Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Chemical Analyses
2.4. Soil Biological Analyses
2.5. Soil Quality Index Calculations
2.5.1. Simple Additive SQI (SQI)
2.5.2. SQI Calculated for Water Retention (SQIWR), Nutrient Supply (SQINS), Contamination (SQIC), Microorganism Habitat (SQIMH) and Microorganism Activity (SQIMA) Functions
2.5.3. SQI Calculated as Weighted Functions (SQIFUNCT)
2.6. Statistical Analyses
3. Results
3.1. Soil Abiotic and Biotic Characteristics
3.2. Soil Quality Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Rosa-Cánovas, J.R.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with nonstationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A. Comprehensive monitoring of wildfires in Europe: The European forest fire information system (EFFIS). In Approaches to Managing Disaster-Assessing Hazards, Emergencies and Disaster Impacts; Tiefenbacher, J., Ed.; IntechOpen: London, UK, 2012; pp. 87–105. [Google Scholar]
- Medail, F. The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Reg. Environ. Chang. 2017, 17, 1775–1790. [Google Scholar] [CrossRef] [Green Version]
- De Marco, A.; Esposito, F.; Berg, B.; Giordano, M.; Virzo De Santo, A. Soil C and N sequestration in organic and mineral layers of two coeval forest stands implanted on pyroclastic material (Mount Vesuvius, South Italy). Geoderma 2013, 209–210, 128–135. [Google Scholar] [CrossRef]
- Wragg, P.D.; Mielke, T.; Tilma, D. Forbs grasses, and grassland fire behaviour. J. Ecol. 2018, 106, 1983–2001. [Google Scholar] [CrossRef]
- Girona-García, A.; Ortiz-Perpiñá, O.; Badía-Villas, D. Dynamics of topsoil carbon stocks after prescribed burning for pasture restoration in shrublands of the Central Pyrenees (NE-Spain). J. Environ. Manag. 2019, 233, 695–705. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Quigley, K.M.; Wildt, R.E.; Sturtevant, R.B.; Kolka, R.K.; Dickinson, M.B.; Kern, C.C.; Donner, D.M.; Miesel, J.R. Fuels, vegetation, and prescribed fire dynamics influence ash production and characteristics in a diverse landscape under active pine barrens restoration. Fire Ecol. 2019, 15, 5. [Google Scholar] [CrossRef]
- Fattorini, S. Effects of fire on tenebrionid communities of a Pinus pinea plantation: A case study in a Mediterranean site. Biodivers. Conserv. 2010, 19, 1237–1250. [Google Scholar] [CrossRef]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Early post-fire changes in properties of Andosols within a Mediterranean area. Geoderma 2021, 394, 115016. [Google Scholar] [CrossRef]
- De Marco, A.; Meola, A.; Esposito, F.; Virzo De Santo, A. Productivity and modifications of ecosystem processes in gaps of a low Macchia in southern Italy. Web Ecol. 2008, 8, 55–66. [Google Scholar] [CrossRef]
- Panico, S.C.; Ceccherini, M.T.; Memoli, V.; Maisto, G.; Pietramellara, G.; Barile, R.; De Marco, A. Effects of different vegetation types on burnt soil properties and microbial communities. Int. J. Wildland Fire 2020, 29, 628–636. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; SSSA: Madison, WI, USA, 1994; pp. 3–21. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 25–37. [Google Scholar]
- Memoli, V.; Panico, S.C.; Santorufo, L.; Barile, R.; Di Natale, G.; Di Nunzio, A.; Toscanesi, M.; Trifuoggi, M.; De Marco, A.; Maisto, G. Do Wildfires Cause Changes in Soil Quality in the Short Term? Int. J. Environ. Res. Public Health 2020, 17, 5343. [Google Scholar] [CrossRef]
- Saulino, L.; Rita, A.; Migliozzi, A.; Maffei, C.; Allevato, E.; Garonna, A.P.; Saracino, A. Detecting burn severity across Mediterranean forest types by coupling medium-spatial resolution satellite imagery and field data. Remote Sens. 2020, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Santorufo, L.; De Marco, A.; Barile, R.; Maisto, G. Total and fraction content of elements in volcanic soil: Natural or anthropogenic derivation. Sci. Total Environ. 2018, 625, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santorufo, L.; Cortet, J.; Nahmani, J.; Pernin, C.; Salmon, S.; Pernot, A.; Morel, J.L.; Maisto, G. Responses of functional and taxonomic collembolan community structure to site management in Mediterranean urban and surrounding areas. Eur. J. Soil Biol. 2015, 70, 46–57. [Google Scholar] [CrossRef]
- Di Gennaro, A. I Sistemi di Terre Della Campania; Assessorato Regionale alla Ricerca Scientifica: Firenze, Italy, 2002. [Google Scholar]
- Panico, S.C.; Memoli, V.; Santorufo, L.; Esposito, F.; De Marco, A.; Barile, R.; Maisto, G. Linkage between Site Features and Soil Characteristics within a Mediterranean Volcanic Area. Front. For. Glob. Chang. 2021, 3, 621231. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Degens, B.P.; Schipper, L.A.; Sparling, G.P.; Vojvodic-Vukovic, M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Sundman, V.; Sivela, S. A comment on the membrane filter technique for the estimation of length of fungal hyphae in soil. Soil Biol. Biochem. 1978, 10, 399–401. [Google Scholar] [CrossRef]
- Olson, F.C.W. Quantitative estimates of filamentous algae. Trans. Am. Microsc. Soc. 1950, 69, 272–279. [Google Scholar] [CrossRef]
- Anderson, T.H.; Domsch, K.H. A physiological method for the quantitative measurements of microbial biomass in soil. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; E-Publishing Inc.: Madison, WI, USA, 1982; pp. 903–947. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Leitgib, L.; Kálmán, J.; Gruiz, K. Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 2007, 66, 428–434. [Google Scholar] [CrossRef]
- Marzaioli, R.; D’Ascoli, R.; De Pascale, R.A.; Rutigliano, F.A. Soil quality in a Mediterranean area of Southern Italy as related to differentland use types. Appl. Soil Ecol. 2010, 44, 205–212. [Google Scholar] [CrossRef]
- Memoli, V.; Esposito, F.; Panico, S.C.; De Marco, A.; Barile, R.; Maisto, G. Evaluation of tourism impact on soil metal accumulation through single and integrated indices. Sci. Total Environ. 2019, 682, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1942–1962. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Gamero, C.A.; Rodrigues, J.G.L.; Miràs-Avalos, J.M. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil Till. Res. 2011, 112, 167–174. [Google Scholar] [CrossRef]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.L.; Yang, J.L.; Li, D.C.; Zhao, Y.G.; Liu, F.; Yang, R.M.; Yang, F. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. J. Hydrol. 2014, 519, 3086–3093. [Google Scholar] [CrossRef]
- Moreno, G.; Obrador, J.J. Effects of trees and understorey management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutr. Cycl. Agroecosyst. 2007, 78, 253–264. [Google Scholar] [CrossRef]
- Rice, S.K.; Westerman, B.; Federici, R. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol. 2004, 174, 97–107. [Google Scholar] [CrossRef]
- Steinauer, K.; Tilman, D.; Wragg, P.D.; Cesarz, S.; Cowles, J.M.; Pritsch, K.; Reich, P.B.; Weisser, W.W.; Eisenhauer, N. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 2015, 96, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Incerti, G.; Bonanomi, G.; Giannino, F.; Rutigliano, F.A.; Piermatteo, D.; Castaldi, S.; De Marco, A.; Fierro, A.; Fioretto, A.; Maggi, O.; et al. Litter decomposition in Mediterranean ecosystems: Modelling the controlling role of climatic conditions and litter quality. Appl. Soil Ecol. 2011, 49, 148–157. [Google Scholar] [CrossRef]
- Mancini Teixeira, H.; Cardoso, I.M.; Bianchi, F.J.J.A.; da Cruz Silva, A.; Jamme, D.; Peña-Claros, M. Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. For. Ecol. Manag. 2020, 457, 117696. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X.; Pereira, P. Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula. Catena 2019, 177, 210–218. [Google Scholar] [CrossRef]
- Kong, J.; Yang, J.; Bai, E. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest. Sci. Total Environ. 2018, 642, 1353–1361. [Google Scholar] [CrossRef]
- Dooley, S.R.; Treseder, K.K. The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry 2012, 109, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Shi, Y.; Yang, J.; Kong, J.; Lin, X.; Zhang, H.; Zeng, J.; Chu, H. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci. Rep. 2012, 4, 3829. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Lal, R. Comparison of Soil Quality Index Using Three Methods. PLoS ONE 2014, 9, e105981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbdelRahman, M.A.E.; Shalaby, A.; Mohamed, E.S. Comparison of two soil quality indices using two methods based on geographic information system. Egypt. J. Remote Sens. Space Sci. 2019, 22, 127–136. [Google Scholar] [CrossRef]
- Bouma, J. Soil science contributions towards sustainable development goals and their implementation: Linking soil functions with ecosystem services. J. Plant Nutr. Soil Sci. 2014, 177, 111–120. [Google Scholar] [CrossRef]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
Soil Function | Soil Characteristics | Weight (A) |
---|---|---|
Water retention | Water content | 0.5 |
Organic matter content | 0.5 | |
Nutrient Supply | Total C | 0.25 |
Total N | 0.25 | |
Total Ca | 0.25 | |
Total K | 0.25 | |
Contamination | Total Cu | 0.5 |
Total Pb | 0.5 | |
Microorganism habitat | Microbial biomass | 0.5 |
Fungal biomass | 0.5 | |
Microorganism activity | Respiration | 0.33 |
♌-glu activity | 0.33 | |
C/N | 0.34 |
Vegetation Cover Type | Fire | WC | OM | C | N | C/N | Ca | K | Cu | Pb |
---|---|---|---|---|---|---|---|---|---|---|
Herbs | UB | 11.9 B (±3.74) | 3.08 B (±0.94) | 2.79 B (±0.97) | 0.27 B (±0.07) | 14.9 A (±2.23) | 57.9 A (±12.1) | 31.7 A (±5.06) | 0.07 A (±0.01) | 0.05 A (±0.01) |
B | 5.34 c * (±1.35) | 4.99 b (±1.61) | 1.24 c (±0.48) | 0.14 b (±0.02) | 7.89 b * (±1.89) | 52.6 a (±12.5) | 36.1 a (±8.14) | 0.11 a (±0.03) | 0.05 a (±0.01) | |
Black locust | UB | 10.0 B (±2.23) | 8.12 A (±1.44) | 3.35 B (±0.64) | 0.67 A (±0.34) | 9.98 A (±1.68) | 59.6 A (±12.5) | 28.2 A (±4.75) | 0.11 A (±0.03) | 0.05 A (±0.01) |
B | 8.96 bc (±1.73) | 8.30 a (±1.32) | 5.43 a (±1.34) | 0.73 a (±0.24) | 9.31 b (±1.14) | 51.3 a (±10.9) | 28.3 a (±3.80) | 0.08 a (±0.01) | 0.04 a (±0.01) | |
Pine | UB | 11.5 B (±2.20) | 5.27 B (±0.80) | 2.61 B (±0.26) | 0.21 B (±0.01) | 12.4 A (±1.07) | 63.9 A (±18.1) | 27.6 A (±7.03) | 0.08 A * (±0.02) | 0.04 A * (±0.01) |
B | 11.2 b (±1.61) | 5.30 b (±0.63) | 3.08 b (±0.26) | 0.19 b (±0.02) | 16.4 a (±2.55) | 61.9 a (±11.0) | 24.5 a (±3.24) | 0.02 b (<0.01) | 0.01 b (<0.01) | |
Holm oak | UB | 34.8 A (±4.36) | 12.1 A (±1.86) | 9.47 A (±1.31) | 0.61 A (±0.09) | 12.6 A (±1.42) | 57.9 A (±10.8) | 30.5 A (±3.79) | 0.07 A (±0.01) | 0.07 A (±0.01) |
B | 25.1 a (±4.12) | 10.4 a (±2.11) | 5.69 a * (±1.12) | 0.39 ab (±0.04) | 12.1 ab (±2.70) | 69.3 a (±16.6) | 30.4 a (±5.65) | 0.07 a (±0.02) | 0.06 a (±0.01) |
Vegetation | Fire | MB | FB | Resp | ♌-glu |
---|---|---|---|---|---|
Herbs | UB | 0.92 B (±0.30) | 0.35 B (±0.06) | 6.67 A (±2.26) | 4.75 B (±1.42) |
B | 0.53 b (±0.10) | 0.26 b (±0.06) | 3.32 a (±0.55) | 3.01 c (±0.46) | |
Black locust | UB | 1.27 AB (±0.28) | 0.53 AB (±0.13) | 2.48 B (±0.69) | 7.72 AB (±1.47) |
B | 1.39 ab (±0.27) | 0.49 ab (±0.09) | 1.75 a (±0.43) | 6.26 ab (±1.08) | |
Pine | UB | 0.88 B (±0.31) | 0.55 AB (±0.21) | 1.78 B (±0.69) | 4.78 B (±1.49) |
B | 1.55 a (±0.19) | 0.66 ab (±0.11) | 1.22 a (±0.26) | 5.35 b (±0.46) | |
Holm oak | UB | 2.12 A (±0.26) | 1.15 A (±0.24) | 1.68 B (±0.48) | 10.6 A (±1.86) |
B | 1.83 a (±0.27) | 1.15 a (±0.32) | 1.57 a (±0.36) | 8.43 a (±1.15) |
Fixed Effects | Random Effect | Interactions between Fixed Factors | |||
---|---|---|---|---|---|
Veg | Fire | Sampling Time | Veg × Fire | ||
WC | F | 6.85 * | 1.85 * | 0.18 | 1.72 * |
OM | F | 0.18 * | 1.23 | 0.50 | 0.23 |
C | F | 2.49 * | 2.36 * | 0.64 | 0.51 * |
N | F | 1.50 | 0.85 | 1.19 | 0.33 |
C/N | F | 0.56 | 0.26 | 1.31 | 1.38 * |
Catot | F | 12.5 * | <0.01 * | 0.26 | 0.86 *** |
Ktot | F | 61.8 * | <0.01 *** | 9.87 | 5.00 *** |
Cutot | F | 4.73 | 1.57 * | 0.31 | 1.31 |
Pbtot | F | 2.52 | 1.26 * | 0.86 | 0.71 |
MB | F | 1.10 * | 0.18 | 1.41 | 0.29 |
FB | F | 5.59 *** | 0.16 | 2.21 | 0.37 |
Resp | F | 4.54 ** | 10.8 | 0.82 | 2.00 |
B-glu | F | 0.34 * | 2.93 | 0.28 | 0.80 |
Fixed Effects | Random Effect | Interactions between Fixed Factors | |||
---|---|---|---|---|---|
Veg | Fire | Sampling Time | Veg × Fire | ||
SQI | F | 3.29 * | 0.70 | 16.2 | 0.63 |
SQIWR | F | 3.06 * | 1.62 | 7.21 | 0.90 * |
SQINS | F | 1.64 | 0.11 | 14.2 | 3.39 * |
SQIC | F | 4.94 ** | 2.34 * | 43.0 | 3.25 * |
SQIMH | F | 8.59 *** | 1.16 | 4.19 | 2.04 * |
SQIMA | F | 0.48 | 5.54 * | 8.63 | 0.21 |
SQIFUNCT | F | 4.49 ** | 0.27 | 15.4 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Giarra, A.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices. Int. J. Environ. Res. Public Health 2021, 18, 5926. https://doi.org/10.3390/ijerph18115926
Santorufo L, Memoli V, Panico SC, Santini G, Barile R, Giarra A, Di Natale G, Trifuoggi M, De Marco A, Maisto G. Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices. International Journal of Environmental Research and Public Health. 2021; 18(11):5926. https://doi.org/10.3390/ijerph18115926
Chicago/Turabian StyleSantorufo, Lucia, Valeria Memoli, Speranza Claudia Panico, Giorgia Santini, Rossella Barile, Antonella Giarra, Gabriella Di Natale, Marco Trifuoggi, Anna De Marco, and Giulia Maisto. 2021. "Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices" International Journal of Environmental Research and Public Health 18, no. 11: 5926. https://doi.org/10.3390/ijerph18115926
APA StyleSantorufo, L., Memoli, V., Panico, S. C., Santini, G., Barile, R., Giarra, A., Di Natale, G., Trifuoggi, M., De Marco, A., & Maisto, G. (2021). Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices. International Journal of Environmental Research and Public Health, 18(11), 5926. https://doi.org/10.3390/ijerph18115926