Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population (IWHS)
2.2. Exclusion Criteria
2.3. Exposure Assessment
2.3.1. Diet
2.3.2. Drinking Water
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.-L.; Myklebust, T.Å.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef] [Green Version]
- National Cancer Institute. SEER Cancer Stats Facts, 1992–2013. Available online: https://seer.cancer.gov/statfacts/ (accessed on 1 November 2020).
- Rahman, R.; Simoes, E.; Schmaltz, C.; Jackson, C.S.; Ibdah, J.A. Trend analysis and survival of primary gallbladder cancer in the United States: A 1973-2009 population-based study. Cancer Med. 2017, 6, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Arnal, M.J.D.; Arenas, Á.F.; Arbeloa, Á.L. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol. 2015, 21, 7933–7943. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Rothenbacher, D.; Arndt, V. Epidemiology of Stomach Cancer. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 472, pp. 467–477. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Henry, S.H.; Bosch, F.X.; Bowers, J.C. Aflatoxin, hepatitis and worldwide liver cancer risks. In Mycotoxins and Food Safety; Springer: Boston, MA, USA, 2002; Volume 504, pp. 229–233. [Google Scholar] [CrossRef]
- Chapman, R. Risk factors for biliary tract carcinogenesis. Ann. Oncol. 1999, 10, S308–S312. [Google Scholar] [CrossRef]
- Hsing, A.W.; Rashid, A.; Devesa, S.S.; Fraumeni, J.F. Biliary Tract Cancer. In Cancer Epidemiology and Prevention; Schottenfeld, D., Fraumeni, J.F., Eds.; Oxford University Press (OUP): Oxford, UK, 2006; pp. 787–800. [Google Scholar] [CrossRef]
- Grosse, Y.; Baan, R.; Straif, K.; Lauby-Secretan, B.; El Ghissassi, F.; Cogliano, V.; WHO International Agency for Research on Cancer. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol. 2006, 7, 628–629. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer. Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 94; IARC Press: Lyon, France, 2010; ISBN 978-92-832-1294-2. [Google Scholar]
- Bogovski, P. Special report animal species in whichn-nitroso compounds induce cancer. Int. J. Cancer 1981, 27, 471–474. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; International Agency for Research on Cancer. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.J.; Pollock, J.R.A.; Bingham, S.A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003, 63, 2358–2360. [Google Scholar] [PubMed]
- Ward, M.H. Too Much of a Good Thing? Nitrate from Nitrogen Fertilizers and Cancer. Rev. Environ. Health 2009, 24, 357–363. [Google Scholar] [CrossRef]
- Zirkle, K.W.; Nolan, B.T.; Jones, R.R.; Weyer, P.J.; Ward, M.H.; Wheeler, D.C. Assessing the relationship between groundwater nitrate and animal feeding operations in Iowa (USA). Sci. Total. Environ. 2016, 566-567, 1062–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keszei, A.P.; Goldbohm, R.A.; Schouten, L.J.; Jakszyn, P.; Brandt, P.A.V.D. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am. J. Clin. Nutr. 2012, 97, 135–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, M.H.; Heineman, E.F.; Markin, R.S.; Weisenburger, D.D. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. Int. J. Occup. Environ. Health 2008, 14, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, H.; Ohshima, H.; Pignatelli, B. Inhibitors of endogenous nitrosation mechanisms and implications in human cancer prevention. Mutat. Res. Mol. Mech. Mutagen. 1988, 202, 307–324. [Google Scholar] [CrossRef]
- Bartsch, H.; Frank, N. Blocking the endogenous formation of N-nitroso compounds and related carcinogens. IARC Sci. Publ. 1996, 139, 189–201. [Google Scholar]
- Weyer, P.J.; Cerhan, J.R.; Kross, B.C.; Hallberg, G.R.; Kantamneni, J.; Breuer, G.; Jones, M.P.; Zheng, W.; Lynch, C.F. Municipal Drinking Water Nitrate Level and Cancer Risk in Older Women: The Iowa Women’s Health Study. Epidemiology 2001, 12, 327–338. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-Water; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 101; IARC Press: Lyon, France, 2013; ISBN 978-92-832-1324-6. [Google Scholar]
- International Agency for Research on Cancer. Chlorinated Drinking Water; Chlorination by-Products; Some Other Halogenated Compounds; Cobalt and Cobalt Compounds; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 52; IARC Press: Lyon, France, 1991; ISBN 978-92-832-1252-2. [Google Scholar]
- Cantor, K.P.; Ward, M.H.; Moore, L.E.; Lubin, J.H. Water contaminants. In Cancer Epidemiology and Prevention; Schottenfeld, D., Fraumeni, J.F., Eds.; Oxford University Press: New York, NY, USA, 2006; pp. 382–404. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cordier, S.; Font-Ribera, L.; Salas, L.A.; Levallois, P. Overview of Disinfection By-products and Associated Health Effects. Curr. Environ. Health Rep. 2015, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Kramer, P.M.; Conran, P.B.; Tao, L. Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c-myc gene and on their promotion of liver and kidney tumors in mice. Carcinogenesis 2001, 22, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Komulainen, H.; Vaittinen, S.-L.; Vartiainen, T.; Tuomisto, J.; Kosma, V.-M.; Kaliste-Korhonen, E.; Lötjönen, S.; Tuominen, R.K. Carcinogenicity of the Drinking Water Mutagen 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in the Rat. J. Natl. Cancer Inst. 1997, 89, 848–856. [Google Scholar] [CrossRef] [Green Version]
- Kalankesh, L.R.; Rodríguez-Couto, S.; Zazouli, M.A.; Moosazadeh, M.; Mousavinasab, S. Do disinfection byproducts in drinking water have an effect on human cancer risk worldwide? A meta-analysis. Environ. Qual. Manag. 2019, 29, 105–119. [Google Scholar] [CrossRef]
- Doyle, T.J.; Zheng, W.; Cerhan, J.R.; Hong, C.P.; Sellers, T.A.; Kushi, L.H.; Folsom, A.R. The association of drinking water source and chlorination by-products with cancer incidence among postmenopausal women in Iowa: A prospective cohort study. Am. J. Public Health 1997, 87, 1168–1176. [Google Scholar] [CrossRef]
- Folsom, A.R.; Kaye, S.A.; Potter, J.D.; Prineas, R.J. Association of incident carcinoma of the endometrium with body weight and fat distribution in older women: Early findings of the Iowa Women’s Health Study. Cancer Res. 1989, 49, 6828–6831. [Google Scholar] [PubMed]
- Jones, R.R.; Weyer, P.J.; Dellavalle, C.T.; Robien, K.; Cantor, K.P.; Krasner, S.; Freeman, L.E.B.; Ward, M.H. Ingested Nitrate, Disinfection By-products, and Kidney Cancer Risk in Older Women. Epidemiology 2017, 28, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Browne, M.L.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. The use of a self-administered questionnaire to assess diet four years in the past. Am. J. Epidemiol. 1988, 127, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Cantor, K.P.; Riley, D.; Merkle, S.; Lynch, C.F. Nitrate in Public Water Supplies and Risk of Bladder Cancer. Epidemiology 2003, 14, 183–190. [Google Scholar] [CrossRef]
- Ward, M.H.; Cerhan, J.R.; Colt, J.S.; Hartge, P. Risk of Non-Hodgkin Lymphoma and Nitrate and Nitrite From Drinking Water and Diet. Epidemiology 2006, 17, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Choi, M.; Virk-Baker, M.K.; Aschebrook-Kilfoy, B.; Cross, A.J.; Subar, A.F.; Thompson, F.E.; Sinha, R.; Ward, M.H. Development and calibration of a dietary nitrate and nitrite database in the NIH-AARP Diet and Health Study. Public Health Nutr. 2015, 19, 1934–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.R.; Weyer, P.J.; Dellavalle, C.T.; Inoue-Choi, M.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Robien, K.; Freeman, L.E.B.; Silverman, D.T.; et al. Nitrate from Drinking Water and Diet and Bladder Cancer Among Postmenopausal Women in Iowa. Environ. Health Perspect. 2016, 124, 1751–1758. [Google Scholar] [CrossRef]
- Krasner, S.W.; Cantor, K.P.; Weyer, P.J.; Hildesheim, M.; Amy, G. Case study approach to modeling historical disinfection by-product exposure in Iowa drinking waters. J. Environ. Sci. 2017, 58, 183–190. [Google Scholar] [CrossRef]
- Cantor, K.P. Drinking water and cancer. Cancer Causes Control 1997, 8, 292–308. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 2 October 2020).
- Therneau, T.M. A Package for Survival Analysis in R; R Package Version 3.2-7. 2020. Available online: https://CRAN.R-project.org/package=survival (accessed on 2 October 2020).
- Quist, A.J.; Inoue-Choi, M.; Weyer, P.J.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Freeman, L.E.B.; Ward, M.H.; Jones, R.R. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women: Ingested Nitrate and Nitrite, Disinfection by-Products, and Pancreatic Cancer. Int. J. Cancer 2018, 142, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.R.; DellaValle, C.T.; Weyer, P.J.; Robien, K.; Cantor, K.P.; Krasner, S.; Freeman, L.E.B.; Ward, M.H. Ingested nitrate, disinfection by-products, and risk of colon and rectal cancers in the Iowa Women’s Health Study cohort. Environ. Int. 2019, 126, 242–251. [Google Scholar] [CrossRef]
- Xie, L.; Mo, M.; Jia, H.-X.; Liang, F.; Yuan, J.; Zhu, J. Association between dietary nitrate and nitrite intake and site-specific cancer risk: Evidence from observational studies. Oncotarget 2016, 7, 56915–56932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, A.J.; Leitzmann, M.F.; Subar, A.F.; Thompson, F.E.; Hollenbeck, A.R.; Schatzkin, A. A Prospective Study of Meat and Fat Intake in Relation to Small Intestinal Cancer. Cancer Res. 2008, 68, 9274–9279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Orsini, N.; Wolk, A. Processed Meat Consumption and Stomach Cancer Risk: A Meta-Analysis. J. Natl. Cancer Inst. 2006, 98, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.J.; Freedman, N.D.; Ren, J.; Ward, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R.; Abnet, C.C. Meat Consumption and Risk of Esophageal and Gastric Cancer in a Large Prospective Study. Am. J. Gastroenterol. 2011, 106, 432–442. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer. Red Meat and Processed Meat; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 114; IARC Press: Lyon, France, 2018; ISBN 978-92-832-0152-6. [Google Scholar]
- Nelson, S.M.; Gao, Y.-T.; Nogueira, L.M.; Shen, M.-C.; Wang, B.; Rashid, A.; Hsing, A.W.; Koshiol, J. Diet and biliary tract cancer risk in Shanghai, China. PLoS ONE 2017, 12, e0173935. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.H.; Dekok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J. Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs. Environ. Health Perspect. 2005, 113, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.J.; Botterweck, A.A.; Goldbohm, R.A.; Brants, H.A.; Van Klaveren, J.D.; Brandt, P.V.D. Intake of nitrate and nitrite and the risk of gastric cancer: A prospective cohort study. Br. J. Cancer 1998, 78, 129–135. [Google Scholar] [CrossRef]
- Barrett, J.H.; Parslow, R.C.; McKinney, P.A.; Law, G.R.; Forman, D. Nitrate in drinking water and the incidence of gastric, esophageal, and brain cancer in Yorkshire, England. Cancer Causes Control 1998, 9, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Taneja, P.; Labhasetwar, P.; Nagarnaik, P.; Ensink, J.H.J. The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India. J. Water Health 2017, 15, 602–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-Y.; Cheng, M.-F.; Tsai, S.-S.; Hsieh, Y.-L. Calcium, Magnesium, and Nitrate in Drinking Water and Gastric Cancer Mortality. Jpn. J. Cancer Res. 1998, 89, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Prakash, A.; Chauhan, V.S.; Singh, S. Puneet Biliary nitrate and risk of carcinoma of the gallbladder. Eur. J. Cancer Prev. 2004, 13, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Medgyesi, D.N.; Fisher, J.A.; Cervi, M.M.; Weyer, P.J.; Patel, D.M.; Sampson, J.N.; Ward, M.H.; Jones, R.R. Impact of residential mobility on estimated environmental exposures in a prospective cohort of older women. Environ. Epidemiol. 2020, 4, e110. [Google Scholar] [CrossRef]
- Munger, R.G.; Folsom, A.R.; Kushi, L.; Kaye, S.A.; Sellers, T.A. Dietary Assessment of Older Iowa Women with a Food Frequency Questionnaire: Nutrient Intake, Reproducibility, and Comparison with 24-Hour Dietary Recall Interviews. Am. J. Epidemiol. 1992, 136, 192–200. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 71; IARC Press: Lyon, France, 1999; ISBN 9781281829597. [Google Scholar]
- International Agency for Research on Cancer. Occupational Exposures in Insecticide Application, and Some Pesticides; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 53; IARC Press: Lyon, France, 1991; ISBN 978-92-832-1253-9. [Google Scholar]
- International Agency for Research on Cancer. Arsenic, Metals, Fibres, and Dusts; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100C; IARC Press: Lyon, France, 2012; ISBN 978-92-832-1320-8. [Google Scholar]
- Wheeler, D.C.; Nolan, B.T.; Flory, A.R.; DellaValle, C.T.; Ward, M.H. Modeling groundwater nitrate concentrations in private wells in Iowa. Sci. Total Environ. 2015, 536, 481–488. [Google Scholar] [CrossRef]
Characteristic | Dietary Intake a of NO3 (mg/day) | Private Well | Mean b NO3-N (mg/L) Levels in Public Water | ||||||
---|---|---|---|---|---|---|---|---|---|
<43.5 | 43.5–61.1 | 61.2–85.4 | >85.4 | <0.47 | 0.47–1.07 | 1.08–2.97 | >2.97 | ||
Length of follow-up, years (mean ± SD) | 21.4 ± 8.1 | 21.9 ± 8.1 | 21.8 ± 8.1 | 21.5 ± 8.3 | 23.3 ± 6.9 | 22.4 ± 7.2 | 22.2 ± 7.3 | 22.5 ± 7.2 | 22.4 ± 7.3 |
Age at baseline, years (mean ± SD) | 61.4 ± 4.2 | 61.5 ± 4.2 | 61.7 ± 4.2 | 61.8 ± 4.1 | 61.2 ± 4.1 | 61.7 ± 4.2 | 61.6 ± 4.1 | 61.6 ± 4.2 | 61.6 ± 4.2 |
White race [%] | 97.6 | 98.3 | 98.5 | 98.4 | 98.7 | 98.5 | 98.4 | 98.6 | 98.0 |
Surface water as source for PWS [%] | — | — | — | — | — | 5.2 | 28.3 | 19.1 | 39.2 |
TTHM concentration, µg /L (median) | — | — | — | — | — | 0.9 | 4.5 | 6.8 | 8.1 |
Nitrate in diet, mg/day (median) c | 33.7 | 52.3 | 71.7 | 109.0 | 59.1 | 61.3 | 61.2 | 61.8 | 62.1 |
Nitrite in diet, mg/day (median) a | 0.6 | 0.6 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | 0.7 |
Plant nitrite in diet, mg/day (median) a | 0.3 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Animal nitrite in diet, mg/day (median) a | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Processed meat nitrite in diet, µg/day (median) a | 7.8 | 7.6 | 7.1 | 0.0 | 7.4 | 7.3 | 6.9 | 7.0 | 6.2 |
Vitamin C in diet, mg/day (median) a | 80.5 | 98.5 | 111.5 | 142.4 | 99.8 | 107.9 | 111.5 | 109.7 | 111.4 |
Vitamin E in diet, mg/day (median) a | 4.3 | 4.7 | 5.1 | 5.9 | 4.7 | 4.9 | 5.1 | 5.0 | 5.1 |
Saturated fat in diet, g/day (median) a | 13.9 | 13.2 | 12.9 | 12.1 | 13.5 | 12.9 | 12.9 | 12.9 | 12.8 |
Total caloric intake, kcal/day (median) | 1795 | 1775 | 1716 | 1597 | 1830 | 1698 | 1678 | 1690 | 1689 |
Alcohol intake (grams/day) [%] | |||||||||
<14 | 91.5 | 92.2 | 92.1 | 92.2 | 95.2 | 90.7 | 91.1 | 90.7 | 90.4 |
≥14 | 8.5 | 7.8 | 7.9 | 7.8 | 4.8 | 9.3 | 8.9 | 9.3 | 9.6 |
Smoking status c [%] | |||||||||
Never | 64.9 | 67.5 | 67.6 | 64.8 | 78.9 | 63.1 | 62.1 | 61.3 | 61.8 |
Former | 16.0 | 18.1 | 19.0 | 123.2 | 12.0 | 20.8 | 22.3 | 22.2 | 22.4 |
Current | 19.3 | 14.3 | 13.5 | 12.0 | 9.1 | 16.0 | 15.5 | 16.4 | 15.8 |
Pack-years of smoking d [%] | |||||||||
1–19 | 33.7 | 41.4 | 41.3 | 44.4 | 45.0 | 40.6 | 41.6 | 38.6 | 38.6 |
20–39 | 34.7 | 33.6 | 34.0 | 32.9 | 34.4 | 33.3 | 33.2 | 35.4 | 34.6 |
≥40 | 31.6 | 25.1 | 24.7 | 22.8 | 20.6 | 26.2 | 25.2 | 26.0 | 26.8 |
Residence [%] | |||||||||
Farm | 20.5 | 21.2 | 19.8 | 16.2 | 71.4 | 3.0 | 3.3 | 2.3 | 2.3 |
Rural area (nonfarm) | 6.8 | 7.7 | 7.4 | 7.4 | 19.4 | 1.8 | 2.1 | 1.7 | 2.4 |
Towns ≥ 1000 residents | 72.7 | 71.1 | 72.8 | 76.4 | 9.3 | 95.1 | 94.5 | 96.0 | 95.3 |
BMI (kg/m2) [%] | |||||||||
<25 | 41.1 | 40.3 | 39.3 | 38.8 | 35.7 | 40.9 | 42.5 | 42.2 | 42.3 |
25–29.9 | 35.7 | 36.6 | 37.6 | 37.7 | 38.2 | 37.1 | 36.2 | 36.6 | 36.0 |
≥30 | 23.1 | 23.2 | 23.1 | 23.4 | 26.1 | 22.0 | 21.3 | 21.2 | 21.6 |
Dietary Nitrate (mg/day) | Dietary Nitrite (mg/day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Range | <71.7 | 71.8–106.1 | 106.2−151.5 | >151.5 | Continuous b | <0.9 | 0.9−1.1 | 1.1−1.4 | >1.4 | Continuous b |
N | 8466 | 8489 | 8506 | 8503 | 8533 | 8558 | 8583 | 8568 | ||
Biliary tract | ||||||||||
Cases | 35 | 35 | 31 | 23 | 124 | 42 | 33 | 31 | 19 | 124 |
HR c (CI) | ref | 1.1 (0.7−1.7) | 1.0 (0.6−1.6) | 0.8 (0.4−1.4) | 1.0 (0.7−1.3) | ref | 0.7 (0.4−1.2) | 0.7 (0.4−1.2) | 0.4 (0.2−0.8) | 0.7 (0.3−1.5) |
Gallbladder | ||||||||||
Cases | 23 | 18 | 12 | 13 | 66 | 24 | 18 | 15 | 9 | 66 |
HR d (CI) | ref | 0.8 (0.4−1.5) | 0.6 (0.3−1.1) | 0.6 (0.3−1.3) | 0.8 (0.5−1.2) | ref | 0.7 (0.4−1.3) | 0.6 (0.2−1.2) | 0.3 (0.1−0.96) | 0.5 (0.2−1.3) |
Bile Duct | ||||||||||
Cases | 12 | 17 | 19 | 10 | 58 | 18 | 15 | 16 | 9 | 58 |
HR c (CI) | ref | 1.5 (0.7−3.2) | 1.7 (0.8−3.6) | 1.0 (0.4−2.4) | 1.1 (0.7−1.9) | ref | 0.8 (0.4−1.6) | 0.8 (0.4−1.9) | 0.4 (0.1−1.5) | 1.2 (0.4−3.6) |
Stomach | ||||||||||
Cases | 23 | 24 | 20 | 17 | 84 | 17 | 24 | 23 | 20 | 84 |
HR e (CI) | ref | 1.0 (0.5−1.7) | 0.8 (0.4−1.4) | 0.6 (0.3−1.2) | 0.8 (0.5−1.2) | ref | 1.2 (0.6−2.3) | 1.1 (0.5−2.2) | 0.8 (0.3−2.0) | 1.4 (0.5−3.5) |
Range | <82.9 | 83.0−133.1 | >133.2 | — | <0.95 | 0.96−1.31 | >1.31 | — | ||
N | 11,414 | 11,417 | 11,411 | — | 11,396 | 11,433 | 11,413 | — | ||
Esophagus | ||||||||||
Cases | 12 | 14 | 10 | — | 36 | 16 | 11 | 9 | — | 36 |
HR f (CI) | ref | 1.3 (0.6−2.8) | 1.0 (0.4−2.5) | — | 0.9 (0.5−1.8) | ref | 0.9 (0.4−2.3) | 1.1 (0.3−3.6) | — | 1.5 (0.4−6.4) |
Small Intestine | ||||||||||
Cases | 13 | 12 | 7 | — | 32 | 15 | 7 | 10 | — | 32 |
HR g (CI) | ref | 0.8 (0.4−1.9) | 0.4 (0.2−1.2) | — | 0.6 (0.3−1.1) | ref | 0.4 (0.1−0.9) | 0.4 (0.1−1.2) | — | 0.3 (0.1−1.2) |
Liver | ||||||||||
Cases | 10 | 13 | 8 | — | 31 | 8 | 9 | 14 | — | 31 |
HR h (CI) | ref | 1.3 (0.5−2.9) | 0.8 (0.3−2.0) | — | 0.7 (0.3−1.3) | ref | 1.6 (0.6−4.6) | 3.4 (0.9−12.2) | — | 1.5 (0.3−6.9) |
Dietary Nitrite from Plant Sources (mg/day) | Dietary Nitrite from Animal Sources (mg/day) c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Range | <0.51 | 0.51–0.67 | 0.68–0.91 | >0.91 | Continuous b | <0.29 | 0.29–0.40 | 0.41–0.57 | >0.57 | Continuous b |
N | 8461 | 8507 | 8490 | 8506 | 8397 | 8520 | 8490 | 8557 | ||
Biliary tract | ||||||||||
Cases | 39 | 32 | 31 | 22 | 124 | 35 | 37 | 27 | 25 | 124 |
HR d (CI) | ref | 0.9 (0.5–1.4) | 0.9 (0.5–1.5) | 0.7 (0.4–1.3) | 0.8 (0.5–1.4) | ref | 1.2 (0.7–1.9) | 0.9 (0.5–1.6) | 1.0 (0.5–2.0) | 0.9 (0.7–1.2) |
Gallbladder | ||||||||||
Cases | 25 | 18 | 14 | 9 | 66 | 17 | 18 | 17 | 14 | 66 |
HR e (CI) | ref | 0.7 (0.4–1.3) | 0.5 (0.3–1.1) | 0.3 (0.1–0.9) | 0.5 (0.2–0.97) | ref | 1.3 (0.6–2.6) | 1.4 (0.7–3.0) | 1.5 (0.6–4.0) | 1.4 (0.7–2.8) |
Bile Duct | ||||||||||
Cases | 14 | 14 | 17 | 13 | 58 | 18 | 19 | 10 | 11 | 58 |
HR d (CI) | ref | 1.1 (0.5–2.4) | 1.5 (0.7–3.3) | 1.4 (0.5–3.7) | 1.4 (0.7–3.1) | ref | 1.1 (0.5–2.1) | 0.6 (0.2–1.4) | 0.7 (0.2–1.9) | 0.9 (0.7–1.1) |
Stomach | ||||||||||
Cases | 18 | 28 | 19 | 19 | 84 | 20 | 19 | 18 | 27 | 84 |
HR f (CI) | ref | 1.3 (0.7–2.5) | 0.8 (0.4–1.6) | 0.7 (0.3–1.6) | 1.0 (0.5–1.8) | ref | 0.9 (0.5–1.8) | 0.9 (0.4–1.7) | 1.3 (0.6–2.8) | 1.1 (0.6–2.0) |
Range | <0.57 | 0.57–0.82 | >0.82 | — | <0.33 | 0.33–0.51 | >0.51 | — | ||
N | 11,281 | 11,327 | 11,356 | — | 11,242 | 11,322 | 11,400 | — | ||
Esophagus | ||||||||||
Cases | 15 | 13 | 8 | — | 36 | 13 | 9 | 14 | — | 36 |
HR g (CI) | ref | 1.1 (0.5–2.5) | 0.9 (0.3–2.6) | — | 1.1 (0.4–2.8) | ref | 1.0 (0.4–2.4) | 2.2 (0.8–6.2) | — | 1.1 (0.5–2.7) |
Small Intestine | ||||||||||
Cases | 11 | 12 | 9 | — | 32 | 12 | 15 | 5 | — | 32 |
HR h (CI) | ref | 1.0 (0.4–2.3) | 0.6 (0.2–1.9) | — | 0.9 (0.3–2.4) | ref | 0.9 (0.4–2.1) | 0.2 (0.1–0.7) | — | 0.8 (0.7–0.96) |
Liver | ||||||||||
Cases | 12 | 8 | 11 | — | 31 | 9 | 8 | 14 | — | 31 |
Cases | ref | 0.6 (0.2–1.6) | 0.8 (0.3–2.4) | — | 0.8 0.3–2.2) | ref | 1.1 (0.4–3.0) | 2.2 (0.7–6.9) | — | 2.0 (0.7–5.7) |
Dietary Nitrite from Processed Meat (mg/day) b | ||||||||||
Range | <0.005 | 0.005–0.033 | 0.034–0.065 | >0.065 | Continuous c | |||||
N | 8718 | 8579 | 8246 | 8421 | ||||||
Biliary tract | ||||||||||
Cases | 31 | 32 | 30 | 31 | 124 | |||||
HR (CI) d | ref | 1.1 (0.7–1.8) | 1.1 (0.7–1.9) | 1.4 (0.8–2.3) | 1.0 (1.0–1.1) | |||||
Gallbladder | ||||||||||
Cases | 18 | 16 | 16 | 16 | 66 | |||||
HR (CI) e | ref | 1.0 (0.5–1.9) | 1.1 (0.5–2.1) | 1.2 (0.6–2.5) | 1.0 (0.9–1.1) | |||||
Bile Duct | ||||||||||
Cases | 13 | 16 | 14 | 15 | 58 | |||||
HR (CI) d | ref | 1.4 (0.6–2.8) | 1.3 (0.6–2.8) | 1.6 (0.7–3.6) | 1.1 (1.0–1.2) | |||||
Stomach | ||||||||||
Cases | 16 | 18 | 18 | 32 | 84 | |||||
HR (CI) f | ref | 1.2 (0.6–2.3) | 1.2 (0.6–2.4) | 2.2 (1.2–4.3) | 1.1 (1.01–1.2) | |||||
Range | <0.02 | 0.02–0.05 | >0.05 | — | ||||||
N | 10,067 | 12,190 | 11,707 | — | ||||||
Esophagus | ||||||||||
Cases | 19 | 4 | 13 | — | 36 | |||||
HR (CI) g | ref | 0.2 (0.1–0.5) | 0.6 (0.3–1.4) | — | 0.9 (0.8–0.99) | |||||
Small Intestine | ||||||||||
Cases | 11 | 13 | 8 | — | 32 | |||||
HR (CI) h | ref | 0.9 (0.4–2.1) | 0.6 (0.2–1.5) | — | 1.0 (0.9–1.1) | |||||
Liver | ||||||||||
Cases | 7 | 12 | 12 | — | 31 | |||||
HR (CI) i | ref | 1.4 (0.5–3.6) | 1.5 (0.5–4.0) | — | 1.0 (0.9–1.1) |
Private b | Average NO3-N (mg/L) | Continuous (log Nitrate) | Years with > ½-MCL (>5 mg/L NO3-N) | |||||
---|---|---|---|---|---|---|---|---|
Range | — | <0.47 | 0.48–1.07 | 1.08–2.97 | >2.97 | 0 years | >0 years | |
N | 4930 | 3977 | 3724 | 3617 | 4259 | 15,710 | 10,947 | 4630 |
Biliary tract | ||||||||
Cases | 16 | 12 | 12 | 9 | 17 | 50 | 33 | 17 |
HR (CI) c | 1.1 (0.5–2.3) | ref | 1.1 (0.5–2.4) | 0.8 (0.4–2.0) | 1.3 (0.6–2.8) | 1.2 (0.9–1.5) | ref | 1.2 (0.7–2.2) |
Range | — | <0.61 | 0.61–2.36 | >2.36 | — | |||
N | 4930 | 5205 | 5182 | 5190 | — | |||
Stomach | ||||||||
Cases | 12 | 10 | 10 | 10 | — | 30 | 23 | 7 |
HR (CI) c | 1.3 (0.5–2.9) | ref | 1.0 (0.4–2.4) | 1.0 (0.4–2.5) | — | 1.0 (0.7–1.4) | ref | 0.7 (0.3–1.7) |
Range | — | ≤1.08 | >1.08 | — | — | |||
N | 4930 | 7790 | 7787 | — | — | |||
Esophagus | ||||||||
Cases | 4 | 9 | 12 | — | — | 21 | 12 | 9 |
HR (CI) d | 0.8 (0.2–2.6) | ref | 1.3 (0.5–3.1) | — | — | 1.0 (0.7–1.5) | ref | 1.8 (0.8–4.2) |
Small Intestine | ||||||||
Cases | 5 | 11 | 4 | — | — | 15 | 12 | 3 |
HR (CI) e | 0.7 (0.1–6.4) | ref | 0.4 (0.1–1.1) | — | — | 0.8 (0.5–1.3) | ref | 0.6 (0.2–2.1) |
Gallbladder | ||||||||
Cases | 9 | 13 | 12 | — | — | 25 | 18 | 7 |
HR (CI) e | 0.8 (0.1–4.9) | ref | 0.9 (0.4–2.0) | — | — | 1.1 (0.8–1.6) | ref | 0.9 (0.4–2.2) |
Bile Duct | ||||||||
Cases | 7 | 11 | 14 | — | — | 25 | 15 | 10 |
HR (CI) c | 1.3 (0.4–4.0) | ref | 1.3 (0.6–2.8) | — | — | 1.2 (0.8–1.8) | ref | 1.6 (0.7–3.5) |
Liver | ||||||||
Cases | 7 | 4 | 7 | — | — | 11 | 7 | 4 |
HR (CI) f | 2.6 (0.7–10.3) | ref | 1.8 (0.5–6.1) | — | — | 1.0 (0.6–1.8) | ref | 1.4 (0.4–4.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buller, I.D.; Patel, D.M.; Weyer, P.J.; Prizment, A.; Jones, R.R.; Ward, M.H. Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study. Int. J. Environ. Res. Public Health 2021, 18, 6822. https://doi.org/10.3390/ijerph18136822
Buller ID, Patel DM, Weyer PJ, Prizment A, Jones RR, Ward MH. Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study. International Journal of Environmental Research and Public Health. 2021; 18(13):6822. https://doi.org/10.3390/ijerph18136822
Chicago/Turabian StyleBuller, Ian D., Deven M. Patel, Peter J. Weyer, Anna Prizment, Rena R. Jones, and Mary H. Ward. 2021. "Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study" International Journal of Environmental Research and Public Health 18, no. 13: 6822. https://doi.org/10.3390/ijerph18136822
APA StyleBuller, I. D., Patel, D. M., Weyer, P. J., Prizment, A., Jones, R. R., & Ward, M. H. (2021). Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study. International Journal of Environmental Research and Public Health, 18(13), 6822. https://doi.org/10.3390/ijerph18136822