Customized Power Wheelchair Joysticks Made by Three-Dimensional Printing Technology: A Pilot Study on the Environmental Adaptation Effects for Severe Quadriplegia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Protocol
2.3. Outcome Measures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Woude, L.H.; de Groot, S.; Janssen, T.W. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health. Med. Eng. Phys. 2006, 28, 905–915. [Google Scholar] [CrossRef]
- National Research Council (U.S.); Transportation Research Board; Committee for the Study on Improving Mobility and Safety for Older Persons. Transportation in an Aging Society: Improving Mobility and Safety for Older Persons; Transportation Research Board, National Research Council: Washington, DC, USA, 1988; p. 125. [Google Scholar]
- Medola, F.O.; Fortulan, C.A.; Purquerio Bde, M.; Elui, V.M. A new design for an old concept of wheelchair pushrim. Disabil. Rehabil. Assist. Technol. 2012, 7, 234–241. [Google Scholar] [CrossRef]
- Fehr, L.; Langbein, W.E.; Skaar, S.B. Adequacy of power wheelchair control interfaces for persons with severe disabilities: A clinical survey. J. Rehabil. Res. Dev. 2000, 37, 353–360. [Google Scholar] [PubMed]
- Demers, L.; Fuhrer, M.J.; Jutai, J.; Lenker, J.; Depa, M.; De Ruyter, F. A conceptual framework of outcomes for caregivers of assistive technology users. Am. J. Phys. Med. Rehabil. 2009, 88, 645–648, 691. [Google Scholar] [CrossRef]
- Mortenson, W.B.; Demers, L.; Fuhrer, M.J.; Jutai, J.W.; Lenker, J.; DeRuyter, F. How assistive technology use by individuals with disabilities impacts their caregivers: A systematic review of the research evidence. Am. J. Phys. Med. Rehabil. 2012, 91, 984–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M.; Takeyoshi, D. Mobility support robotics for the elderly. BME 1996, 10, 18–23. [Google Scholar] [CrossRef]
- Yanco, H.A. Shared User-Computer Control of a Robotic Wheelchair System. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2000. [Google Scholar]
- Dicianno, B.E.; Spaeth, D.M.; Cooper, R.A.; Fitzgerald, S.G.; Boninger, M.L. Advancements in power wheelchair joystick technology: Effects of isometric joysticks and signal conditioning on driving performance. Am. J. Phys. Med. Rehabil. 2006, 85, 631–639. [Google Scholar] [CrossRef]
- Riley, P.O.; Rosen, M.J. Evaluating manual control devices for those with tremor disability. J. Rehabil. Res. Dev. 1987, 24, 99–110. [Google Scholar] [PubMed]
- Nam, H.S.; Seo, C.H.; Joo, S.Y.; Kim, D.H.; Park, D.S. The Application of Three-Dimensional Printed Finger Splints for Post Hand Burn Patients: A Case Series Investigation. Ann. Rehabil. Med. 2018, 42, 634–638. [Google Scholar] [CrossRef]
- Baronio, G.; Harran, S.; Signoroni, A. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process. Appl. Bionics Biomech. 2016, 2016, 8347478. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Lee, S.; Kim, G.B.; Hong, D.; Kwon, J.; Park, J.W.; Kim, N. Accuracy of a simplified 3D-printed implant surgical guide. J. Prosthet. Dent. 2020, 124, 195–201.e2. [Google Scholar] [CrossRef]
- Cuellar, J.S.; Smit, G.; Breedveld, P.; Zadpoor, A.A.; Plettenburg, D. Functional evaluation of a non-assembly 3D-printed hand prosthesis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 1122–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukicevic, M.; Mosadegh, B.; Min, J.K.; Little, S.H. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc. Imaging 2017, 10, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Dawson, D.R.; Kaiserman-Goldenstein, E.; Chan, R. Power-Mobility Indoor Driving Assessment Manual (PIDA). Available online: http://www.carolinatherapy.net/wp-content/uploads/Power-Mobility-Indoor-Driving-Assessment.pdf (accessed on 18 March 2021).
- Hart, S.G. NASA Task Load Index (TLX); Human Performance Research Group, NASA Ames Research Center: Moffett Field, CA, USA, 1986. [Google Scholar]
- Hsieh, Y.J.; Lenker, J.A. The Psychosocial Impact of Assistive Devices Scale (PIADS): Translation and psychometric evaluation of a Chinese (Taiwanese) version. Disabil. Rehabil. Assist. Technol. 2006, 1, 49–57. [Google Scholar] [CrossRef]
- Wang, R.H.; Mihailidis, A.; Dutta, T.; Fernie, G.R. Usability testing of multimodal feedback interface and simulated collision-avoidance power wheelchair for long-term-care home residents with cognitive impairments. J. Rehabil. Res. Dev. 2011, 48, 801–822. [Google Scholar] [CrossRef]
- Chae, S.Y.; Jo, S.J.; Kwon, H.C.; Kong, J.Y.; Chang, M. A Study on a Korean-translated Version of the Psychosocial Impact of Assistive Devices Scale (PIADS). Korea J. Occup. Ther. 2008, 16, 71–86. [Google Scholar]
- Bussieres, A.E.; Stewart, G.; Al-Zoubi, F.; Decina, P.; Descarreaux, M.; Hayden, J.; Hendrickson, B.; Hincapie, C.; Page, I.; Passmore, S.; et al. The Treatment of Neck Pain-Associated Disorders and Whiplash-Associated Disorders: A Clinical Practice Guideline. J. Manip. Physiol. Ther. 2016, 39, 523–564.e27. [Google Scholar] [CrossRef] [Green Version]
- Dobler, C.; Mayr, H.C.; Pinzger, M. μ-force control-A device for controlling power wheelchairs for severely mobility impaired persons. In Proceedings of the Informatik 2016, Bonn, Germany, 26–30 September 2016; pp. 2127–2132. [Google Scholar]
- Garber, S.L.; Bunzel, R.; Monga, T.N. Wheelchair utilization and satisfaction following cerebral vascular accident. J. Rehabil Res. Dev. 2002, 39, 521–534. [Google Scholar]
- Kondori, F.A.; Yousefi, S.; Liu, L.; Li, H. Head operated electric wheelchair. In Proceedings of the 2014 Southwest Symposium on Image Analysis and Interpretation, San Diego, CA, USA, 6–8 April 2014; pp. 53–56. [Google Scholar]
- Suryawanshi, S.; Chitode, J.; Pethakar, S. Voice operated intelligent wheelchair. Int. J. Adv. Res. Comp. Sci. Softw. Engin. 2013, 3, 487–490. [Google Scholar]
- Mougharbel, I.; El-Hajj, R.; Ghamlouch, H.; Monacelli, E. Comparative study on different adaptation approaches concerning a sip and puff controller for a powered wheelchair. In Proceedings of the 2013 Science and Information Conference, London, UK, 7–9 October 2013; pp. 597–603. [Google Scholar]
- Nguyen, Q.X.; Jo, S. Electric wheelchair control using head pose free eye-gaze tracker. Electron. Lett. 2012, 48, 750–752. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.-F.; Li, L.; Luo, Y.; Zhang, Y.; Wei, X. A novel intelligent wheelchair control approach based on head gesture recognition. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010; p. V6-159. [Google Scholar]
- Oliver, S.; Khan, A. Design and evaluation of an alternative wheelchair control system for dexterity disabilities. Healthc. Technol. Lett. 2019, 6, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Weller, C.; Kleer, R.; Piller, F.T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Barbareschi, G.; Daymond, S.; Honeywill, J.; Singh, A.; Noble, D.; Nancy Mbugua, N.; Harris, I.; Austin, V.; Holloway, C. Value beyond function: Analyzing the perception of wheelchair innovations in Kenya. In Proceedings of the 22nd International ACM SIGACCESS Conference on Computers and Accessibility, Virtual Event, Greece, 26–28 October 2020; pp. 1–14. [Google Scholar]
- Leaman, J.; La, H.M.; Nguyen, L. Development of a smart wheelchair for people with disabilities. In Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, 19–21 September 2016; pp. 279–284. [Google Scholar]
- Nace, S.; Tiernan, J.; Ni Annaidh, A. Manufacturing custom-contoured wheelchair seating: A state-of-the-art review. Prosthet. Orthot. Int. 2019, 43, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Bin, H.; Kim, K.; Ahn, S.Y.; Kim, B.O.; Bok, S.K. Hand Functions of Myoelectric and 3D-Printed Pressure-Sensored Prosthetics: A Comparative Study. Ann. Rehabil. Med. 2017, 41, 875–880. [Google Scholar] [CrossRef] [PubMed]
Modified Power-Mobility Indoor Driving Assessment Manual (PIDA) |
---|
1. Accessing Bed from Client’s right Side |
2. Entering the Elevator Door |
3. Exiting the Elevator |
4. Turning right at 4-way intersection |
5. Turning left at 4-way intersection |
6. 180°-Turn |
7. Maneuverability: “Drive in and out between the chairs” |
8. Up the Ramp |
9. Down the Ramp |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | |
---|---|---|---|---|
Sex | Male | Male | Male | Male |
Age (years) | 36 | 73 | 53 | 77 |
Height (cm) | 177 | 167 | 183 | 175 |
ASIA Impairment Scale | A | A | A | ND |
NLI | C2 | C4 | C4 | C5 * |
Sensory Levels | C2 | C4 | C4 | C5 * |
Motor Levels | C2 | C5 | C4 | C5 * |
Years Since Injury | 16 | 24 | 35 | 12 |
Etiology | Trauma | Trauma | Trauma | Tumor(cervical) CIDP |
Test | Patient 1 | Patient 2 | Patient 3 | Patient 4 | |||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | ||
Accessing Bed from Client’s right Side | Score | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 |
Time (s) | 6.35 | 6.26 | 10.34 | 9.45 | 9.17 | 7.87 | 48.38 | 23.46 | |
Entering the Elevator Door | Score | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 |
Time (s) | 5.24 ** | 2.72 ** | 3.56 | 3.21 | 4.39 | 3.13 | 9.36 | 2.01 | |
Exiting the Elevator Turning right at 4-way intersection | Score | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 |
Time (s) | 7.87 | 5.41 | 7.14 | 4.34 | 5.31 | 4.87 | 24.85 | 4.83 | |
Turning right at 4-way intersection | Score | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Time (s) | 3.08 | 2.92 | 4.43 | 3.39 | 4.78 | 3.47 | 10.85 | 4 | |
Turning left at 4-way intersection | Score | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Time (s) | 3.01 | 2.55 | 5.25 | 3.76 | 4.49 | 3.34 | 6.51 | 5.38 | |
180°-turn | Score | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Time (s) | 3.67 | 2.9 | 7.71 | 6.78 | 5.05 | 4.34 | 7.68 | 8.22 | |
Maneuverability | Score | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 |
Time (s) | 7.67 | 6.82 | 12.6 | 10.18 | 9.65 ** | 6.61 ** | 47.81 ** | 20.45 ** | |
Up the Ramp | Score | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 |
Time (s) | 24.44 | 24.24 | 28.41 | 22.62 | 24.38 | 21.85 | 57.45 | 39.03 | |
Down the Ramp | Score | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 4 |
Time (s) | 25.25 | 23.44 | 40.31 ** | 30.77 ** | 26.63 | 24.85 | 63.81 | 40.97 |
NASA-TLX | Patient 1 | Patient 2 | Patient 3 | Patient 4 |
---|---|---|---|---|
Mental demand | Low | Low | Low | Low |
Physical demand | Low | Low | Low | Low |
Temporal demand | Low | Low | Low | Low |
Performance | Good | Good | Good | Good |
Effort | Low | Low | Low | Low |
Frustration level | Low | Low | Low | Low |
Participants | Subscale Score | ||
---|---|---|---|
Competence | Adaptability | Self-Esteem | |
Patient 1 | 3 | 3 | 3 |
Patient 2 | 1.58 | 1 | 1.25 |
Patient 3 | 1.33 | 1 | 1 |
Patient 4 | 1.83 | 2.33 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.D.; Ahn, D.H.; Lee, H.A.; Lee, Y.K.; Yang, H.S.; Jo, M.; Lee, S.B.N.; Park, G.S.; Hwang, Y.S.; Sim, W.S.; et al. Customized Power Wheelchair Joysticks Made by Three-Dimensional Printing Technology: A Pilot Study on the Environmental Adaptation Effects for Severe Quadriplegia. Int. J. Environ. Res. Public Health 2021, 18, 7464. https://doi.org/10.3390/ijerph18147464
Shin HD, Ahn DH, Lee HA, Lee YK, Yang HS, Jo M, Lee SBN, Park GS, Hwang YS, Sim WS, et al. Customized Power Wheelchair Joysticks Made by Three-Dimensional Printing Technology: A Pilot Study on the Environmental Adaptation Effects for Severe Quadriplegia. International Journal of Environmental Research and Public Health. 2021; 18(14):7464. https://doi.org/10.3390/ijerph18147464
Chicago/Turabian StyleShin, Hee Dong, Da Hyun Ahn, Hyun Ah Lee, Yun Kyung Lee, Hee Seung Yang, Min Jo, Seul Bin Na Lee, Gwan Su Park, Yun Sub Hwang, Woo Sob Sim, and et al. 2021. "Customized Power Wheelchair Joysticks Made by Three-Dimensional Printing Technology: A Pilot Study on the Environmental Adaptation Effects for Severe Quadriplegia" International Journal of Environmental Research and Public Health 18, no. 14: 7464. https://doi.org/10.3390/ijerph18147464
APA StyleShin, H. D., Ahn, D. H., Lee, H. A., Lee, Y. K., Yang, H. S., Jo, M., Lee, S. B. N., Park, G. S., Hwang, Y. S., Sim, W. S., & Park, S. -J. (2021). Customized Power Wheelchair Joysticks Made by Three-Dimensional Printing Technology: A Pilot Study on the Environmental Adaptation Effects for Severe Quadriplegia. International Journal of Environmental Research and Public Health, 18(14), 7464. https://doi.org/10.3390/ijerph18147464