How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Demographic Profile of the Respondent
2.3. Theoretical Basis and Research Hypothesis
2.3.1. The Direct Impact of Capital Endowment and Ecological Cognition on Farmer’s Adoption of Environment-Friendly Technology
2.3.2. Impact of Ecological Compensation Policy on Farmer’s Adoption of Environment-Friendly Technology
3. Variables and Research Approaches
3.1. Variables
3.1.1. Dependent Variable
3.1.2. Independent Variables
3.1.3. Moderating Variables
3.1.4. Research Approaches
4. Results and Analysis
4.1. Impact Analysis of Farmer’s Willingness to Adopt Environment-Friendly Technologies
4.2. Analysis of the Impact of the Adoption of Environment-Friendly Technologies
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, L.; Zhang, Z.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.; Zhang, W.; Zhang, H.; Wu, W.; Zhao, X.; et al. Progress towards Sustainable Intensification in China Challenged by Land-Use Change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Wang, X.; Dou, Z.; Shi, X.; Zou, C.; Liu, D.; Wang, Z.; Guan, X.; Sun, Y.; Wu, G.; Zhang, B.; et al. Innovative Management Programme Reduces Environmental Impacts in Chinese Vegetable Production. Nat. Food 2021, 2, 47–53. [Google Scholar] [CrossRef]
- Veeck, G.; Veeck, A.; Yu, H. Challenges of Agriculture and Food Systems Issues in China and the United States. Geogr. Sustain. 2020, 1, 109–117. [Google Scholar] [CrossRef]
- Smith, E.; KIein, K.K. Development and Adoption of Dryland Cropping Technologies in Hebei Province of Northern China. Can. J. Agric. Econ. Rev. Can. Dagroecon. 2000, 48, 573–583. [Google Scholar] [CrossRef]
- Huang, W.; Jiang, L. Efficiency Performance of Fertilizer Use in Arable Agricultural Production in China. China Agric. Econ. Rev. 2019, 11, 52–69. [Google Scholar] [CrossRef]
- Hu, Y.; Su, M.; Wang, Y.; Cui, S.; Meng, F.; Yue, W.; Liu, Y.; Xu, C.; Yang, Z. Food Production in China Requires Intensified Measures to Be Consistent with National and Provincial Environmental Boundaries. Nat. Food 2020, 1, 572–582. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s Response to a National Land-System Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- El Bilali, H.; Allahyari, M.S. Transition towards Sustainability in Agriculture and Food Systems: Role of Information and Communication Technologies. Inf. Process. Agric. 2018, 5, 456–464. [Google Scholar] [CrossRef]
- Selvi, S.; Karthikeyan, R.; Vanitha, U. Organic Farming: Technology for Environment-Friendly Agriculture. In Proceedings of the IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; pp. 132–136. [Google Scholar]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global Assessment of Agricultural System Redesign for Sustainable Intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F.L.; et al. Agricultural Non-CO2 Emission Reduction Potential in the Context of the 1.5 °C Target. Nat. Clim. Chang. 2019, 9, 66–72. [Google Scholar] [CrossRef]
- Eisenstein, M. Natural Solutions for Agricultural Productivity. Nature 2020, 588, S58–S59. [Google Scholar] [CrossRef]
- Hofmann, T.; Lowry, G.V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J.R.; Gilbertson, L.M.; Giraldo, J.P.; Kinsella, J.M.; Landry, M.P.; et al. Technology Readiness and Overcoming Barriers to Sustainably Implement Nanotechnology-Enabled Plant Agriculture. Nat. Food 2020, 1, 416–425. [Google Scholar] [CrossRef]
- Horton, P.; Long, S.P.; Smith, P.; Banwart, S.A.; Beerling, D.J. Technologies to Deliver Food and Climate Security through Agriculture. Nat. Plants 2021, 7, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Scialabba, N.E.-H. Greening the Economy with Agriculture; FAO: Rome, Italy, 2012. [Google Scholar]
- Kliestik, T.; Valaskova, K.; Nica, E.; Kovacova, M.; Lazaroiu, G. Advanced Methods of Earnings Management: Monotonic Trends and Change-Points under Spotlight in the Visegrad Countries. Oeconomia Copernic. 2020, 11, 371–400. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. Character Strengths and Sustainable Technology Adoption by Smallholder Farmers. Heliyon 2020, 6, e04694. [Google Scholar] [CrossRef]
- Grzelak, A.; Guth, M.; Matuszczak, A.; Czyżewski, B.; Brelik, A. Approaching the Environmental Sustainable Value in Agriculture: How Factor Endowments Foster the Eco-Efficiency. J. Clean. Prod. 2019, 241, 118304. [Google Scholar] [CrossRef]
- Wang, H.; Sarkar, A.; Qian, L. Evaluations of the Roles of Organizational Support, Organizational Norms and Organizational Learning for Adopting Environmentally Friendly Technologies: A Case of Kiwifruit Farmers’ Cooperatives of Meixian, China. Land 2021, 10, 284. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Wang, Y.; Li, X. Adoption of Eco-Friendly Soil-Management Practices by Smallholder Farmers in Shandong Province of China. Soil Sci. Plant Nutr. 2016, 62, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Srivara Buddhi Bhuvaneswari, S. Eco-Friendly Technologies in Vegetable Cultivation-Farmers’ Awareness, Knowledge, Adoption and Attitude. Madras Agric. J. 2005, 92, 132–137. [Google Scholar]
- Liu, M.; Xiong, Y.; Yuan, Z.; Min, Q.; Sun, Y.; Fuller, A.M. Standards of Ecological Compensation for Traditional Eco-Agriculture: Taking Rice-Fish System in Hani Terrace as an Example. J. Mt. Sci. 2014, 11, 1049–1059. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.T.; Sanchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gomez-Barbero, M. Influencing Factors and Incentives on the Intention to Adopt Precision Agricultural Technologies within Arable Farming Systems. Environ. Sci. Policy 2018, 93, 66–74. [Google Scholar] [CrossRef]
- Zhou, S.; Herzfeld, T.; Glauben, T.; Zhang, Y.; Hu, B. Factors Affecting Chinese Farmers’ Decisions to Adopt a Water-Saving Technology. Can. J. Agric. Econ. Rev. Can. Dagroecon. 2008, 56, 51–61. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Wen, H.; Fu, Z.; Zhang, L. A Key Frame Extraction Method for Processing Greenhouse Vegetables Production Monitoring Video. Comput. Electron. Agric. 2015, 111, 92–102. [Google Scholar] [CrossRef]
- Suri, T. Selection and Comparative Advantage in Technology Adoption. Econometrica 2011, 79, 159–209. [Google Scholar] [CrossRef] [Green Version]
- Kaine, G.; Bewsell, D. Adoption of Integrated Pest Management by Apple Growers: The Role of Context. Int. J. Pest Manag. 2008, 54, 255–265. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. Food for Hope: The Role of Personal Resources in Farmers’ Adoption of Green Technology. Sustainability 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Zhang, J.; He, K.; Cheng, L. Who Cares What Parents Think or Do? Observational Learning and Experience-Based Learning through Communication in Rice Farmers’ Willingness to Adopt Sustainable Agricultural Technologies in Hubei Province, China. Environ. Sci. Pollut. Res. 2019, 26, 12522–12536. [Google Scholar] [CrossRef] [PubMed]
- Lordan, J.; Gomez, M.; Francescatto, P.; Robinson, T.L. Long-Term Effects of Tree Density and Tree Shape on Apple Orchard Performance, a 20 Year Study—Part 2, Economic Analysis. Sci. Hortic. 2019, 244, 435–444. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Bahruddin, M.A.; Tareq, A.H. A State-of-the-Art Review on Facilitating Sustainable Agriculture through Green Fertilizer Technology Adoption: Assessing Farmers Behavior. Trends Food Sci. Technol. 2019, 86, 439–452. [Google Scholar] [CrossRef]
- Tal, A. Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture. Sustainability 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Yin, Z.; Yang, P. Advances in the applications of green crop pest control techniques. Plant Prot. 2011, 37, 29–32. [Google Scholar]
- Kim, D.; Park, K. An Environmentally Friendly Soil Improvement Technology with Microorganism. Int. J. Railw. 2013, 6, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Rajabi Agereh, S.; Kiani, F.; Khavazi, K.; Rouhipour, H.; Khormali, F. An Environmentally Friendly Soil Improvement Technology for Sand and Dust Storms Control. Environ. Health Eng. Manag. J. 2019, 6, 63–71. [Google Scholar] [CrossRef]
- Jian, C. The Effect Analysis of Fund Loan on Adoption of Agricultural Technology under the Condition of Different Capital Endowment. Forum Sci. Technol. China 2013, 10, 93–98. [Google Scholar]
- Eor, M.K. Analysis of the Factor Endowments and Agricultural Trade for Economic Cooperation in Northeast Asia. East Asian Econ. Rev. 2004, 8, 143–167. [Google Scholar] [CrossRef]
- Anik, A.R.; Rahman, S.; Sarker, J.R. Agricultural Productivity Growth and the Role of Capital in South Asia (1980–2013). Sustainability 2017, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Alavion, S.J.; Allahyari, M.S.; Al-Rimawi, A.S.; Surujlal, J. Adoption of Agricultural E-Marketing: Application of the Theory of Planned Behavior. J. Int. Food Agribus. Mark. 2017, 29, 1–15. [Google Scholar] [CrossRef]
- Gustafson, C.R.; Nganje, W.E. Value of Social Capital to Mid-Sized Northern Plains Farms. Can. J. Agric. Econ. Rev. Can. Dagroeconomie 2006, 54, 421–438. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Zhang, J.; Xu, Z. Research on Farmers’ Cognition and Behavior Response in Rural Living Environment Improvement—Taking the Main Rice Production Area of Dongting Lake Wetland Reserve As An Example. J. Agric. Econ. 2013, 72–79. [Google Scholar]
- Liu, Z.; Zhou, J. Information Capability, Environmental Risk Perception and Farmers’ Adoption of Pro-Environmental Behavior: An Empirical Test Based on Broiler Farmers in Liaoning Province. J. Agric. Econ. 2018, 135–144. [Google Scholar]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of Agriculture Waste and Payments for a Circular Agriculture Model in Central China. Sci. Rep. 2020, 10, 10826. [Google Scholar] [CrossRef]
- Rude, J.; Weersink, A. The Potential for Cross-Compliance in Canadian Agricultural Policy: Linking Environmental Goals with Business Risk Management Programs. Can. J. Agric. Econ. Rev. Can. Dagroecon. 2018, 66, 359–377. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Hou, L. Impacts of the Grassland Ecological Compensation Policy on Household Livestock Production in China: An Empirical Study in Inner Mongolia. Ecol. Econ. 2019, 161, 248–256. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Wang, L.; Cui, M.; Yang, F. Does Aging and Off-Farm Employment Hinder Farmers’ Adoption Behavior of Soil and Water Conservation Technology in the Loess Plateau? Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 92–107. [Google Scholar] [CrossRef]
- Bhaumik, S.K.; Dimova, R. Does Human Capital Endowment of Foreign Direct Investment Recipient Countries Really Matter? Evidence from Cross-Country Firm Level Data. Rev. Dev. Econ. 2013, 17, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Lin, J.Y.; Wang, Y. Endowment Structures, Industrial Dynamics, and Economic Growth. J. Monet. Econ. 2015, 76, 244–263. [Google Scholar] [CrossRef] [Green Version]
- Rosochatecká, E.; Tomšík, K.; Žídková, D. Selected Problemes of Capital Endowment of Czech Agriculture. Agric. Econ. 2008, 54, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Qi, Z.; Meng, X.; Zhang, D.; Wu, L. Study on the Influence of Family Endowments on the Environmental Behavior of Massive Pig Farmers Under the Situation of Ecological Compensation Policy: Based on the Survey of 248 Massive Pig Farmers in Hubei Province. Issues Agric. Econ. 2015, 6, 82–91. [Google Scholar]
- Huang, X.; Wang, L.; Lu, Q. Farmers’ cognition, government Support and Farmers’ soil and Water Conservation Technology Adoption in Loess Plateau. J. Arid. Land Resour. Environ. 2019, 12, 21–25. [Google Scholar]
- Razzaghi Borkhani, F.; Mohammadi, Y. Perceived Outcomes of Good Agricultural Practices (GAPs) Technologies Adoption in Citrus Farms of Iran (Reflection of Environment-Friendly Technologies). Environ. Sci. Pollut. Res. 2019, 26, 6829–6838. [Google Scholar] [CrossRef]
- Hall, T.J.; Dennis, J.H.; Lopez, R.G.; Marshall, M.I. Factors Affecting Growers’ Willingness to Adopt Sustainable Floriculture Practices. HortScience 2009, 44, 1346–1351. [Google Scholar] [CrossRef]
- Abbas, T.; Ali, G.; Adil, S.A.; Bashir, M.K.; Kamran, M.A. Economic Analysis of Biogas Adoption Technology by Rural Farmers: The Case of Faisalabad District in Pakistan. Renew. Energy 2017, 107, 431–439. [Google Scholar] [CrossRef]
- Feng, L.; Xu, J. Farmers’ Willingness to Participate in the Next-Stage Grain-for-Green Project in the Three Gorges Reservoir Area, China. Environ. Manag. 2015, 56, 505–518. [Google Scholar] [CrossRef]
- Channa, H.; Chen, A.Z.; Pina, P.; Ricker-Gilbert, J.; Stein, D. What Drives Smallholder Farmers’ Willingness to Pay for a New Farm Technology? Evidence from an Experimental Auction in Kenya. Food Policy 2019, 85, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Memon, J.A.; Alizai, M.Q.; Hussain, A. Who Will Think Outside the Sink? Farmers’ Willingness to Invest in Technologies for Groundwater Sustainability in Pakistan. Environ. Dev. Sustain. 2020, 22, 4425–4445. [Google Scholar] [CrossRef]
- Wang, H.; Yu, F.; Reardon, T.; Huang, J.; Rozelle, S. Social Learning and Parameter Uncertainty in Irreversible Investments: Evidence from Greenhouse Adoption in Northern China. China Econ. Rev. 2013, 27, 104–120. [Google Scholar] [CrossRef]
- Tilahun, U.; Bedemo, A. Farmers’ Perception and Adaptation to Climate Change: Heckman’s Two Stage Sample Selection Model. Ethiop. J. Environ. Stud. Manag. 2014, 7, 832–839. [Google Scholar] [CrossRef]
- Esfandiari, M.; Mirzaei Khalilabad, H.R.; Boshrabadi, H.M.; Mehrjerdi, M.R.Z. Factors Influencing the Use of Adaptation Strategies to Climate Change in Paddy Lands of Kamfiruz, Iran. Land Use Policy 2020, 95, 104628. [Google Scholar] [CrossRef]
- Amfo, B.; Ali, E.B. Climate Change Coping and Adaptation Strategies: How Do Cocoa Farmers in Ghana Diversify Farm Income? For. Policy Econ. 2020, 119, 102265. [Google Scholar] [CrossRef]
- Lambrecht, I.; Vanlauwe, B.; Merckx, R.; Maertens, M. Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo. World Dev. 2014, 59, 132–146. [Google Scholar] [CrossRef]
- Rabbi, F.; Ahamad, R.; Ali, S.; Chandio, A.A.; Ahmad, W.; Ilyas, A.; Din, I.U. Determinants of Commercialization and Its Impact on the Welfare of Smallholder Rice Farmers by Using Heckman’s Two-Stage Approach. J. Saudi Soc. Agric. Sci. 2019, 18, 224–233. [Google Scholar] [CrossRef]
- Geniaux, G.; Martinetti, D. Heckman Two-Stage Spatial Models for Agricultural Land Use Change. In Proceedings of the AgroMed International Conference 2016, Avignon, France, 1–2 December 2016; p. 1. [Google Scholar]
- Certo, S.T.; Busenbark, J.R.; Woo, H.; Semadeni, M. Sample Selection Bias and Heckman Models in Strategic Management Research. Strateg. Manag. J. 2016, 37, 2639–2657. [Google Scholar] [CrossRef]
- Goldberger, A.S. Abnormal selection bias. In Studies in Econometrics, Time Series, and Multivariate Statistics; Karlin, S., Amemiya, T., Goodman, L.A., Eds.; Academic Press: Stanford, CA, USA, 1983; pp. 67–84. ISBN 978-0-12-398750-1. [Google Scholar]
- Newey, W.; Powell, J.L.; Walker, J. Semiparametric Estimation of Selection Models: Some Empirical Results. Am. Econ. Rev. 1990, 80, 324–328. [Google Scholar]
- Nawata, K. Estimation of Sample Selection Bias Models by the Maximum Likelihood Estimator and Heckman’s Two-Step Estimator. Econ. Lett. 1994, 45, 33–40. [Google Scholar] [CrossRef]
- Puhani, P. The Heckman Correction for Sample Selection and Its Critique. J. Econ. Surv. 2000, 14, 53–68. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.D.F.; Shimmi, S.L. Adoption of Smart Grid Technologies: An Analysis of Interactions among Barriers. Renew. Sustain. Energy Rev. 2014, 33, 554–565. [Google Scholar] [CrossRef]
- Ali, E. Farm Households’ Adoption of Climate-Smart Practices in Subsistence Agriculture: Evidence from Northern Togo. Environ. Manag. 2021, 67, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Gabel, V.M.; Home, R.; Stolze, M.; Birrer, S.; Steinemann, B.; Köpke, U. The Influence of On-Farm Advice on Beliefs and Motivations for Swiss Lowland Farmers to Implement Ecological Compensation Areas on Their Farms. J. Agric. Educ. Ext. 2018, 24, 233–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Z.; Meng, X. Impact of Family Resource Endowment on Environmental Behavior of Pig Farmers in the Context of Ecological Compensation Policy: Based on the Investigation of 248 Professional Farmers (Farms) in Hubei Province. Issues Agric. Econ. 2015, 36, 82–91. [Google Scholar]
- Zhang, Q.; Hong, J.; Wu, F.; Yang, Y.; Dong, C. Gains or Losses? A Quantitative Estimation of Environmental and Economic Effects of an Ecological Compensation Policy. Ecol. Appl. 2021, 31, e2341. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and Socioeconomic Effects of China’s Policies for Ecosystem Services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [Green Version]
- Ke-guo, L.I. Reflections on Ecological Compensation Policy. J. Environ. Manag. Coll. China 2007, 1, 19–22. [Google Scholar]
- Cai, Y.Y.; Zhang, A.L. Researching Progress and Trends of Agricultural Land’s Ecological Compensation under Land Use Planning Control. J. Nat. Resour. 2010, 5, 868–880. [Google Scholar]
- Home, R.; Balmer, O.; Jahrl, I.; Stolze, M.; Pfiffner, L. Motivations for Implementation of Ecological Compensation Areas on Swiss Lowland Farms. J. Rural. Stud. 2014, 34, 26–36. [Google Scholar] [CrossRef]
- Ju, X.; Xue, Y.; Xi, B.; Jin, T.; Xu, Z.; Gao, S. Establishing an Agro-Ecological Compensation Mechanism to Promote Agricultural Green Development in China. Jore 2018, 9, 426–433. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, Y.; Zhou, Y.; Sun, H. Ecological Compensation Standard for Non-Point Pollution from Farmland; Social Science Research Network: Rochester, NY, USA, 2017. [Google Scholar]
- Ge, Y.; Wu, F.; Wang, B.; Liang, L. Valley Ecological Compensation: The Comparison and Selection between the Government Compensation and the Market Compensation. J. Shandong Agric. Univ. (Soc. Sci. Ed.) 2007, 4, 48–53. [Google Scholar]
- Gebru, B.M.; Wang, S.W.; Kim, S.J.; Lee, W.-K. Socio-Ecological Niche and Factors Affecting Agroforestry Practice Adoption in Different Agroecologies of Southern Tigray, Ethiopia. Sustainability 2019, 11, 3729. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, J.; Wang, X.; Zeng, Y.; Zhang, L. A Scientometric Review of Emerging Trends and New Developments in Agricultural Ecological Compensation. Environ. Sci. Pollut. Res. 2018, 25, 16522–16532. [Google Scholar] [CrossRef] [PubMed]
- Yuanquan, C.; Wangsheng, G. On the Principles and Decision-Making Model of Ecological Compensation for Agriculture. Chin. Agric. Sci. Bull. 2007, 23, 163–166. [Google Scholar]
- Dezdar, S. Green Information Technology Adoption: Influencing Factors and Extension of Theory of Planned Behavior. Soc. Responsib. J. 2017, 13, 292–306. [Google Scholar] [CrossRef]
Variables | Meaning and Assignment | AVG | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Dependent variable | |||||
Y1: The willingness | Adopting (two or more) positive = 1; otherwise = 0 | 0.51 | 0.49 | 0 | 1 |
Y2: Adaptation | Adoption | 2.06 | 0.78 | 0 | 3 |
Capital endowment | |||||
X1: Sex | F = 0; M = 1 | 0.37 | 0.48 | 0 | 1 |
X2: Age | By 2017 | 51.03 | 9.48 | 25 | 85 |
X3: Education | Years of education | 7.64 | 5.22 | 0 | 11 |
X4: Duration of farming | Duration of farming | 27.63 | 5.07 | 4 | 58 |
X5: Scale | AVG of the area in 2017 | 4.13 | 0.48 | 1 | 12 |
X6: Labor | Labors in family | 3 | 1.49 | 0 | 12 |
X7: Machinery | Machinery | 0.48 | 0.65 | 0 | 4 |
X8: Family income | income in 2017 | 10.52 | 0.95 | 7.60 | 13.30 |
X9: Specialization | Proportion to total income in 2017 | 68.47 | 7.89 | 60 | 86 |
Ecological cognition | |||||
X10: Awareness of the hazards of over chemicals use | Do not know = 1; have heard of = 2; know something = 3; know very well = 4 | 1.83 | 1.02 | 1 | 3 |
X11: Awareness of soil environmental protection policy | Do not know = 1; have heard of = 2; know something = 3; know very well = 4 | 2.53 | 0.70 | 1 | 3 |
X12: Awareness on effect of environment-friendly technology | No = 1; little effect = 2; large action = 3; great effect = 4 | 2.28 | 0.50 | 1 | 4 |
The Impact of Environmental Policy | |||||
X13: Understanding of ecological policy | 1 = totally do not understand, 2 = do not understand, 3 = general, 4 = understand, 5 = fully understand | 3.38 | 0.87 | 2 | 5 |
X14: Satisfaction with ecological policy | 1 = very dissatisfied, 2 = not very satisfied, 3 = general, 4 = satisfied, 5 = very satisfied | 3.18 | 2.04 | 1 | 5 |
X15: Benefit | 1 = significant decrease, 2 = slight decrease, 3 = constant, 4 = slight increase, 5 = obvious increase | 3.42 | 0.98 | 1 | 5 |
Variable | Willingness to Adopt | Degree of Adoption | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
x1 Sex | −0.214 | 0.150 | −0.082 | 0.075 |
x2 Age | −0.006 | 0.008 | −0.002 | 0.004 |
x3 Education | 0.036 | 0.021 | 0.003 | 0.009 |
x4 Duration of farming | 0.005 | 0.012 | 0.034 | 0.005 |
x5 Scale | −0.012 | 0.046 | 0.002 * | 0.020 |
x6 Labor | −0.076 | 0.047 | 0.011 | 0.026 |
x7 Machinery | 0.138 * | 0.080 | 0.019 | 0.040 |
x8 Family income | 0.011 | 0.078 | 0.059 * | 0.035 |
x9 Specialization | −0.005 | 0.010 | 0.011 *** | 0.004 |
x10: Awareness of excessive use | −0.011 | 0.072 | −0.036 | 0.031 |
x11: Awareness of soil protection policy | 0.140 | 0.103 | 0.215 | 0.052 |
x12: Awareness on improving effect | 0.113 * | 0.146 | 0.019 | 0.069 |
x13: Awareness of ecological compensation | 0.111 * | 0.082 | 0.053 * | 0.040 |
x14: Satisfaction with ecological compensation | −0.072 | 0.080 | −0.057 | 0.038 |
x15: Satisfaction with ecological compensation | 0.083 | 0.076 | 0.015 | 0.037 |
x13: Awareness of ecological compensation * x5 Scale | — | — | 0.029 * | 0.020 |
x13: Awareness of ecological compensation * x8 Family income | — | — | 0.042 * | 0.155 |
x13: Awareness of ecological compensation * x9 Specialization | — | — | 0.011 * | 0.017 |
x13: Awareness of ecological compensation * Awareness of soil protection policy x13: Awareness of ecological compensation * x12: Awareness on improving effect | — — | — — | 0.277 * 0.302 * | 0.151 0.166 |
The constant | 1.295 | 1.306 | 1.694 *** | 0.575 |
Log-likelihood | −440.6671 | |||
Wald chi2(15) | 22.41 |
Variable | High Group on Ecological Compensation | Low Group on Ecological Compensation | ||
---|---|---|---|---|
Willingness to Adopt | Degree | Willingness to Adopt | Degree | |
Coefficient | Coefficient | Coefficient | Coefficient | |
X5: Scale | 0.008 * | 0.035 ** | −0.002 | 0.032 * |
(0.016) | (0.208) | (0.074) | (0.020) | |
X7: Machinery | 0.137 ** | 0.012 | 0.116 | 0.052 |
(0.210) | (0.056) | (0.144) | (0.056) | |
lnX8: Family income | 0.028 | 0.042 ** | −0.160 | −0.013 |
(0.100) | (0.247) | (0.133) | (0.055) | |
X9: Specialization | 0.009 | 0.008 ** | −0.016 | 0.004 ** |
(0.013) | (0.206) | (0.017) | (0.007) | |
X12: Cognition of improving environmental effect | 0.078 ** | 0.087 * | −0.030 | 0. 017 |
(0.019) | (0.012) | (0.252) | (0. 016) | |
The constant | −0.361 | 2.124 ** | 6.272 ** | 0.236 |
(1.767) | (0.876) | (2.518) | (1.082) | |
Log likelihood | −266.0604 | −177.2996 | ||
Wald chi2(15) | 24.46 | 27.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, X.; Sarkar, A.; Zhang, F. How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China. Int. J. Environ. Res. Public Health 2021, 18, 7571. https://doi.org/10.3390/ijerph18147571
Wang H, Wang X, Sarkar A, Zhang F. How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China. International Journal of Environmental Research and Public Health. 2021; 18(14):7571. https://doi.org/10.3390/ijerph18147571
Chicago/Turabian StyleWang, Hongyu, Xiaolei Wang, Apurbo Sarkar, and Fuhong Zhang. 2021. "How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China" International Journal of Environmental Research and Public Health 18, no. 14: 7571. https://doi.org/10.3390/ijerph18147571
APA StyleWang, H., Wang, X., Sarkar, A., & Zhang, F. (2021). How Capital Endowment and Ecological Cognition Affect Environment-Friendly Technology Adoption: A Case of Apple Farmers of Shandong Province, China. International Journal of Environmental Research and Public Health, 18(14), 7571. https://doi.org/10.3390/ijerph18147571