Anti-HIV and Anti-Candidal Effects of Methanolic Extract from Heteropterys brachiata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Methanolic Extract of Heteropterys brachiata
2.2. Evaluation of the Anti-HIV Effect of Methanolic Extract from Heteropterys brachiata
2.3. Evaluation of the Anti-Candidal Effect of Methanolic Extract from Heteropterys brachiata
3. Results
3.1. Anti-HIV Effect of Hb MeOH Extract
3.2. Anti-Candidal Effect of Hb MeOH Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fauci, A.S.; Lane, H.C. Four Decades of HIV/AIDS Much Accomplished, Much to Do. N. Engl. J. Med. 2020, 383, 1–4. [Google Scholar] [CrossRef]
- UNAIDS. Global HIV & AIDS Statistics 2020 Fact Sheet. Available online: https://www.unaids.org/es/resources/fact-sheet (accessed on 23 March 2021).
- Iyidogan, P.; Anderson, K.S. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014, 6, 4095–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaitán-Cepeda, L.A.; Sánchez-Vargas, O.; Castillo, N. Prevalence of oral candidiasis in HIV/AIDS children in highly active antiretroviral therapy era. A literature analysis. Int. J. STD AIDS 2015, 26, 625–632. [Google Scholar] [CrossRef]
- Ceballos-Salobreña, A.; Gaitán-Cepeda, L.A.; Ceballos-Garcia, L.; Lezama-Del Valle, D. Oral lesions in HIV/AIDS patients undergoing highly active antiretroviral treatment including protease inhibitors: A new face of oral AIDS? AIDS Patient Care STDS 2000, 14, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Vargas, L.O.; Ortiz-López, N.G.; Villar, M.; Moragues, M.D.; Aguirre, J.M.; Cashat-Cruz, M.; Lopez-Ribot, J.L.; Gaitán-Cepeda, L.A.; Quindós, G. Oral Candida isolates colonizing or infecting human immunodeficiency virus-infected and healthy persons in Mexico. J. Clin. Microbiol. 2005, 43, 4159–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsberg, K.; Woodworth, K.; Walters, M.; Berkow, E.L.; Jackson, B.; Chiller, T.; Vallabhaneni, S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 2019, 57, 1–12, Erratum in: Med. Mycol. 2019, 57, e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Amador, V.; Patton, L.L.; Naglik, J.R.; Nittayananta, W. Innovations for prevention and care of oral candidiasis in HIV-infected individuals: Are they available?—A workshop report. Oral. Dis. 2020, 26 (Suppl. 1), 91–102. [Google Scholar] [CrossRef] [PubMed]
- Melo, F.L.; Benati, F.J.; Roman, W.A., Jr.; de Mello, J.C.P.; Nozawa, C.; Linhares, R.E.C. The in vitro antiviral activity of an aliphatic nitro compound from Heteropteris aphrodisiaca. Microbiol. Res. 2008, 163, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Nunes, B.C.; Martins, M.M.; Chang, R.; Morais, S.A.; Nascimento, E.A.; de Oliveira, A. Antimicrobial activity, cytotoxicity and selectivity index of Banisteriopsis laevifolia (A. Juss.) B. Gates leaves. Ind. Crops. Prod. 2016, 92, 277–289. [Google Scholar] [CrossRef]
- Pádua, M.S.; Mendes-Costa, M.C.; Ferreira, J.M.S.; Magalhães, J.C.; Castro, A.H.F. Assessment of antimicrobial activity in vitro of ethanolic extracts of Banisteriopsis anisandra (A. Juss.) B. Gates (Malpighiaceae). Rev. Bras. Plant Med. 2013, 15, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 2012, 140, 416–423. [Google Scholar] [CrossRef]
- Anibal, P.C.; de Cássia Orlandi Sardi, J.; Peixoto, I.T.; de Carvalho Moraes, J.J.; Höfling, J.F. Conventional and alternative antifungal therapies to oral candidiasis. Braz. J. Microbiol. 2010, 41, 824–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, J.C.; Almeida, A.M.; Mendes Giannini, M.J. New antimicrobial therapies used against fungi present in subgingival sites--a brief review. Arch. Oral Biol. 2011, 56, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Michelin, D.C.; Sannomiya, M.; Figueiredo, M.E.; Rinaldo, D.; dos Santos, L.C.; Souza-Brito, A.R.M.; Vilegas, W.; Salgado, H.R.N. Antimicrobial activity of Byrsonima species (Malpighiaceae). Rev. Bras. Farmacog. 2008, 18, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Anderson, W.R.; Anderson, C.; Davis, C.C. Malpighiaceae. Herbarium, University of Michigan. 2012. Available online: http://herbarium.lsa.umich.edu/malpigh/index.html (accessed on 28 August 2020).
- Huerta-Reyes, M.; Herrera-Ruiz, M.; González-Cortazar, M.; Zamilpa, A.; León, E.; Reyes-Chilpa, R.; Aguilar-Rojas, A.; Tortoriello, J. Neuropharmacological in vivo effects and phytochemical profile of the extract from the aerial parts of Heteropterys brachiata (L.) DC. (Malpighiaceae). J. Ethnopharmacol. 2013, 146, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Reyes, M.; Herrera-Ruiz, M.; Zamilpa-Álvarez, A.; González-Cortazar, M.; Tortoriello-García, J.; Aguilar-Rojas, A. Inventors: Extracto de Heteropterys Brachiata, Método de Obtención y Uso para el Tratamiento de Ansiedad y Depresión. Patent 289104, 29 June 2011. [Google Scholar]
- Rex, J.H.; Alexander, B.D.; Andes, D.; Arthington-Skaggs, B.; Brown, S.D.; Chaturvedi, V.; Espinel-Ingroff, A.; Ghannoum, M.A.; Knapp, C.C.; Motyl, M.R.; et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard-3rd ed.; CLSI document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol. Res. 2018, 133, 301–314. [Google Scholar] [CrossRef]
- Klos, M.; Van de Venter, M.; Milne, P.J.; Traore, H.N.; Meyer, D.; Oosthuizen, V. In vitro anti-HIV activity of five selected South African medicinal plant extracts. J. Ethnopharmacol. 2009, 124, 182–188. [Google Scholar] [CrossRef]
- Laila, U.; Akram, M.; Shariati, M.A.; Hashmi, A.M.; Akhtar, N.; Tahir, I.M. Role of medicinal plants in HIV/AIDS therapy. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1063–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, B.; Kumar, N.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus. Int. J. Mol. Sci. 2018, 19, 1459. [Google Scholar] [CrossRef] [Green Version]
- Chaves Valadão, A.L.; Abreu, C.M.; Dias, J.Z.; Arantes, P.; Verli, H.; Tanuri, A.; de Aguiar, R.S. Natural plant alkaloid (Emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity. Molecules 2015, 20, 11474–11489. [Google Scholar] [CrossRef] [Green Version]
- Konoshima, T.; Yasuda, I.; Kashiwada, Y.; Cosentino, L.M.; Lee, K.H. Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of Gleditsia japonica and Gymnocladus chinesis, and a structure-activity correlation. J. Nat. Prod. 1995, 58, 1372–1377. [Google Scholar] [CrossRef]
- Bessong, P.O.; Obi, C.L.; Andréola, M.L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [Google Scholar] [CrossRef]
- Robinson, W.E., Jr.; Reinecke, M.G.; Abdel Malek, S.; Jia, Q.; Chow, S.A. Inhibitors of HIV-1 replication [corrected; erratum to be published] that inhibit HIV integrase. Proc. Natl. Acad. Aci. USA 1996, 93, 6326–6331. [Google Scholar] [CrossRef] [Green Version]
- McDougall, B.; King, P.J.; Wu, B.W.; Hostomsky, Z.; Reinecke, M.G.; Robinson, W.E., Jr. Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob. Agents Chemother. 1998, 42, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamayose, C.I.; Torres, P.B.; Roque, N.; Ferreira, M.J.P. HIV-1 reverse transcriptase inhibitory activity of flavones and chlorogenic acid derivatives from Moquiniastrum floribundum (Asteraceae). S. Afr. J. Bot. 2019, 123, 142–146. [Google Scholar] [CrossRef]
- Hattori, M.; Ma, C.M.; Wei, Y.; Dine, R.S.E.; Sato, N. Survey of anti-HIV and anti-HCV compounds from Natural sources. Can. Chem. Trans. 2013, 1, 116–140. [Google Scholar] [CrossRef]
- Lu, L.; Yu, F.; Cai, L.; Debnath, A.K.; Jiang, S. Development of small-molecule HIV entry inhibitors specifically targeting gp120 or gp41. Curr. Top. Med. Chem. 2016, 16, 1074–1090. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. Alphag-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 1998, 430, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Gaitán-Cepeda, L.A.; Martínez-González, M.; Ceballos-Salobreña, A. Oral candidosis as a clinical marker of immune failure in patients with HIV/AIDS on HAART. AIDS Patient Care STDS 2005, 19, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nittayananta, W. Oral fungi in HIV: Challenges in antifungal therapies. Oral Dis. 2016, 22 (Suppl. 1), 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Lara, M.F.; Sifuentes-Osornio, J.; Ostrosky-Zeichner, L. Drugs in clinical development for fungal infections. Drugs 2017, 77, 1505–1518. [Google Scholar] [CrossRef]
- Soliman, S.; Alnajdy, D.; El-Keblawy, A.A.; Mosa, K.A.; Khoder, G.; Noreddin, A.M. Plants’ natural products as alternative promising anti-candida drugs. Pharmacogn. Rev. 2017, 11, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Fernández, S.P.; Wasowski, C.; Paladini, A.C.; Marder, M. Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur. J. Pharmacol. 2005, 512, 189–198. [Google Scholar] [CrossRef]
- Williams, A.; Friedland, G. Adherence, compliance, and HAART. AIDS Clin. Care 1997, 9, 51–58. [Google Scholar] [PubMed]
- Franco, J.B.; Maureira Pena, L.J.; Martins, E.; Martins, F.; Oliveira, M.A.; Ortega, K.L. Regression of human immunodeficiency virus-associated oral Kaposi sarcoma with combined antiretroviral therapy: A case report and literature review. Head Neck 2019, 41, E21–E25. [Google Scholar] [CrossRef] [PubMed]
- Mata-Essayag, S.; Magaldi, S.; Hartung de Capriles, C.; Deibis, L.; Verde, G.; Perez, C. “In vitro” antifungal activity of protease inhibitors. Mycopathologia 2001, 152, 135–142. [Google Scholar] [CrossRef]
- Chang, E.; Mapakshi, S.R.; Mbang, P.; El-Mallawany, N.K.; Kramer, J.R.; White, D.L.; Chiao, E.Y. Impact of protease inhibitors on HIV-associated Kaposi sarcoma incidence: A systematic review. J. Acquir. Immun. Defic. Syndr. 2018, 79, 141–148. [Google Scholar] [CrossRef] [PubMed]
- La Ferla, L.; Pinzone, M.R.; Nunnari, G.; Martellotta, F.; Lleshi, A.; Tirelli, U.; De Paoli, P.; Berretta, M.; Cacopardo, B. Kaposi’ s sarcoma in HIV-positive patients: The state of art in the HAART-era. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2354–2365. [Google Scholar] [PubMed]
Hb MeOH (mg/mL) | CHLOROGENIC ACID (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 5 | 2.5 | 1.25 | 0.625 | 17.5 | 8.75 | 4.37 | 2.18 | 1.09 | |
Percentage of inhibition | 98% | 62% | 61% | 15% | 22% | 15% | 0% | 12% | 4% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta-Reyes, M.; Sánchez-Vargas, L.O.; Villanueva-Amador, G.S.; Gaitán-Cepeda, L.A. Anti-HIV and Anti-Candidal Effects of Methanolic Extract from Heteropterys brachiata. Int. J. Environ. Res. Public Health 2021, 18, 7270. https://doi.org/10.3390/ijerph18147270
Huerta-Reyes M, Sánchez-Vargas LO, Villanueva-Amador GS, Gaitán-Cepeda LA. Anti-HIV and Anti-Candidal Effects of Methanolic Extract from Heteropterys brachiata. International Journal of Environmental Research and Public Health. 2021; 18(14):7270. https://doi.org/10.3390/ijerph18147270
Chicago/Turabian StyleHuerta-Reyes, Maira, Luis O. Sánchez-Vargas, Getsemaní S. Villanueva-Amador, and Luis A. Gaitán-Cepeda. 2021. "Anti-HIV and Anti-Candidal Effects of Methanolic Extract from Heteropterys brachiata" International Journal of Environmental Research and Public Health 18, no. 14: 7270. https://doi.org/10.3390/ijerph18147270
APA StyleHuerta-Reyes, M., Sánchez-Vargas, L. O., Villanueva-Amador, G. S., & Gaitán-Cepeda, L. A. (2021). Anti-HIV and Anti-Candidal Effects of Methanolic Extract from Heteropterys brachiata. International Journal of Environmental Research and Public Health, 18(14), 7270. https://doi.org/10.3390/ijerph18147270