Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Data
2.1.1. Number of Anti-Influenza Drug Prescriptions at Pharmacies
2.1.2. KDDI Location Data
2.1.3. Population Flow Analysis Using Proposed Method Based on Neural Collective Graphical Models
3. Results
3.1. Estimation of Population Flow during Commuting Times
3.2. Relationships between the Estimates of Population Flow and the Number of Anti-Influenza Drug Prescriptions in Pharmacies
3.3. Population Flow from Cell 13 to Its Surroundings and the Number of Drug Prescriptions in Their Cells
3.4. Population Flows from Cell 6 and Its Surroundings and the Number of Drug Prescriptions in Their Cells
3.5. Population Flows from Cell 19 and Its Surroundings and the Numbers of Drug Prescriptions in Their Cells
3.6. Population Flows from Cell 8 and Its Surroundings and the Number of Drug Prescriptions in Their Cells
4. Discussion
4.1. Principal Results and Interpretation
4.1.1. Observing the Population Flow from Cell 13 to Its Surroundings and the Number of Prescriptions in Those Cells
4.1.2. Observing the Population Flow from Cell 6 to Its Surroundings and the Number of Prescriptions in Those Cells
4.1.3. Observing the Population Flow from Cell 19 to Its Surroundings and the Number of Prescriptions in Those Cells
4.1.4. Observing the Population Flow from Cell 8 to Its Surroundings and the Number of Prescriptions in Those Cells
4.2. Principal Findings
4.3. Limitations
4.4. Comparison with Prior Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Algorithm A1. Estimation procedure for the proposed NCGM. | |
Require: | Spatio-temporal population data location information neighbor information hyperparameter |
Ensure: | Population flow estimated neural network parameters Repeat Calculate transition probability by neural network for to , to Calculate the objective function and its gradient with respect to and Update and using gradient; until End condition is satisfied |
References
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Colizza, V.; Barrat, A.; Barthelemy, M.; Valleron, A.J.; Vespignani, A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Med. 2007, 4, e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufnagel, L.; Brockmann, D.; Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 2004, 101, 15124–15129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownstein, J.S.; Wolfe, C.J.; Mandl, K.D. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Med. 2006, 3, e401. [Google Scholar] [CrossRef] [Green Version]
- Crépey, P.; Barthélemy, M. Detecting robust patterns in the spread of epidemics: A case study of influenza in the United States and France. Am. J. Epidemiol. 2007, 166, 1244–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujibayashi, K.; Takahashi, H.; Tanei, M.; Uehara, Y.; Yokokawa, H.; Naito, T. A New Influenza-Tracking Smartphone App (Flu-Report) Based on a Self-Administered Questionnaire: Cross-Sectional Study. JMIR mHealth uHealth 2018, 6, e136. [Google Scholar] [CrossRef]
- Tizzoni, M.; Bajardi, P.; Decuyper, A.; Kon Kam King, G.; Schneider, C.M.; Blondel, V.; Smoreda, Z.; González, M.C.; Colizza, V. On the use of human mobility proxies for modeling epidemics. PLoS Comput. Biol. 2014, 10, e1003716. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, A.; Buckee, C.O.; Engø-Monsen, K.; Metcalf, C.J.E. Connecting mobility to infectious diseases: The promise and limits of mobile phone data. J. Infect. Dis. 2016, 214, S414–S420. [Google Scholar] [CrossRef]
- Charu, V.; Zeger, S.; Gog, J.; Bjørnstad, O.N.; Kissler, S.; Simonsen, L.; Grenfell, B.T.; Viboud, C. Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol. 2017, 13, e1005382. [Google Scholar] [CrossRef] [Green Version]
- Venkatramanan, S.; Sadilek, A.; Fadikar, A.; Barrett, C.L.; Biggerstaff, M.; Chen, J.; Dotiwalla, X.; Eastham, P.; Gipson, B.; Higdon, D.; et al. Forecasting influenza activity using machine-learned mobility map. Nat. Commun. 2021, 12, 726. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Value of pharmacy-based influenza surveillance—Ontario, Canada, 2009. In MMWR Morbidity and Mortality Weekly Report; CDC: Atlanta, GA, USA, 2013; Volume 62, pp. 401–404. [Google Scholar]
- Yoshida, M.; Matsui, T.; Ohkusa, Y.; Kobayashi, J.; Ohyama, T.; Sugawara, T.; Yasui, Y.; Tachibana, T.; Okabe, N. Seasonal influenza surveillance using prescription data for anti-influenza medications. Jpn. J. Infect. Dis. 2009, 62, 233–235. [Google Scholar]
- Toyota Motor Corporation. Toyota, JapanTaxi, KDDI and Accenture to Start Piloting Artificial Intelligence-based Taxi Dispatch Support System. 2018. Available online: https://global.toyota/en/newsroom/corporate/21417666.html (accessed on 9 April 2021).
- Japanese Ministry of Internal Affairs and Communications. Telework Days 2018 Implementation Results Report. 2018. Available online: https://teleworkdays.go.jp/2018/topics/pdf/mic_meti.pdf (accessed on 9 April 2021).
- Fatima, M.; O’Keefe, K.J.; Wei, W.; Arshad, S.; Gruebner, O. Geospatial Analysis of COVID-19: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 2336. [Google Scholar] [CrossRef]
- Iwata, T.; Shimizu, H. Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3935–3942. [Google Scholar] [CrossRef]
- Akagi, Y.; Nishimura, T.; Kurashima, T.; Toda, H. A fast and accurate method for estimating people flow from spatiotemporal population data. In Proceedings of the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Iwata, T.; Shimizu, H.; Naya, F.; Ueda, N. Estimating people flow from spatiotemporal population data via collective graphical mixture models. ACM Trans. Spat. Algorithms Syst. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- Murayama, T.; Shimizu, N.; Fujita, S.; Wakamiya, S.; Aramaki, E. Region-specific influenza epidemic prediction with consideration of positional relationships. In Proceedings of the 11th Annual Data Engineering and Information Management Forum (DEIM2019). Available online: https://db-event.jpn.org/deim2019/post/papers/315.pdf (accessed on 25 March 2021).
- Japanese Ministry of Internal Affairs and Communications. Survey on Time Use and Leisure Activities. 2015. Available online: https://www.e-stat.go.jp/ (accessed on 25 March 2021).
- World Health Organization. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 25 March 2021).
- Cox, N.J.; Subbarao, K. Influenza. Lancet 1999, 354, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Stanley, J.; Granick, J.S. Aclu White Paper: The Limits of Location Tracking in an Epidemic. Available online: https://www.aclu.org/report/aclu-white-paper-limits-location-tracking-epidemic (accessed on 15 February 2021).
- Zeraatkar, K.; Ahmadi, M. Trends of infodemiology studies: A scoping review. Health Inf. Libr. J. 2018, 35, 91–120. [Google Scholar] [CrossRef] [Green Version]
- Alessa, A.; Faezipour, M. A review of influenza detection and prediction through social networking sites. Theor. Biol. Med. Model. 2018, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Zhang, J.; Wang, L.; Yang, S.; Luo, G.; Deng, C.; Wen, Y.; Zhang, Q. Monitoring seasonal influenza epidemics by using internet search data with an ensemble penalized regression model. Sci. Rep. 2017, 7, 46469. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.J.; Dredze, M.; Broniatowski, D. Twitter improves influenza forecasting. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Park, O.; Park, Y.J.; Park, S.Y.; Kim, Y.M.; Kim, J.; Lee, J.; Park, E.; Kim, D.; Jeon, B.H.; Ryu, B.; et al. Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts. Osong Public Health Res. Perspect. 2020, 11, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Goedel, W.C.; Regan, S.D.; Chaix, B.; Radix, A.; Reisner, S.L.; Janssen, A.C.; Duncan, D.T. Using global positioning system methods to explore mobility patterns and exposure to high HIV prevalence neighbourhoods among transgender women in New York. Geospat Health 2019, 14. [Google Scholar] [CrossRef] [PubMed]
Day of the Week | The Number of Prescriptions |
---|---|
Friday | 4 |
Saturday | 3 |
Sunday | 0 |
Monday | 20 |
Tuesday | 6 |
Wednesday | 9 |
Thursday | 7 |
Timeframe | Percentage of Total (%) |
---|---|
(1) Weekdays | |
5:00–6:00 | 1.475 |
6:00–7:00 | 6.275 |
7:00–8:00 | 15.828 |
8:00–9:00 | 15.870 |
9:00–10:00 | 9.858 |
10:00–11:00 | 10.268 |
(2) Saturday | |
5:00–6:00 | 1.780 |
6:00–7:00 | 4.250 |
7:00–8:00 | 10.995 |
8:00–9:00 | 12.585 |
9:00–10:00 | 14.570 |
10:00–11:00 | 14.348 |
(3) Sunday | |
5:00–6:00 | 1.343 |
6:00–7:00 | 2.843 |
7:00–8:00 | 5.638 |
8:00–9:00 | 11.118 |
9:00–10:00 | 15.648 |
10:00–11:00 | 16.113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Tsubaki, M.; Minami, Y.; Fujibayashi, K.; Yumoto, T.; Kamei, J.; Yamada, Y.; Kominato, H.; Oono, H.; Naito, T. Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways. Int. J. Environ. Res. Public Health 2021, 18, 7439. https://doi.org/10.3390/ijerph18147439
Chen Q, Tsubaki M, Minami Y, Fujibayashi K, Yumoto T, Kamei J, Yamada Y, Kominato H, Oono H, Naito T. Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways. International Journal of Environmental Research and Public Health. 2021; 18(14):7439. https://doi.org/10.3390/ijerph18147439
Chicago/Turabian StyleChen, Qiushi, Michiko Tsubaki, Yasuhiro Minami, Kazutoshi Fujibayashi, Tetsuro Yumoto, Junzo Kamei, Yuka Yamada, Hidenori Kominato, Hideki Oono, and Toshio Naito. 2021. "Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways" International Journal of Environmental Research and Public Health 18, no. 14: 7439. https://doi.org/10.3390/ijerph18147439
APA StyleChen, Q., Tsubaki, M., Minami, Y., Fujibayashi, K., Yumoto, T., Kamei, J., Yamada, Y., Kominato, H., Oono, H., & Naito, T. (2021). Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways. International Journal of Environmental Research and Public Health, 18(14), 7439. https://doi.org/10.3390/ijerph18147439