Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China
Abstract
:1. Introduction
- I.
- explore the pollution characteristics and pollution sources of different chemical components in fine particles and evaluate the environmental ecological risk of heavy metals in PM2.5 based on the health risk assessment model,
- II.
- investigate the capability of a generalized additive model (GAM) to explore the effect of PM2.5 exposure concentration on the blood routine parameters of the population during periods of haze pollution.
2. Material and Methods
2.1. Sample Collection
Data Sources
2.2. Experimental Instruments
2.3. Sampling Time and Location
2.4. Statistical Methods
2.4.1. Principal Component Analysis (PCA)
2.4.2. Health Risk Assessment Model
2.4.3. Risk Assessment
3. Results and Discussion
3.1. Pollution Characteristics and Source Analysis of Chemical Components in PM2.5
3.1.1. Concentration of PM2.5 in Xinxiang City
3.1.2. Pollution Characteristics
3.1.3. Source Resolution
3.2. Health Risk Assessment of Heavy Metal Elements
3.3. Correlation Analysis of PM2.5 Exposure Level and Blood Routine Parameters of Healthy People
3.3.1. Pollution Lag Risk Assessment
3.3.2. Correlation Analysis of Chemical Components in Atmospheric Particles and Routine Blood Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci. Total Environ. 2013, 456–457, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Wang, Q.; Qian, X.; Qian, Y.; Yang, M.; Li, F.; Lu, H.; Wang, C. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmos. Environ. 2015, 103, 339–346. [Google Scholar] [CrossRef]
- Cao, Q.; Rui, G.; Liang, Y. Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model. BMC Public Health 2018, 18, 925. [Google Scholar] [CrossRef]
- Duan, F.K.; He, K.B.; Ma, Y.L.; Yang, F.M.; Yu, X.C.; Cadle, S.H.; Chan, T.; Mulawa, P.A. Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–2002. Sci. Total Environ. 2006, 355, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Decarlo, F.P.; Ulbrich, I.M.; Crounse, J.; de Foy, B.; Dunlea, E.J.; Aiken, A.C.; Knapp, D.; Weinheimer, A.J.; Campos, T.; Wennberg, P.O. Investigation of the sources and processing of organic aerosol over the central Mexican plateau from aircraft measurements during MILAGRO. Atmos. Chem. Phys. 2010, 10, 5257–5280. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.W.; Mills, I.C.; Walton, H.A.; Anderson, H.R. Fine particle components and health—A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Exp. Sci. Environ. Epidemiol. 2015, 25, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.H.; Li, Z.; Liu, Y.; Xinag, P.; Cui, X.Y.; Ye, H.; Hu, B.L.; Lou, L.P. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ. Sci. B 2018, 19, 317–326. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Li, L.; Li, J.; Wei, L.; Chi, W.; Hong, L.; Zhao, Q.; Jiang, J. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci. Rep. 2020, 10, 8160. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Feng, J.; Yu, H.; Su, X.; Liu, S.; Li, Y.; Pan, Y.; Sun, J.-H. Chemical composition and source apportionment of PM2.5 during Chinese spring festival at Xinxiang, a heavily polluted city in north China: Fireworks and health risks. Atmos. Res. 2016, 182, 176–188. [Google Scholar] [CrossRef]
- D’Amato, G.; Baena-Cagnani, C.E.; Cecchi, L.; Annesi-Maesano, I.; Nunes, C.; Ansotegui, I.; D’Amato, M.; Liccardi, G.; Sofia, M.; Canonica, W.G. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip. Respir. Med. 2013, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Naddafi, K.; Hassanvand, M.S.; Yunesian, M.; Momeniha, F.; Nabizadeh, R.; Faridi, S.; Gholampour, A. Health impact assessment of air pollution in megacity of Tehran, Iran. Iran. J. Environ. Health Sci. Eng. 2012, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.B.; Chen, J.; Li, W. Health risks and damage value assessment of Beijing residents’ continuous exposure to high concentrations of PM2.5 during heavy haze pollution. Environ. Sci. 2014, 35, 1–8. (In Chinese) [Google Scholar]
- Zhu, Y.D.; Wei, J.R.; Huang, L.; Wang, S.H.; Tian, H.M.; Guo, X.B. Comparison of the occurrence of respiratory diseases and symptoms among school-age children in areas with different air pollution levels. J. Peking Univ. Med. Ed. 2015, 47, 395–399. [Google Scholar]
- Rich, D.Q.; Kipen, H.M.; Huang, W.; Wang, G.; Wang, Y.; Zhu, P.; Ohman-Strickland, P.; Hu, M.; Philipp, C.; Diehl, S.R.; et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 2012, 307, 2068–2078. [Google Scholar] [CrossRef] [PubMed]
- Fajersztajn, L.; Veras, M.; Barrozo, L.V.; Saldiva, P. Air pollution: A potentially modifiable risk factor for lung cancer. Nat. Rev. Cancer 2013, 13, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.R.; Xu, H.J.; Li, Q.Y.; Li, C.L.; Sun, X.W.; Zhang, X.J. Effects of PM2.5 on chronic airway inflammation and oxidative stress in passive smoking rats. J. Shanghai Jiaotong Univ. Med. Ed. 2014, 34, 619–625. (In Chinese) [Google Scholar]
- Wang, Z.; Calderón, L.; Patton, A.P.; Allacci, M.S.; Senick, J.; Wener, R.; Andrews, C.J.; Mainelis, G. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building. J. Air Waste Manag. Assoc. 2016, 66, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Miller, S.L.; Anderson, M.J.; Daly, E.P.; Milford, J.B. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmos. Environ. 2002, 36, 3629–3641. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of China. Exposure Factors Handbook of Chinese Population; China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Zhang, H.; Wang, Y.; Hu, J.; Ying, Q.; Hu, X.M. Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ. Res. 2015, 140, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Dominici, F.; Louis, T.A. Model choice in time series studies of air pollution and mortality. J. R. Stat. Soc. A Stat. Soc. 2006, 169, 179–203. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Liu, B.; Bi, X.; Wu, J.; Liang, D.; Zhang, Y.; Feng, Y.; Hopke, P.K. Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM2.5 after the COVID-19 Outbreak. Environ. Sci. Technol. 2020, 54, 9917–9927. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tian, H.; Zhang, K.; Liu, S.; Cheng, K.; Yin, S.; Liu, Y.; Liu, X.; Wu, Y.; Liu, W.; et al. Seasonal variation, formation mechanisms and potential sources of PM2.5 in two typical cities in the Central Plains Urban Agglomeration, China. Sci. Total Environ. 2019, 657, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gong, S.; He, J.; Yu, M.; Wang, Q.; Li, H.; Liu, W.; Zhang, J.; Li, L.; Wang, X.; et al. Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in china’s Jing-Jin-Ji area. Atmos. Chem. Phys. 2017, 17, 2971–2980. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Huang, R.J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- HEI (Health Effects Institute). State of Global Air 2019; Special Report; Health Effects Institute: Boston, MA, USA, 2019. [Google Scholar]
- Lee, J.S.H.; Jaafar, Z.; Tan, A.K.J.; Carrasco, L.R.; Ewing, J.J.; Bickford, D.P. Toward clearer skies: Challenges in regulating transboundary haze in southeast asia. Environ. Sci. Policy 2016, 55, 87–95. [Google Scholar] [CrossRef]
- Tan, S.H.; Roth, M.; Velasco, E. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 2017, 170, 245–258. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [Green Version]
- Leng, C.; Duan, J.; Xu, C.; Zhang, H.; Wang, Y.; Wang, Y. Insights into a historic severe haze event in Shanghai: Synoptic situation, boundary layer and pollutants. Atmos. Chem. Phys. 2016, 16, 9221–9234. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.D.; Wang, G.F.; Zhang, R.J.; Zhang, L.M.; Yu, S.; Wu, B.B.; Li, X.F.; An, K.; Chu, J.H. Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing. Aerosol Air Qual. Res. 2013, 13, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Zhang, L.; Cao, J.; Zhong, L.; Chen, D.; Yang, Y.; Chen, D.; Chen, L.; Zhang, Z.; Wu, Y. Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China—With emphasis on ship emissions. Sci. Total Environ. 2017, 574, 1559–1570. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wang, G.Z.; Guo, R.; Huang, K.; Zhang, Y. Chemical characteristics and source apportionment of atmospheric dustfall in Pingdingshan City, Henan Province. Environ. Chem. 2011, 30, 825–831. [Google Scholar]
- Qiao, B.W.; Liu, Z.Y.; Hu, B.; Liu, J.Y.; Feng, N.N.; Wu, F.K.; Xu, Z.J.; Wang, Y.S. Analysis of the concentration characteristics and sources of metal elements in PM2.5 in winter in Beijing. Environ. Sci. 2017, 38, 876–883. (In Chinese) [Google Scholar]
- Yao, Q.; Han, S.Q.; Cai, Z.Y. Pollution and ecological risk assessment of heavy metals in PM2.5 during heating period in Tianjin. China Environ. Sci. 2013, 9, 1596–1600. [Google Scholar]
- Liu, F.L.; Lu, X.; Wu, M.L.; Liu, J.; Ren, Y.R.; Guo, Z.B. Pollution characteristics and source apportionment of heavy metals in atmospheric fine particles in Nanjing. J. Environ. Eng. 2014, 8, 652–658. [Google Scholar]
- Qi, M.Y.; Lu, X.H.; Zhang, C.Y.; Zhao, Y.; Ji, S.P.; Wang, Y.; Wang, L.T.; Ma, X. Study on PM2.5 Concentration Variation Characteristics and Pollution Source Areas in Handan City from 2013 to 2017. Available online: kns.cnki.net/kcms/detail/detail.aspx?DBCode=CJFD&DBName=CJFDLAST2019&fileName=HJXU201804018 (accessed on 6 February 2021).
- Hu, G.; Zhang, Y.; Sun, J.; Zhang, L.; Shen, X.; Lin, W.; Yang, Y. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos. Res. 2014, 145–146, 1–11. [Google Scholar] [CrossRef]
- Zheng, S.; Pozzer, A.; Cao, C.X.; Lelieveld, J. Long-term (2001–2012) fine particulate matter (PM2.5) and the impact on human health in Beijing, China. Atmos. Chem. Phys. 2015, 15, 5715–5725. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Tian, H.; Cheng, K.; Lu, L.; Zheng, M.; Wang, S.; Hao, J.; Wang, K.; Hua, S.; Zhu, S.; et al. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos. Environ. 2015, 107, 1–8. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Z.; Ma, Y.; Wang, L.; Wu, R.; Wang, W. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard. Chemosphere 2016, 144, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jiang, Q.; Wang, Z.; Fu, P.; Li, J.; Yang, T.; Yin, Y. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos. 2014, 119, 4380–4398. [Google Scholar] [CrossRef]
- Lv, Z.; Zhu, G.R.; Xiao, H.W.; Luo, L.; Zhang, Z.Y.; Zheng, N.J. Composition characteristics and source apportionment of PM2.5 low molecular weight organic acids in autumn in Shijiazhuang. Environ. Pollut. Prev. 2018, 40, 14–18. (In Chinese) [Google Scholar]
- Zhang, Y.Y. Online Monitoring of Water Soluble Ions in PM2.5 in Northern Suburb of Nanjing. M.Sc. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2018. (In Chinese). [Google Scholar]
- Park, S.S.; Kim, Y.J. PM2.5 particles and size-segregated ionic species measured during fall season in three urban sites in Korea. Atmos. Environ. 2004, 38, 1459–1471. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, Y.; Cheng, S.Y.; Wang, G. Characterization and regional transmission impact of water-soluble ions in PM2.5 during winter in typical cities. China Environ. Sci. 2016, 36, 2289–2296. [Google Scholar]
- Pulles, T.; van der Gon, H.D.; Appelman, W.; Verheul, M. Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Yatkin, S.; Bayram, A. Elemental composition and sources of particulate matter in the ambient air of a metropolitan city. Atmos. Res. 2007, 85, 126–139. [Google Scholar] [CrossRef]
- Morawska, L.; Zhang, J. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 2002, 49, 1045–1058. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, F.; D’Alessandro, A.; Lucarelli, F.; Nava, S.; Prati, P.; Valli, G.; Vecchi, R. Characterization of particulate matter sources in an urban environment. Sci. Total Environ. 2008, 401, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Callén, M.S.; de la Cruz, M.T.; López, J.M.; Navarro, M.V.; Mastral AM, J.C. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere 2009, 76, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- EPA (Environmental Protection Agency). Soil Screening Guidance: User’s Guide; EPA/540/R-96/018; Office of Emergency and Remedial Response: Washington, DC, USA, 1996. [Google Scholar]
- Fa-Yun, L.; Cheng, H.; Ying, Z.; Man-li, S.; Xiao-nan, Y. Environmental impact and health risk assessment of heavy metals in street dust in Shenyang, Liaoning province. Liaoning Meteorol. 2010, 6, 59–64. [Google Scholar]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, Northeast of China. Atmos. Environ. 2010, 44, 3239–3245. [Google Scholar] [CrossRef]
- Slezakova, K.; Morais, S.; Pereira, M.D. Trace metals in size-fractionatedparticulate matter in a Portuguese hospital: Exposure risks assessment andcomparisons with other countries. Environ. Sci. Pollut. Res. Int. 2014, 21, 3604–3620. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.L.; Wallace, L.A.; Brinkman, M.C.; Buehler, S.S.; La Londe, C. Respiratory and cardiovascular effects of metals in ambient particulate matter: A critical review. Rev. Environ. Contam. Toxicol. 2015, 234, 135–203. [Google Scholar] [PubMed]
- Pope, C.A., III; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A., III; Muhlestein, J.B.; May, H.T.; Renlund, D.G.; Anderson, J.L.; Horne, B.D. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circ. Res. 2006, 114, 2443–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, B.; Weinmayr, G.; Hennig, F.; Fuks, K.; Moebus, S.; Weimar, C.; Dragano, N.; Hermann, D.M.; Kälsch, H.; Mahabadi, A.A.; et al. Air quality, stroke, and coronary events: Results of the Heinz Nixdorf Recall study from the Ruhr region. Dtsch. Arztebl. Int. 2015, 112, 195–201. [Google Scholar] [PubMed] [Green Version]
- Folino, F.; Buja, G.; Zanotto, G.; Marras, E.; Allocca, G.; Vaccari, D.; Gasparini, G.; Bertaglia, E.; Zoppo, F.; Calzolari, V.; et al. Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): A multi-centre longitudinal study. Lancet Planet. Health 2017, 1, e58–e64. [Google Scholar] [CrossRef]
- Brew, K.; Dinakarpandian, D.; Nagase, H. Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim. Biophys. Acta 2000, 1477, 267–283. [Google Scholar] [CrossRef]
- Choussat, R.; Montalescot, G.; Collet, J.P.; Jardel, C.; Ankri, A.; Fillet, A.M.; Thomas, D.; Raymond, J.; Bastard, J.P.; Drobinski, G.; et al. Effect of prior exposure to Chlamydia pneumoniae, Helicobacter pylori, or cytomegalovirus on the degree of inflammation and one-year prognosis of patients with unstable angina pectoris or non–q-wave acute myocardial infarction. Am. J. Cardiol. 2000, 86, 379–384. [Google Scholar] [CrossRef]
- Driscoll, K.E.; Carter, J.M.; Hassenbein, D.G.; Howard, B. Cytokines and particle-induced inflammatory cell recruitment. Environ. Health Perspect. 1997, 105 (Suppl. S5), 1159–1164. [Google Scholar] [PubMed]
- Omar, N.Y.; Mon, T.C.; Rahman, N.A.; Abas, M.R. Distributions and health risks of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols of Kuala Lumpur, Malaysia. Sci. Total Environ. 2006, 369, 76–81. [Google Scholar] [CrossRef] [PubMed]
- See, S.W.; Balasubramanian, R.; Wang, W. A study of the physical, chemical, and optical properties of ambient aerosol particles in southeast Asia during hazy and non-hazy days. J. Geophys. Res. Atmos. 2006, 111, D10. [Google Scholar] [CrossRef]
- Giaginis, C.; Gatzidou, E.; Theocharis, S. DNA repair systems as targets ofcadmium toxicity. Toxicol. Appl. Pharmacol. 2006, 213, 282–290. [Google Scholar] [CrossRef]
- Zarros, A. Cadmium (Cd) as a carcinogenetic factor and its participation in theinduction of lung cancer. Pneumon 2008, 21, 172–177. [Google Scholar]
- Bandowe, B.A.; Meusel, H.; Huang, R.J.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2013, 473–474, 77–87. [Google Scholar] [CrossRef]
- Hong, Y.C.; Hwang, S.S.; Kim, J.H.; Lee, K.H.; Lee, H.J.; Lee, K.H.; Yu, S.D.; Kim, D.S. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ. Health Perspect. 2007, 115, 430–434. [Google Scholar] [CrossRef]
- Mirowsky, J.; Hickey, C.; Horton, L.; Blaustein, M.; Galdanes, K.; Peltier, R.E.; Chillrud, S.; Chen, L.C.; Ross, J.; Nadas, A.; et al. The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inh. Toxicol. 2013, 25, 747–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Different People | ||
---|---|---|---|
Adult Male | Adult Female | Children | |
IR (m3/d) | 17.7 | 14.3 | 8.7 |
EF(d/a) | 365 | 365 | 365 |
ED(a) | 30 | 30 | 10 |
BW(kg) | 64 | 54.4 | 16 |
AT (carcinogenic)/d | 70 × 365 | 70 × 365 | 70 × 365 |
AT (non-carcinogenic)/d | 30 × 365 | 30 × 365 | 10 × 365 |
Element | HQ | ILCR | ||||
---|---|---|---|---|---|---|
Adult Male | Adult Female | Children | Adult Male | Adult Female | Children | |
Cu | 3.5 × 10−5 | 3.3 × 10−5 | 6.9 × 10−5 | |||
Pb | 6.9 × 10−4 | 6.6 × 10−4 | 1.4 × 10−3 | |||
Zn | 4.6 × 10−5 | 4.3 × 10−5 | 8.9 × 10−5 | |||
V | 1.2 × 10−4 | 1.1 × 10−4 | 2.3 × 10−4 | |||
Mn | 1.7 × 10−1 | 1.6 × 10−1 | 3.3 × 10−1 | |||
Co | 0.3 × 10−1 | 0.1 × 10−1 | 0.1 × 10−1 | 1.5 × 10−6 | 6.8 × 10−7 | 4.7 × 10−7 |
As | 7.6 × 10−5 | 3.4 × 10−5 | 2.3 × 10−5 | 3.4 × 10−4 | 1.5 × 10−4 | 1.1 × 10−4 |
Cr | 1.6 × 10−1 | 7.2 × 10−2 | 0.5 × 10−1 | 2.0 × 10−4 | 8.7 × 10−5 | 6.0 × 10−5 |
Ni | 1.3 × 10−5 | 0.6 × 10−5 | 0.4 × 10−5 | 2.3 × 10−7 | 1.0 × 10−7 | 0.7 × 10−7 |
Cd | 2.7 × 10−4 | 1.2 × 10−4 | 0.8 × 10−4 | 1.7 × 10−6 | 7.6 × 10−7 | 5.2 × 10−7 |
HI | <1 | <1 | <1 |
Classification | Element | ||
---|---|---|---|
Carcinogenic heavy metals | Cr | 2.86 × 10−5 | 42.0 |
Co | 5.71 × 10−6 | 9.80 | |
Ni | 2.06 × 10−2 | 0.84 | |
As | 0.3 | 15.10 | |
Cd | 1.0 × 10−3 | 6.30 | |
Non-carcinogenic heavy metals | Pb | 3.52 × 10−3 | |
Cu | 4.02 × 10−2 | ||
V | 7.0 × 10−3 | ||
Mn | 1.43 × 10−5 | ||
Zn | 0.3 |
Blood Routine Index | Haze Group (n = 357) | Non-Haze Group (n = 354) | p (sig.) |
---|---|---|---|
WBC | 5.80 ± 1.52 | 6.25 ± 1.55 | 0.001 |
MONO (%) | 3.77 ± 1.16 | 3.84 ± 1.03 | 0.393 |
RBC | 4.60 ± 0.47 | 4.72 ± 0.46 | 0.001 |
LMY (%) | 35.31 ± 8.27 | 33.68 ± 7.77 | 0.006 |
HGB | 134.11 ± 16.44 | 140.01 ± 16.05 | 0.001 |
PLT | 222.08 ± 5.98 | 222.68 ± 48.07 | 0.513 |
NEUT (%) | 58.82 ± 8.45 | 60.56 ± 8.29 | 0.007 |
Blood Indicators | PM2.5 (μg/m3) | ||
---|---|---|---|
Change * (%) | 95% CI | p (sig) | |
WBC | 2.170 | 1.901~2.478 | 0.370 |
RBC | 9.923 | 8.741~11.264 | 0.027 |
HGB | 0.008 | 0.0078~0.0090 | 0.731 |
PLT | 0.068 | 0.067~0.069 | 0.012 |
NEUT | 0.006 | 0.0061~0.007 | 0.371 |
MONO | 0.048 | 0.041~0.054 | 0.505 |
LMY | 0.009 | 0.008~0.01 | 0.260 |
Lag Time | WBC | RBC | HGB | PLT | NEUT | MONO | LMY | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | RR (%) | p | RR (%) | p | RR (%) | p | RR (%) | p | RR (%) | p | RR (%) | p | RR (%) | |
Lag1 | 0.437 | 2.170 | 0.769 | 9.923 | 0.287 | 0.008 | 0.191 | 0.068 | 0.026 | 0.006 | 0.219 | 0.048 | 0.07 | 0.008 |
Lag2 | 0645 | 2.328 | 0.761 | 8.043 | 0.381 | 0.065 | 0.000 | 0.025 | 0.827 | 0.005 | 0.029 | 0.033 | 0.777 | 0.006 |
Lag3 | 0.139 | 2.328 | 0.221 | 7.425 | 0.345 | 0.166 | 0.376 | 0.288 | 0.539 | 0.008 | 0.899 | 0.094 | 0.129 | 0.007 |
Lag4 | 0.505 | 2.547 | 0.264 | 7.963 | 0.189 | 0.010 | 0.739 | 0.012 | 0.582 | 0.005 | 0.279 | 0.059 | 0.786 | 0.012 |
Lag5 | 0.805 | 2.843 | 0.048 | 8.713 | 0.015 | 0.012 | 0.685 | 0.011 | 0.774 | 0.006 | 0.193 | 0.036 | 0.241 | 0.005 |
Lag6 | 0.924 | 1.983 | 0.068 | 7.728 | 0.262 | 0.036 | 0.387 | 0.022 | 0.710 | 0.005 | 0.289 | 0.043 | 0.201 | 0.018 |
Lag7 | 0.233 | 1.673 | 0.146 | 8.371 | 0.095 | 0.011 | 0.084 | 0.016 | 0.298 | 0.006 | 0.255 | 0.049 | 0.202 | 0.018 |
Elements | WBC | MONO (%) | RBC | LMY (%) | HGB | PLT | NEUT (%) |
---|---|---|---|---|---|---|---|
Na+ | −0.300 | −0.118 | −0.277 | 0.209 | −0.445 * | −0.372 * | −0.175 |
NH4+ | −0.307 | 0.010 | −0.195 | 0.314 | −0.336 | −0.327 | −0.304 |
K+ | −0.323 | −0.100 | −0.154 | 0.286 | −0.345 | −0.279 | −0.281 |
Mg2+ | 0.210 | −0.341 | 0.079 | −0.484 * | −0.051 | 0.105 | 0.521 * |
Ca2+ | 0.253 | −0.236 | 0.126 | −0.585 * | 0.098 | 0.155 | 0.609 * |
CL− | −0.311 | −0.161 | −0.120 | 0.327 | −0.312 | −0.222 | −0.325 |
NO3− | −0.231 | 0.020 | −0.164 | 0.282 | −0.299 | −0.232 | −0.292 |
SO42− | −0.249 | 0.064 | −0.214 | 0.130 | −0.301 | −0.327 | −0.097 |
Cu | 0.284 | 0.151 | 0.139 | −0.409 * | 0.264 | 0.138 | 0.321 |
Pb | −0.166 | −0.061 | −0.202 | 0.424 * | −0.352 | −0.059 | −0.440 * |
Cr | 0.212 | 0.140 | −0.201 | −0.055 | −0.044 | −0.021 | 0.028 |
Ni | 0.414* | 0.205 | 0.109 | −0.408 * | 0.322 | 0.085 | 0.357 |
Cd | −0.049 | −0.048 | −0.016 | 0.428 * | −0.199 | −0.119 | −0.452 * |
Mn | −0.080 | −0.079 | −0.312 | 0.260 | −0.388 * | −0.260 | −0.260 |
Zn | 0.326 | 0.130 | 0.175 | −0.248 | 0.205 | 0.348 | 0.091 |
As | 0.023 | 0.079 | −0.367 * | 0.115 | −0.360 * | −0.02 | −0.095 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Kaur, M.; Li, T.; Pan, F. Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China. Int. J. Environ. Res. Public Health 2021, 18, 6821. https://doi.org/10.3390/ijerph18136821
Wang S, Kaur M, Li T, Pan F. Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China. International Journal of Environmental Research and Public Health. 2021; 18(13):6821. https://doi.org/10.3390/ijerph18136821
Chicago/Turabian StyleWang, Shuang, Mandeep Kaur, Tengfei Li, and Feng Pan. 2021. "Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China" International Journal of Environmental Research and Public Health 18, no. 13: 6821. https://doi.org/10.3390/ijerph18136821
APA StyleWang, S., Kaur, M., Li, T., & Pan, F. (2021). Effect of Different Pollution Parameters and Chemical Components of PM2.5 on Health of Residents of Xinxiang City, China. International Journal of Environmental Research and Public Health, 18(13), 6821. https://doi.org/10.3390/ijerph18136821