Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Design
2.3. Experiment Procedure
2.4. Statistical Analysis
3. Results
3.1. Countermovement Jump Height
3.2. Interval Sprint Exercise Performance
3.3. Heart Rate during Sprinting and RPE Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meinzer, M.; Lindenberg, R.; Sieg, M.M.; Nachtigall, L.; Ulm, L.; Flöel, A. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Front. Aging Neurosci. 2014, 6, 253. [Google Scholar] [CrossRef]
- Loo, C.K.; Sachdev, P.; Martin, D.; Pigot, M.; Alonzo, A.; Malhi, G.S.; Lagopoulos, J.; Mitchell, P. A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int. J. Neuropsychopharmacol. 2010, 13, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Kim, D.Y.; Park, D.H. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul. 2015, 8, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Broeder, S.; Nackaerts, E.; Heremans, E.; Vervoort, G.; Meesen, R.; Verheyden, G.; Nieuwboer, A. Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects. Neurosci. Biobehav. Rev. 2015, 57, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Angius, L.; Hopker, J.; Mauger, A.R. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Physiol. 2017, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattari, E.; Campos, C.; Lamego, M.K.; Legey, S.; Neto, G.M.; Rocha, N.B.; Oliveira, A.J.; Carpenter, C.S.; Machado, S. Can Transcranial Direct Current Stimulation Improve Muscle Power in Individuals With Advanced Weight-Training Experience? J. Strength Cond. Res. 2020, 34, 97–103. [Google Scholar] [CrossRef]
- Machado, D.G.S.; Unal, G.; Andrade, S.M.; Moreira, A.; Altimari, L.R.; Brunoni, A.R.; Perrey, S.; Mauger, A.R.; Bikson, M.; Okano, A.H. Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimul. 2019, 12, 593–605. [Google Scholar] [CrossRef]
- Huang, L.; Deng, Y.; Zheng, X.; Liu, Y. Transcranial direct current stimulation with halo sport enhances repeated sprint cycling and cognitive performance. Front. Physiol. 2019, 10, 118. [Google Scholar] [CrossRef]
- Lattari, E.; Andrade, M.L.; Alberto Filho, S.; Moura, A.M.; Neto, G.M.; Silva, J.G.; Rocha, N.B.; Yuan, T.F.; Arias-Carrión, O.; Machado, S. Can transcranial direct current stimulation improve the resistance strength and decrease the rating perceived scale in recreational weight-training experience? J. Strength Cond. Res. 2016, 30, 3381–3387. [Google Scholar] [CrossRef] [Green Version]
- Cogiamanian, F.; Marceglia, S.A.R.A.; Ardolino, G.; Barbieri, S.; Priori, A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 2007, 26, 242–249. [Google Scholar] [CrossRef]
- Abdelmoula, A.; Baudry, S.; Duchateau, J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience 2016, 322, 94–103. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Yang, H.S.; Jeong, C.J.; Yoo, Y.D.; Jeong, S.H.; Jeon, O.K.; Park, H.Y.; Shin, H.W. The effects of transcranial direct current stimulation on functional movement performance and balance of the lower extremities. J. Phys. Ther. Sci. 2012, 24, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Little, T.; Williams, A.G. Effects of sprint duration and exercise: Rest ratio on repeated sprint performance and physiological responses in professional soccer players. J. Strength Cond. Res. 2007, 21, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-B.; Sung, D.J.; Kim, B.; Kim, S.; Han, J.K. Transcranial direct current stimulation of motor cortex enhances running performance. PLoS ONE 2019, 14, e0211902. [Google Scholar] [CrossRef] [Green Version]
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethke, N.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.G.; Doherty, M.; Tong, R.J.; Reilly, T.; Cable, N.T. Reliability of repeated sprint exercise in non-motorised treadmill ergometry. Int. J. Sports Med. 2006, 27, 900–904. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [PubMed]
- Grandperrin, Y.; Grosprêtre, S.; Nicolier, M.; Gimenez, P.; Vidal, C.; Haffen, E.; Bennabi, D. Effect of transcranial direct current stimulation on sports performance for two profiles of athletes (power and endurance) (COMPETE): A protocol for a randomised, crossover, double blind, controlled exploratory trial. Trials 2020, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sasada, S.; Endoh, T.; Ishii, T.; Kawashima, K.; Sato, S.; Hayashi, A.; Komiyama, T. Differential effects of transcranial direct current stimulation on sprint and endurance cycling. Transl. Sports Med. 2020, 3, 204–212. [Google Scholar] [CrossRef]
- Wu, P.P.-Y.; Sterkenburg, N.; Everett, K.; Chapman, D.W.; White, N.; Mengersen, K. Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue. PLoS ONE 2019, 14, e0219295. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, P.L.; Amo, C.; Sánchez-Martínez, G.; Torrontegi, E.; Vázquez-Carrión, J.; Montalvo, Z.; Lucia, A.; de la Villa, P. Enhancement of Mood but not Performance in Elite Athletes with Transcranial Direct-Current Stimulation. Int. J. Sports Physiol. Perform. 2019, 14, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Angius, L.; Mauger, A.R.; Hopker, J.; Pascual-Leone, A.; Santarnecchi, E.; Marcora, S.M. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018, 11, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Baldari, C.; Buzzachera, C.F.; Vitor-Costa, M.; Gabardo, J.M.; Bernardes, A.G.; Altimari, L.R.; Guidetti, L. Effects of transcranial direct current stimulation on psychophysiological responses to maximal incremental exercise test in recreational endurance runners. Front. Psychol. 2018, 9, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, C.; Ranganathan, R.; Kantak, S.S.; Dhaher, Y.Y.; Rymer, W.Z. Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimul. 2014, 7, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Krishnan, C.; Kantak, S.S.; Ranganathan, R.; Nitsche, M.A. Recurrence quantification analysis of surface electromyogram supports alterations in motor unit recruitment strategies by anodal transcranial direct current stimulation. Restor. Neurol. Neurosci. 2015, 33, 663–669. [Google Scholar] [CrossRef] [Green Version]
Pre-Sprint | 1–10 | 11–20 | 21–30 | 31–40 | |
---|---|---|---|---|---|
Heart Rate | |||||
tDCS | 105.8 ± 25.8 | 159.5 ± 18.0 | 167.5 ± 13.6 | 175.1 ± 7.8 | 171.5 ± 17.4 |
Sham | 101.7 ± 20.4 | 167.1 ± 10.0 | 172.9 ± 5.6 | 174.8 ± 7.9 | 173.9 ± 9.2 |
RPE | |||||
tDCS | 1.0 ± 0.0 | 3.63 ± 1.0 | 5.64 ± 0.8 | 7.54 ± 0.9 | 8.91 ± 0.8 |
Sham | 1.0 ± 0.0 | 3.73 ± 1.4 | 5.91 ± 1.2 | 7.72 ± 0.9 | 8.72 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Chen, Y.-C.; Jiang, R.-S.; Lo, L.-Y.; Wang, I.-L.; Chiu, C.-H. Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. Int. J. Environ. Res. Public Health 2021, 18, 6967. https://doi.org/10.3390/ijerph18136967
Chen C-H, Chen Y-C, Jiang R-S, Lo L-Y, Wang I-L, Chiu C-H. Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. International Journal of Environmental Research and Public Health. 2021; 18(13):6967. https://doi.org/10.3390/ijerph18136967
Chicago/Turabian StyleChen, Che-Hsiu, Yu-Chun Chen, Ren-Shiang Jiang, Lok-Yin Lo, I-Lin Wang, and Chih-Hui Chiu. 2021. "Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes" International Journal of Environmental Research and Public Health 18, no. 13: 6967. https://doi.org/10.3390/ijerph18136967
APA StyleChen, C. -H., Chen, Y. -C., Jiang, R. -S., Lo, L. -Y., Wang, I. -L., & Chiu, C. -H. (2021). Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. International Journal of Environmental Research and Public Health, 18(13), 6967. https://doi.org/10.3390/ijerph18136967