. Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling. J. Hazard. Mater. 2010, 176, 589–596. [Google Scholar] [CrossRef]
- De Souza Porto, M.F.; de Freitas, C.M. Vulnerability and industrial hazards in industrializing countries: An integrative approach. Futures 2003, 35, 717–736. [Google Scholar] [CrossRef]
- Tahmid, M.; Dey, S.; Syeda, S.R. Mapping human vulnerability and risk due to chemical accidents. J. Loss Prev. Process Ind. 2020, 68, 104289. [Google Scholar] [CrossRef]
- Ortega Montoya, C.Y.; Ávila Galarza, A.; Briones Gallardo, R.; Razo Soto, I.; Medina Cerda, R. Differences in the risk profiles and risk perception of flammable liquid hazards in San Luis Potosi, Mexico. Case Stud. Fire Saf. 2014, 2, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Ramírez Guevara, S.J.; Galindo Mendoza, M.G.; Contreras Servín, C. Justicia ambiental: Entre la utopía y la realidad social. Culturales 2015, 3, 225–250. [Google Scholar]
- Anjana, N.S.; Amarnath, A.; Harindranathan Nair, M.V. Toxic hazards of ammonia release and population vulnerability assessment using geographical information system. J. Environ. Manag. 2018, 210, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Hassani, M.; Chaib, R.; Bouzerara, R. Vulnerability Assessment for Major Industrial Risks Proposal for a Semiquantitative Analysis Method (VAMIR) Application: Oil and Gas Industry. J. Fail. Anal. Prev. 2020, 20, 1568–1582. [Google Scholar] [CrossRef]
- Chakraborty, L.; Rus, H.; Henstra, D.; Thistlethwaite, J.; Scott, D. A place-based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. Int. J. Disaster Risk Reduct. 2020, 43, 101394. [Google Scholar] [CrossRef]
- Khazai, B.; Merz, M.; Schulz, C.; Borst, D. An integrated indicator framework for spatial assessment of industrial and social vulnerability to indirect disaster losses. Nat. Hazards 2013, 67, 145–167. [Google Scholar] [CrossRef]
- Ardalan, A.; Fatemi, F.; Aguirre, B.; Mansouri, N.; Mohammdfam, I. Assessing human vulnerability in industrial chemical accidents: A qualitative and quantitative methodological approach. Environ. Monit. Assess. 2019, 191, 506. [Google Scholar] [CrossRef]
- Rajeev, K.; Soman, S.; Renjith, V.R.; George, P. Human vulnerability mapping of chemical accidents in major industrial units in Kerala, India for better disaster mitigation. Int. J. Disaster Risk Reduct. 2019, 39, 101247. [Google Scholar] [CrossRef]
- EPA Environmental Justice. Available online: https://www.epa.gov/environmentaljustice/learn-about-environmental-justice (accessed on 10 May 2021).
- Stretesky, P.; Hogan, M.J. Environmental justice: An analysis of superfund sites in Florida. Soc. Probl. 1998, 45, 268–287. [Google Scholar] [CrossRef] [Green Version]
- Been, V. Locally undesirable land uses in minority neighborhoods: Disproportionate siting or market dynamics? Yale Law J. 1994, 1383–1422. [Google Scholar] [CrossRef]
- Perlin, S.A.; Sexton, K.; Wong, D.W.S. An examination of race and poverty for populations living near industrial sources of air pollution. J. Expo. Anal. Environ. Epidemiol. 1999, 9, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Mohai, P.; Saha, R. Which came first, people or pollution? A review of theory and evidence from longitudinal environmental justice studies. Environ. Res. Lett. 2015, 10, 125011. [Google Scholar] [CrossRef]
- Hamma, W. Forecasting and risk management in Tlemcen: Legislation and urban master plans. Urban. Archit. Constr. 2018, 9, 5–22. [Google Scholar]
- Saunders, W.S.A.; Kilvington, M. Innovative land use planning for natural hazard risk reduction: A consequence-driven approach from New Zealand. Int. J. Disaster Risk Reduct. 2016, 18, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Janoschka, M. El nuevo modelo de la ciudad latinoamericana: Fragmentación y privatización. EURE 2002, 28, 11–20. [Google Scholar] [CrossRef]
- Borsdorf, A. Cómo modelar el desarrollo y la dinámica de la ciudad latinoamericana. EURE 2003, 29, 37–49. [Google Scholar] [CrossRef]
- Davis, M. Planet of Slums; Verso: Brooklyn, NY, USA, 2017; ISBN 9781784786618. [Google Scholar]
- De Alba Murrieta, F.; Guerrero, N.H. Capítulo 3—La Megalópolis Como el Mundo de los Procesos en Desborde. In Las Paradojas de las Megalópolis; De Alba, F., Ed.; Centro de Estudios Sociales y de Opinión Pública: Mexico City, Mexico, 2017; p. 43. [Google Scholar]
- Rojas, L.R.; Enciso, J.A.G. Evolución y cambio industrial en las Zonas Metropolitanas del Valle de México y de Toluca, 1993–2008. Anál. Econ. 2016, 31, 115–146. [Google Scholar]
- Pérez Hernández, M.d.P.M. Ambientes innovadores en México: El caso del Corredor Industrial El Bajío. Rev. Geogr. Norte Gd. 2015, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A. Resilient urban forms: A macro-scale analysis. Cities 2019, 85, 1–14. [Google Scholar] [CrossRef]
- Ren, Y.; Li, H.; Shen, L.; Zhang, Y.; Chen, Y.; Wang, J. What Is the Efficiency of Fast Urbanization? A China Study. Sustainability 2018, 10, 3180. [Google Scholar] [CrossRef] [Green Version]
- Audirac, I. Information-Age Landscapes outside the Developed World: Bangalore, India, and Guadalajara, Mexico. Am. Plan. Assoc. 2003, 69, 16. [Google Scholar] [CrossRef]
- Villarreal, G.G. El Proceso de Industrialización en la Ciudad de México (1821–1970), 1st ed.; El Colegio de México: Mexico City, Mexico, 1985; ISBN 9789681203085. [Google Scholar] [CrossRef]
- Moreno-Brid, J.C.; Santamaría, J.; Rivas Valdivia, J.C. Manufacturing and NAFTA: A Road of Lights and Shadows. Econ. UNAM 2006, 3, 95–114. [Google Scholar]
- Calderón, C.; Sánchez, I. Economic growth and industrial policy in Mexico. Probl. Desarro. 2012, 43, 125–154. [Google Scholar]
- Ryer-Powder, J.E. Health effects of ammonia. Plant Oper. Prog. 1991, 10, 228–232. [Google Scholar] [CrossRef]
- Weisenburger, D.D. Human health effects of agrichemical use. Hum. Pathol. 1993, 24, 571–576. [Google Scholar] [CrossRef]
- Wu, Y.N.; Yan, F.F.; Hu, J.Y.; Chen, H.; Tucker, C.M.; Green, A.R.; Cheng, H.W. The effect of chronic ammonia exposure on acute-phase proteins, immunoglobulin, and cytokines in laying hens. Poult. Sci. 2017, 96, 1524–1530. [Google Scholar] [CrossRef]
- Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment—Sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138. [Google Scholar] [CrossRef]
- Hoyle, G.W.; Svendsen, E.R. Persistent effects of chlorine inhalation on respiratory health. Ann. N. Y. Acad. Sci. 2016, 1378, 33. [Google Scholar] [CrossRef] [Green Version]
- Sirdah, M.; Al Laham, N.A.; Al Madhoun, R. Possible health effects of liquefied petroleum gas on workers at filling and distribution stations of Gaza governorates. East Mediterr Health J. 2013, 19, 289–294. [Google Scholar] [CrossRef]
- INEGI. Directorio Estadístico Nacional de Unidades Económicas. 2018. Available online: https://datos.gob.mx/busca/dataset/directorio-estadistico-nacional-de-unidades-economicas-denue-11-2018-por-entidad-federativa (accessed on 21 March 2021).
- NOAA. Emergency Response Planning Guidelines (ERPGs). Available online: https://response.restoration.noaa.gov/oil-and-chemical-spills/chemical-spills/resources/emergency-response-planning-guidelines-erpgs.html (accessed on 23 April 2021).
- NOAA. Thermal Radiation Levels of Concern. Available online: https://response.restoration.noaa.gov/oil-and-chemical-spills/chemical-spills/resources/thermal-radiation-levels-concern.html (accessed on 23 April 2021).
- CONAPO. Datos Abiertos del Índice de Marginación Urbana. 2010. Available online: http://www.conapo.gob.mx/es/CONAPO/Datos_Abiertos_del_Indice_de_Marginacion (accessed on 28 April 2021).
- INEGI. Marco Geoestadístico Nacional. 2016. Available online: https://www.inegi.org.mx/temas/mg/ (accessed on 5 April 2021).
- IMEPLAN. Sistema de Información y Gestión Metropolitana 2020. Available online: https://sigmetro.imeplan.mx/mapa (accessed on 14 April 2021).
- Geocomunes Corredores Industriales en México. 2020. Available online: http://132.248.14.102/layers/CapaBase:corredores_ind_mex (accessed on 20 April 2021).
- Casgrain, A.; Janoschka, M. Gentrification and resistance in Latin American cities the example of Santiago de Chile. Andamios 2013, 10, 19–44. [Google Scholar] [CrossRef] [Green Version]
- Barajas, L.F.C.; Zamora, E.C. Segregación residencial y fragmentación urbana: Los fraccionamientos cerrados en Guadalajara. Espiral Estud. Estad. Sociedad 2001, 7. [Google Scholar] [CrossRef]
- Pfannenstein, B.; Martínez Jaramillo, J.O.; Anacleto Herrera, E.E.; Sevilla Villalobos, S. Planificación urbana y la influencia de las urbanizaciones cerradas: El Área Metropolitana de Guadalajara, México. Econ. Soc. Territ. 2019, 19, 1087–1117. [Google Scholar] [CrossRef]
- Sandoval Hernández, E. Pobreza, marginación y desigualdad en Monterrey: Puntos de partida. Frontera Norte 2005, 17, 133–141. [Google Scholar]
- Espinosa Hernández, R. Socio-environmental Conflicts and Poverty: The Case of the Metropolitan Area of Mexico City. Cuad. Geogr. Rev. Colomb. Geogr. 2015, 24, 193–201. [Google Scholar] [CrossRef]
- De la Peña, M.E.; Ducci, J.; Zamora, V. Tratamiento de Aguas Residuales en México; Nota técnica IDB-TN-521; Banco Interamericano de Desarrollo: Washington, DC, USA, 2013; p. 12. [Google Scholar]
- Gómez-Perales, J.E.; Colvile, R.N.; Fernández-Bremauntz, A.A.; Gutiérrez-Avedoy, V.; Páramo-Figueroa, V.H.; Blanco-Jiménez, S.; Bueno-López, E.; Bernabé-Cabanillas, R.; Mandujano, F.; Hidalgo-Navarro, M.; et al. Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmos. Environ. 2007, 41, 890–901. [Google Scholar] [CrossRef]
- Shughrue, C.; Seto, K.C. Systemic vulnerabilities of the global urban-industrial network to hazards. Clim. Chang. An Interdiscip. Int. J. Devoted Descr. Causes Implic. Clim. Chang. 2018, 151, 173. [Google Scholar] [CrossRef]
- González, E.S. El espacio urbano y su transformación metropolitana en la sobremodernidad. El caso Monterrey, NL, México. Nóesis/Juárez 2008, 17, 168–203. [Google Scholar]
- Audefroy, J. La Problemática de los Desastres en el Hábitat Urbano en América Latina. Rev. INVI 2003, 18, 54–73. [Google Scholar]
- Márquez López, L.; Pradilla Cobos, E. Desindustrialización, terciarización y estructura metropolitana: Un debate conceptual necesario. Cuad. CENDES 2008, 25, 21–45. [Google Scholar]
- Montaño Salazar, R.; Vieyra Medrano, A.; Rodríguez Rodríguez, J. Transformación hacia una estructura urbana difusa por cambios en los sectores industrial y laboral en la Zona Metropolitana de Guadalajara. Intersticios Soc. 2013, 5, 1–30. [Google Scholar]
- Calonge Reillo, F. Usos de los medios de transporte y accesibilidad urbana. Un estudio de caso en el Área Metropolitana de Guadalajara, México. Pap. Geogr. 2016, 90–106. [Google Scholar] [CrossRef] [Green Version]
- González Arellano, S.; Larralde Corona, A.H. La forma urbana actual de las zonas metropolitanas en México: Indicadores y dimensiones morfológicas. Estud. Demogr. Urb. 2019, 34, 11–42. [Google Scholar] [CrossRef] [Green Version]
Substance | NAIC Code | Description | Number of Personnel |
---|---|---|---|
Ammonia | 311511 312111 312113 312120 493120 | Production of milk Production of soft drinks Fabrication of ice Production of beer Refrigerated storage | ≥250 |
Chlorine | 221311 221312 | Treatment of water carried out by the public or the private sector | ≥250 |
LPG | 468413 | LPG retail trade | ≥250 |
Substance | Storage | Release Source | HSE Failure Probability | Thread Modeled | Level of Concern (LOC) |
---|---|---|---|---|---|
Ammonia | Horizontal tank Volume: 5000 L Length: 3.070 m Diameter: 1.620 m Pressure: 13 kg/cm2 State of chemical: liquefied gas | 19 mm valve failure | 3 × 10−2 | Toxic gas dispersion | ERPG-1 > 25 ppm ERPG-2 > 150 ppm ERPG-3 > 1500 ppm |
Chlorine | Horizontal tank Volume: 730 kg Diameter: 0.762 m Length: 2.02 m Pressure: 5 atm State of chemical: liquefied gas | 6 mm hole | 4 × 10−5 | Toxic gas dispersion (heavy) | ERPG-1 > 1 ppm ERPG-2 > 3 ppm ERPG-3 > 20 ppm |
LPG | Vertical tank Volume: 110,000 L Diameter: 3.378 m Length: 14.078 m Pressure: 17 kg/cm2 State of chemical: liquefied gas | Boiling liquid expanding vapor explosion (BLEVE) | 1 × 10 −5 | Thermal radiation from fireball | LOC-1 2 kW/m2 LOC-2 5 kW/m2 LOC-3 10 W/m2 |
Substance | Level of Concern | Distance to Endpoint | ||
---|---|---|---|---|
Ammonia | Chlorine | LPG | ||
Monterrey | LOC-3 LOC-2 LOC-1 | 551 m 2.0 km 4.1 km | 543 m 1.5 km 2.6 km | 482 m 680 m 1.1 km |
Guadalajara | LOC-3 LOC-2 LOC-1 | 531 m 1.9 km 3.9 km | 571 m 1.5 km 2.7 km | 506 m 714 m 1.1 km |
Mexico City | LOC-3 LOC-2 LOC-1 | 525 m 1.5 km 3.1 km | 704 m 1.9 km 3.4 km | 495 m 698 m 1.1 km |
City | Wind Direction | Wind Speed |
---|---|---|
Monterrey | East | 3 m/s |
Guadalajara | East | 2.5 m/s |
Mexico City | Northeast | 1.6 m/s |
Dimension | Indicators | First Component Coefficient |
---|---|---|
Education | Percentage population from 6 to 14 years that does not attend school | 0.101 |
Percentage population aged 15 years or over without complete basic education | 0.151 | |
Health | Percentage population without access to health services | 0.096 |
Percentage deceased children of women between 15 and 49 years | 0.098 | |
Housing | Percentage inhabited private homes without drainage | 0.125 |
Percentage inhabited private dwellings without a toilet with a water connection | 0.165 | |
Percentage inhabited private dwellings without piped water | 0.151 | |
Percentage inhabited private dwellings without a floor | 0.134 | |
Percentage inhabited private dwellings with some level of overcrowding | 0.145 | |
Goods | Percentage inhabited private dwellings without a refrigerator | 0.154 |
Pre-Processed Data | Box–Cox Normalization | ||||||
---|---|---|---|---|---|---|---|
IMU | RiskLv | POP | IMU | RiskLv | POP | ||
GDL | Min. | –1.54 | 1.00 | 53.00 | 0.00 | 0.00 | 12.73 |
1st Q. | –0.98 | 1.00 | 1389.00 | 0.41 | 0.00 | 74.56 | |
Median | –0.56 | 2.00 | 2648.00 | 0.61 | 0.58 | 104.05 | |
Mean | –0.43 | 3.382 | 2813.00 | 0.60 | 0.62 | 99.89 | |
3rd Q. | –0.02 | 3.00 | 3927.00 | 0.79 | 0.84 | 127.40 | |
Max. | 3.47 | 39.00 | 17,503.00 | 1.34 | 1.67 | 273.22 | |
Std. dev. | 0.73 | 3.74 | 1902.93 | 0.25 | 0.46 | 40.04 | |
λ (lambda) | N/A | N/A | N/A | –0.3434 | –0.5051 | –0.3434 | |
MTY | Min. | –1.61 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 |
1st Q. | –1.16 | 1.00 | 983.00 | 0.32 | 0.00 | 62.30 | |
Median | –0.91 | 2.00 | 2,482.00 | 0.42 | 0.53 | 100.64 | |
Mean | –0.76 | 2.60 | 2,526.00 | 0.43 | 0.39 | 91.68 | |
3rd Q. | –0.46 | 3.00 | 3,785.00 | 0.56 | 0.74 | 125.01 | |
Max. | 3.21 | 26.00 | 8,751.00 | 0.90 | 1.17 | 191.93 | |
Std. dev. | 0.58 | 2.76 | 1,775.86 | 0.16 | 0.39 | 44.49 | |
λ (lambda) | N/A | N/A | N/A | –0.8687 | –0.7879 | 0.5051 | |
CDMX | Min. | –1.6 | 1.00 | 1 | 0.00 | 0.00 | 0.00 |
1st Q. | –0.92 | 4.00 | 1901 | 0.49 | 1.44 | 110.80 | |
Median | –0.44 | 4.00 | 3291 | 0.70 | 1.44 | 150.10 | |
Mean | –0.33 | 2.40 | 3605 | 0.69 | 1.37 | 147.40 | |
3rd Q. | 0.08 | 5.00 | 4959 | 0.87 | 1.69 | 188.20 | |
Max. | 3.03 | 73.00 | 22,876 | 1.39 | 4.90 | 435.80 | |
Std. dev. | 0.73 | 5.35 | 2393.63 | 0.25 | 0.92 | 61.63 | |
λ (lambda) | N/A | N/A | N/A | –0.2626263 | 0.1 | 0.5454545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega Montoya, C.Y.; López-Pérez, A.O.; Ugalde Monzalvo, M.; Ruvalcaba Sánchez, M.L.G. Multidimensional Urban Exposure Analysis of Industrial Chemical Risk Scenarios in Mexican Metropolitan Areas. Int. J. Environ. Res. Public Health 2021, 18, 5674. https://doi.org/10.3390/ijerph18115674
Ortega Montoya CY, López-Pérez AO, Ugalde Monzalvo M, Ruvalcaba Sánchez MLG. Multidimensional Urban Exposure Analysis of Industrial Chemical Risk Scenarios in Mexican Metropolitan Areas. International Journal of Environmental Research and Public Health. 2021; 18(11):5674. https://doi.org/10.3390/ijerph18115674
Chicago/Turabian StyleOrtega Montoya, Claudia Yazmin, Andrés Osvaldo López-Pérez, Marisol Ugalde Monzalvo, and Ma. Loecelia Guadalupe Ruvalcaba Sánchez. 2021. "Multidimensional Urban Exposure Analysis of Industrial Chemical Risk Scenarios in Mexican Metropolitan Areas" International Journal of Environmental Research and Public Health 18, no. 11: 5674. https://doi.org/10.3390/ijerph18115674
APA StyleOrtega Montoya, C. Y., López-Pérez, A. O., Ugalde Monzalvo, M., & Ruvalcaba Sánchez, M. L. G. (2021). Multidimensional Urban Exposure Analysis of Industrial Chemical Risk Scenarios in Mexican Metropolitan Areas. International Journal of Environmental Research and Public Health, 18(11), 5674. https://doi.org/10.3390/ijerph18115674