Modelling Exposure by Spraying Activities—Status and Future Needs
Abstract
:1. Introduction
2. Literature Review
2.1. Workshop
2.2. Systematic Literature Search
- Search term 1: exposure AND spraying AND model AND (occupational OR work* OR consumer)
- Search term 2: exposure AND (model OR tool) AND (robustness OR validation).
3. Categorization and Grouping of Models
4. Description of Existing Models
5. Evaluation of the Performance of the Models
5.1. Information on External Evaluation of the Models—Inhalation Exposure
5.2. Information on External Evaluation of the Models—Dermal Exposure
5.3. Information on Operational Analysis of the Tools
6. Discussion, Derivation and Identification of Needs
6.1. Development and Improvement of Models
6.2. Needs for Additional Evaluation of the Models
6.3. Sector Specific and Use Specific Information
6.4. Needs for Modelling from a Regulatory Perspective
7. Conclusions
- Extension of mechanistic model approaches to cover post-application phases as well as spraying of (semi-)volatile substances, i.e., combined exposure to spray mist, evaporation from droplets, and evaporation from treated surfaces;
- Further research and practical implementation of concepts to consider the type and amount of the variable source strength for different spray equipment in the modelling;
- Development and evaluation of models for exposure assessment of foaming activities and dermal exposure assessment of spray activities;
- Comprehensive evaluation of empirical, hybrid, and mechanistic models with a focus specifically on different spray scenarios and equipment;
- A better documentation and guidance of the models, e.g. description of which spray scenarios and spray equipment are covered by the models and evaluation studies;
- Development of a database with agreed default parameters for specific spraying scenarios and source parameters for different spraying devices and techniques;
- Harmonization of terminology, spray input parameters and appropriate grouping of spray exposure situations among the models;
- A platform with harmonized information about spraying activities and appropriate exposure models to be used under different regulations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolfe, H.R.; Armstrong, J.F.; Staiff, D.C.; Comer, S.W. Exposure of spraymen to pesticides. Arch. Environ. Health 1972, 25, 29–31. [Google Scholar] [CrossRef]
- Davis, J.E. Minimizing occupational exposure to pesticides: Personnel monitoring. In Residue Reviews; Gunther, F.A., Gunther, J.D., Eds.; Springer: New York, NY, USA, 1980; Volume 75, pp. 33–50. [Google Scholar]
- McNally, K.; Gorce, J.-P.; Goede, H.A.; Schinkel, J.; Warren, N. Calibration of the dermal advanced reach tool (dART) mechanistic model. Ann. Work Expo. Health 2019, 63, 637–650. [Google Scholar] [CrossRef]
- Koch, W.; Berger-Preiß, E.; Boehncke, A.; Könnecker, G.; Mangelsdorf, I. Arbeitsplatzbelastungen bei der Verwendung von Biozidprodukten—Teil 1. Inhalative und Dermale Expositionsdaten für das Versprühen von Flüssigen Biozidprodukten; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2004. [Google Scholar]
- Roitzsch, M.; Schäferhenrich, A.; Baumgärtel, A.; Ludwig-Fischer, K.; Hebisch, R.; Göen, T. Dermal and inhalation exposure of workers during control of oak processionary moth (OPM) by spray applications. Ann. Work Expo. Health 2019, 63, 294–304. [Google Scholar] [CrossRef]
- Koch, W.; Behnke, W.; Berger-Preiß, E.; Kock, H.; Gerling, S.; Hahn, S.; Schröder, K. Validation of an EDP Assisted Model for Assessing Inhalation Exposure and Dermal Exposure during Spraying Processes; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2012. [Google Scholar]
- Jones, K.; Cocker, J.; Piney, M. Isocyanate exposure control in motor vehicle paint spraying: Evidence from biological monitoring. Ann. Occup. Hyg. 2013, 57, 200–209. [Google Scholar]
- Links, I.; van der Jagt, K.E.; Christopher, Y.; Lurvink, M.; Schinkel, J.; Tielemans, E.; van Hemmen, J.J. Occupational exposure during application and removal of antifouling paints. Ann. Occup. Hyg. 2007, 51, 207–218. [Google Scholar]
- Großkopf, C.; Martin, S.; Mielke, H.; Westphal, D.; Hamey, P.; Bouneb, F.; Rautmann, D.; Erdtmann-Vourliotis, M.; IVA Expert Committee for Operator Safety; ECPA Occupational and Bystander Exposure Expert Group; et al. Joint Development of a New Agricultural Operator Exposure Model; Federal Institute for Risk Assessment (BfR): Berlin, Germany, 2013. [Google Scholar]
- Meyer, J.; Krug, M.; Poppek, U.; Roitzsch, M.; Schlüter, U. Biozide Schädlingsbekämpfungsmittel—Expositionsabschätzungen für den beruflichen Anwender aus Sicht der Bewertungsstelle Arbeitsschutz. Gefahrst. Reinhalt. Luft 2018, 78, 335–347. [Google Scholar]
- Ludwig-Fischer, K.; Krug, M.; Holthenrich, D. Holzschutzmittel—Expositionsabschätzungen für den beruflichen Anwender aus Sicht der Bewertungsstelle Arbeitsschutz. Gefahrst. Reinhalt. Luft 2014, 74, 192–200. [Google Scholar]
- Clausen, P.A.; Morck, T.A.; Jensen, A.C.O.; Schou, T.W.; Kofoed-Sorensen, V.; Koponen, I.K.; Frederiksen, M.; Detmer, A.; Fink, M.; Norgaard, A.W.; et al. Biocidal spray product exposure: Measured gas, particle, and surface concentrations compared with spray model simulations. J. Occup. Environ. Hyg. 2020, 17, 15–29. [Google Scholar] [CrossRef]
- Schuh, C.; Weigl, M.; Wegscheider, W. Simultane Bestimmung der Desinfektionsmittel Peroxyessigsäure und Wasserstoffperoxid in der Luft an Arbeitsplätzen. Gefahrst. Reinhalt. Luft 2016, 76, 259–264. [Google Scholar]
- Tischer, M.; Poppek, U. Sprayexpo—Softwaretool zur Bewertung der inhalativen und dermalen Exposition bei Sprühprozessen. Expositionsabschätzung in der Praxis. Sicherheitsingenieur 2013, 44, 8–13. [Google Scholar]
- Schwarz, K.; Koch, W. Thoracic and respirable aerosol fractions of spray products containing non-volatile compounds. J. Occup. Environ. Hyg. 2017, 14, 831–838. [Google Scholar] [CrossRef]
- Schwarz, K.; Holthenrich, D.; Bissantz, K.; Ehni, M.; Bitsch, A. Foam spray application of biocides: Investigation into aerosol inhalation exposure. Gefahrst. Reinhalt. Luft 2015, 75, 183–189. [Google Scholar]
- Bitsch, A.; Hahn, S.; Koch, W. Chapter 5.9: Spray, aerosols. In The Practice of Consumer Exposure Assessment; Heinemeyer, G., Jantunen, M., Hakkinen, P., Eds.; Springer International Publishing: Berlin, Germany, 2019; pp. 437–449. [Google Scholar]
- Steiling, W.; Bascompta, M.; Carthew, P.; Catalano, G.; Corea, N.; D’Haese, A.; Jackson, P.; Kromidas, L.; Meurice, P.; Rothe, H.; et al. Principle considerations for the risk assessment of sprayed consumer products. Toxicol. Lett. 2014, 227, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Flynn, M.R.; Koto, Y.; Fent, K.; Nylander-French, L.A. Modeling dermal exposure—An illustration for spray painting applications. J. Occup. Environ. Hyg. 2006, 3, 475–480. [Google Scholar] [CrossRef]
- ECHA. Ad Hoc Working Group—Human Exposure. Biocides Human Health Exposure Methodology; Opinions of the Human Exposure Expert Group (HEEG). 2015. Available online: https://echa.europa.eu/de/about-us/who-we-are/biocidal-products-committee/working-groups/human-exposure (accessed on 9 June 2021).
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment—Chapter R.15: Consumer Exposure Assessment. Available online: https://www.echa.europa.eu/documents/10162/13632/information_requirements_r15_en.pdf (accessed on 9 June 2021).
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment—Chapter R.14: Occupational Exposure Assessment. Available online: https://www.echa.europa.eu/documents/10162/13632/information_requirements_r14_en.pdf (accessed on 9 June 2021).
- Delmaar, J.E.; Bremmer, H.J. The ConsExpo Spray Model—Modelling and Experimental Validation of the Inhalation Exposure of Consumers to Aerosols from Spray Cans and Trigger Sprays; Rijksinstituut voor Volksgezondheid en Milieu (RIVM): Utrecht, The Netherlands, 2009. [Google Scholar]
- Van Tongeren, M.; Lamb, J.; Cherrie, J.W.; MacCalman, L.; Basinas, I.; Hesse, S. Validation of lower tier exposure tools used for reach: Comparison of tools estimates with available exposure measurements. Ann. Work Expo. Health 2017, 61, 921–938. [Google Scholar] [CrossRef]
- Mostert, V.; Bonifay, S.; Dobe, C.; Fliege, R.; Krass, J.; Vosswinkel, R.; Wormuth, M. REACH worker exposure model for co-formulants used in plant protection products. Ann. Work Expo. Health 2019, 63, 54–67. [Google Scholar] [CrossRef]
- Delmaar, C.; Meesters, J. Modeling consumer exposure to spray products: An evaluation of the ConsExpo web and ConsExpo nano models with experimental data. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 878–887. [Google Scholar] [CrossRef]
- Großkopf, C.; Martin, S.; Mielke, H.; Hamey, P.; Mercier, T.; Bouneb, F.; Abril Muñoz, I.; Machera, K.; Rautmann, D.; Erdtmann-Vourliotis, M.; et al. Joint Development of a New Greenhouse Agricultural Operator Exposure Model for Hand-Held Application; Federal Institute for Risk Assessment (BfR): Berlin, Germany, 2015. [Google Scholar]
- Kim, T.; Park, J.; Seo, J.; Yoon, H.; Lee, B.; Lim, H.; Lee, D.; Kim, P.; Yoon, C.; Lee, K.; et al. Behavioral characteristics to airborne particles generated from commercial spray products. Environ. Int. 2020, 140, 105747. [Google Scholar] [CrossRef]
- Laycock, A.; Wright, M.D.; Römer, I.; Buckley, A.; Smith, R. Characterisation of particles within and aerosols produced by nano-containing consumer spray products. Atmos. Environ. 2020, 8, 100079. [Google Scholar]
- ISES. 29th Annual ISES Meeting: 2019 Meeting Abstract Book—Modelling Approaches and Desired Improvements for Workplace Exposure Assessment of Spray Processes. Available online: https://intlexposurescience.org/past-meetings (accessed on 9 June 2021).
- Fransman, W.; van Tongeren, M.; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E. Advanced reach tool (ART): Development of the mechanistic model. Ann. Occup. Hyg. 2011, 55, 957–979. [Google Scholar]
- Tielemans, E.; Warren, N.; Fransman, W.; van Tongeren, M.; McNally, K.; Tischer, M.; Ritchie, P.; Kromhout, H.; Schinkel, J.; Schneider, T.; et al. Advanced REACH Tool (ART): Overview of version 1.0 and research needs. Ann. Occup. Hyg. 2011, 55, 949–956. [Google Scholar]
- Savic, N.; Lee, E.G.; Gasic, B.; Vernez, D. TREXMO plus: An advanced self-learning model for occupational exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Savic, N.; Racordon, D.; Buchs, D.; Gasic, B.; Vernez, D. Trexmo: A translation tool to support the use of regulatory occupational exposure models. Ann. Occup. Hyg. 2016, 60, 991–1008. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Principles of Characterizing and Applying Human Exposure Models. Harmonization Project Document No. 3; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Brouwer, D.H.; Semple, S.; Marquart, J.; Cherrie, J.W. A dermal model for spray painters. Part I: Subjective exposure modelling of spray paint deposition. Ann. Occup. Hyg. 2001, 45, 15–23. [Google Scholar] [CrossRef]
- Semple, S.; Brouwer, D.H.; Dick, F.; Cherrie, J.W. A dermal model for spray painters. Part II: Estimating the deposition and uptake of solvents. Ann. Occup. Hyg. 2001, 45, 25–33. [Google Scholar] [CrossRef]
- A.I.S.E. Consumer Safety Exposure Assessment. Available online: https://www.aise.eu/our-activities/regulatory-context/reach/consumer-safety-exposure-assessment.aspx (accessed on 9 June 2021).
- HERA. Human & Environmental Risk Assessment on Ingredients of Household Cleaning Products—Guidance Document Methodology. Available online: https://www.heraproject.com/Library.cfm (accessed on 9 June 2021).
- Großkopf, C.; Mielke, H.; Bloch, D.; Martin, S. Update of the Greenhouse Agricultural Operator Exposure Model—Amendment to Project Report 01/2016; Federal Institute for Risk Assessment (BfR): Berlin, Germany, 2020. [Google Scholar]
- Goede, H.; Spaan, S.; Oosterwijk, T.; Marrufo, N.; Charistou, A.; Roelofs, V.; Butler-Ellis, C.; Glass, R.; Machera, K.; Kennedy, M.; et al. Technical Report WP1: Operator exposure: Boom spraying, mixing/loading, orchard spraying and hand held applications. In BROWSE: Bystanders, Residents, Operators and Workers Exposure Models for Plant Protection Products; Seventh Framework Programme; Theme: Environment (Including Climate Change); Food and Environment Research Agency: London, UK, 2014. [Google Scholar]
- Ngoc, K.D.; van den Berg, E. Work package 2: Completed worker exposure models for final scenarios. In BROWSE: Bystanders, Residents, Operators and Workers Exposure Models for Plant Protection Products; Food and Environment Research Agency: London, UK, 2014; p. 64. [Google Scholar]
- Butler Ellis, C.; van den Berg, E.; Kennedy, M.; van de Zande, J.; Fragkoulis, G.; O’Sullivan, C.; Jacobs, C.; Trevisan, M. Work package 3: Models of exposure to agricultural pesticides for bystanders and residents. In BROWSE: Bystanders, Residents, Operators and Workers Exposure Models for Plant Protection Products; Seventh Framework Programme; Theme: Environment (Including Climate Change); Food and Environment Research Agency: London, UK, 2014. [Google Scholar]
- EPA. Consumer Exposure Model (CEM) Version 2.1—User Guide. Available online: https://www.epa.gov/tsca-screening-tools/cem-consumer-exposure-model-download-and-install-instructions (accessed on 9 June 2021).
- Delmaar, J.E.; Schuur, A.G. Consexpo Web. Consumer Exposure Models—Model Documentation: Update for Consexpo Web 1.0.2. Consexpo Web. Consumenten Blootstelling Modellen—Documentatie: Actualisatie naar Aanleiding van Nieuwe Mogelijkheden in Consexpo Web—Versie 1.0.2; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Utrecht, The Netherlands, 2017. [Google Scholar]
- Goede, H.; McNelly, K.; Gorce, J.-P.; Franken, R.; Marquardt, H.; Warren, N.; Fransmann, W.; Tischer, M.; Schinkel, J. The dermal ART model: Current developments and testing. In OEECS; British Occupational Hygiene Society (BOHS): Derby, UK, 2019. [Google Scholar]
- Goede, H.A.; McNally, K.; Gorce, J.-P.; Marquart, H.; Warren, N.D.; Fransman, W.; Tischer, M.; Schinkel, J. Dermal Advanced REACH Tool (dART)—Development of a dermal exposure model for low-volatile liquids. Ann. Work. Expo. Health 2019, 63, 624–636. [Google Scholar] [CrossRef]
- Money, C.D.; Jacobi, S.; Penman, M.G.; Rodriguez, C.; De Rooij, C.; Veenstra, G. The ECETOC approach to targeted risk assessment; lessons and experiences relevant to REACH. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S67–S71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECETOC TR 93. Targeted Risk Assessment. Available online: https://www.ecetoc.org/publication/tr-093-targeted-risk-assessment/ (accessed on 9 June 2021).
- ECETOC TR 107. Addendum to ECETOC Targeted Risk Assessment Technical Report No. 93. Available online: https://www.ecetoc.org/publication/tr-107-addendum-to-ecetoc-targeted-risk-assessment-technical-report-no-93/ (accessed on 9 June 2021).
- ECETOC TR 114. ECETOC TRA Version 3: Background and Rationale for the Improvements. Available online: https://www.ecetoc.org/publication/tr-114-ecetoc-tra-version-3-background-and-rationale-for-the-improvements/ (accessed on 9 June 2021).
- ECETOC TR 124. Addendum to TR114: Technical Basis for the TRA v3.1. Available online: https://www.ecetoc.org/publication/tr-124-addendum-to-tr114-technical-basis-for-the-tra-v3–1/ (accessed on 9 June 2021).
- ECETOC TR 131. Targeted Risk Assessment: Further Explanation of the Technical Basis of the TRA v3.1. Available online: https://www.ecetoc.org/publication/tr-131-targeted-risk-assessment-explanation-technical-basis-tra-v3–1/ (accessed on 9 June 2021).
- Zaleski, R.T.; Qian, H.; Zelenka, M.P.; George-Ares, A.; Money, C. European solvent industry group generic exposure scenario risk and exposure tool. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 27–35. [Google Scholar] [CrossRef]
- Vetter, D. MEASE Documentation & Changelog. Available online: https://www.ebrc.de/industrial-chemicals-reach/projects-and-references/mease.php (accessed on 9 June 2021).
- Marquart, H.; Warren, N.D.; Laitinen, J.; van Hemmen, J.J. Default values for assessment of potential dermal exposure of the hands to industrial chemicals in the scope of regulatory risk assessments. Ann. Occup. Hyg. 2006, 50, 469–489. [Google Scholar]
- Warren, N.D.; Marquart, H.; Christopher, Y.; Laitinen, J.; van Hemmen, J.J. Task-based dermal exposure models for regulatory risk assessment. Ann. Occup. Hyg. 2006, 50, 491–503. [Google Scholar]
- Tielemans, E.; Noy, D.; Schinkel, J.; Heussen, H.; van der Schaaf, D.; West, J.; Fransman, W. Stoffenmanager exposure model: Development of a quantitative algorithm. Ann. Occup. Hyg. 2008, 52, 443–454. [Google Scholar]
- Marquart, H.; Heussen, H.; Le Feber, M.; Noy, D.; Tielemans, E.; Schinkel, J.; West, J.; van der Schaaf, D. ‘Stoffenmanager’, a web-based control banding tool using an exposure process model. Ann. Occup. Hyg. 2008, 52, 429–441. [Google Scholar]
- Van de Ven, P.; Fransman, W.; Schinkel, J.; Rubingh, C.; Warren, N.; Tielemans, E. Stoffenmanager exposure model: Company-specific exposure assessments using a Bayesian methodology. J. Occup. Environ. Hyg. 2010, 7, 216–223. [Google Scholar] [CrossRef]
- TNsG. Technical Notes for Guidance: Human Exposure to Biocidal Products—Guidance on Exposure Estimation. Available online: https://echa.europa.eu/documents/10162/16960215/bpd_guid_tnsg+human+exposure+2002_en.pdf/af2020f7–6cd2–471a-8cf2-efd1a0500fa8 (accessed on 9 June 2021).
- TNsG. Human Exposure to Biocidal Products—Technical Notes for Guidance. Available online: https://echa.europa.eu/documents/10162/16960215/bpd_guid_tnsg-human-exposure-2007_en.pdf (accessed on 9 June 2021).
- EFSA. Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products. EFSA J. 2014, 12, 3874. [Google Scholar] [CrossRef]
- Lamb, J.; Galea, K.S.; Miller, B.G.; Hesse, S.; van Tongeren, M. Between-user reliability of tier 1 exposure assessment tools used under REACH. Ann. Work Expo. Health 2017, 61, 939–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherrie, J.W.; Fransman, W.; Heussen, G.A.H.; Koppisch, D.; Jensen, K.A. Exposure models for REACH and occupational safety and health regulations. Int. J. Environ. Res. Public Health 2020, 17, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oreskes, N. Evaluation (not validation) of quantitative models. Environ. Health Perspect. 1998, 106, 1453–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tischer, M.; Bredendiek-Kamper, S.; Poppek, U. Evaluation of the HSE COSHH essentials exposure predictive model on the basis of BAuA field studies and existing substances exposure data. Ann. Occup. Hyg. 2003, 47, 557–569. [Google Scholar] [PubMed] [Green Version]
- Tischer, M.; Lamb, J.; Hesse, S.; van Tongeren, M. Evaluation of tier one exposure assessment models (ETEAM): Project overview and methods. Ann. Work Expo. Health 2017, 61, 911–920. [Google Scholar] [CrossRef]
- Franken, R.; Shandilya, N.; Marquart, H.; McNally, K.; Fransman, W. Extrapolating the applicability of measurement data on worker inhalation exposure to chemical substances. Ann. Work Expo. Health 2020, 64, 250–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinazzè, A.; Borghi, F.; Campagnolo, D.; Rovelli, S.; Keller, M.; Fanti, G.; Cattaneo, A.; Cavallo, D.M. How to obtain a reliable estimate of occupational exposure? Review and discussion of models’ reliability. Int. J. Environ. Res. Public Health 2019, 16, 2764. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.G.; Lamb, J.; Savic, N.; Basinas, I.; Gasic, B.; Jung, C.; Kashon, M.L.; Kim, J.; Tischer, M.; van Tongeren, M.; et al. Evaluation of exposure assessment tools under REACH: Part I—Tier 1 tools. Ann. Work Expo. Health 2019, 63, 218–229. [Google Scholar] [CrossRef]
- Lee, E.G.; Lamb, J.; Savic, N.; Basinas, I.; Gasic, B.; Jung, C.; Kashon, M.L.; Kim, J.; Tischer, M.; van Tongeren, M.; et al. Evaluation of exposure assessment tools under REACH: Part II—Higher tier tools. Ann. Work Expo. Health 2019, 63, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, E.; Spencer, J.W.; Hiteshew, K.; Coutu, M.; Nealley, M. Evaluation of recommended REACH exposure modeling tools and near-field, far-field model in assessing occupational exposure to toluene from spray paint. Ann. Occup. Hyg. 2013, 57, 210–220. [Google Scholar] [PubMed] [Green Version]
- Landberg, H.E.; Westberg, H.; Tinnerberg, H. Evaluation of risk assessment approaches of occupational chemical exposures based on models in comparison with measurements. Saf. Sci. 2018, 109, 412–420. [Google Scholar] [CrossRef]
- Lamb, J.; Hesse, S.; Miller, B.G.; MacCalman, L.; Schroeder, K.; Cherrie, J.; van Tongeren, M. Evaluation of Tier 1 Exposure Assessment Models under Reach (ETEAM) Project—Final Overall Project Summary Report; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2015. [Google Scholar]
- Vink, S.R.; Mikkers, J.; Bouwman, T.; Marquart, H.; Kroese, E.D. Use of read-across and tiered exposure assessment in risk assessment under REACH—A case study on a phase-in substance. Regul. Toxicol. Pharmacol. 2010, 58, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Spinazzè, A.; Lunghini, F.; Campagnolo, D.; Rovelli, S.; Locatelli, M.; Cattaneo, A.; Cavallo, D.M. Accuracy evaluation of three modelling tools for occupational exposure assessment. Ann. Work Expo. Health 2017, 61, 284–298. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.; Kim, H. Comparison of quantitative exposure models for occupational exposure to organic solvents in Korea. Ann. Work Expo. Health 2019, 63, 197–217. [Google Scholar] [CrossRef]
- Lee, S.; Choi, S.; Lee, K. Evaluation of Stoffenmanager and a new exposure model for estimating occupational exposure to styrene in the fiberglass reinforced plastics lamination process. Int. J. Environ. Res. Public Health 2020, 17, 4486. [Google Scholar] [CrossRef]
- Oltmanns, J.; Neisel, F.; Heinemeyer, G.; Kaiser, E.; Schneider, K. Consumer exposure modelling under REACH: Assessing the defaults. Regul. Toxicol. Pharmacol. 2015, 72, 222–230. [Google Scholar] [CrossRef]
- Eickmann, U.; Eickmann, J.; Tischer, M. Exposure to sprays—Comparison of the available exposure models. Gefahrst. Reinhalt. Luft 2007, 67, 305–318. [Google Scholar]
- Park, J.; Yoon, C.; Lee, K. Comparison of modeled estimates of inhalation exposure to aerosols during use of consumer spray products. Int. J. Hyg. Environ. Health 2018, 221, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Lee, J.H. Feasibility evaluation of computational fluid dynamics approach for inhalation exposure assessment: Case study for biocide spray. Appl. Sci. 2021, 11, 634. [Google Scholar] [CrossRef]
- Cresti, R.; Cabella, R.; Attias, L.; Rubbiani, M. Professional exposure to biocides: A comparison of human exposure models for surface disinfectants. Int. J. Environ. Health 2011, 5, 221–245. [Google Scholar] [CrossRef]
- Marquart, H.; Franken, R.; Goede, H.; Fransman, W.; Schinkel, J. Validation of the dermal exposure model in ECETOC TRA. Ann. Work Expo. Health 2017, 61, 854–871. [Google Scholar] [CrossRef] [PubMed]
- Kasiotis, K.M.; Spaan, S.; Tsakirakis, A.N.; Franken, R.; Chartzala, I.; Anastasiadou, P.; Machera, K.; Rother, D.; Roitzsch, M.; Poppek, U.; et al. Comparison of measurement methods for dermal exposure to hazardous chemicals at the workplace: The SysDEA project. Ann. Work Expo. Health 2020, 64, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Poppek, U.; Roitzsch, M.; Rother, D.; Schlüter, U. SysDea: Systematic Analysis of Dermal Exposure to Hazardous Chemical Agents at the Workplace (SysDea)—Project Report II; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2020. [Google Scholar]
- Crawford, J.; Cowie, H.; Lamb, J.; van Tongeren, M.; Galea, K.S. Evaluation of Tier 1 exposure Assessment Models under REACH (ETEAM) Project—Substudy Report on User-Friendliness of Tier 1 Exposure Assessment Tools under REACH. Bericht zur Benutzerfreundlichkeit von Tier 1-Expositionsabschätzungswerkzeugen unter REACH; Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 2015; 215p. [Google Scholar]
- Schinkel, J.; Fransman, W.; McDonnell, P.E.; Klein Entink, R.; Tielemans, E.; Kromhout, H. Reliability of the advanced reach tool (ART). Ann. Occup. Hyg. 2014, 58, 450–468. [Google Scholar] [PubMed] [Green Version]
- Landberg, H.E.; Berg, P.; Andersson, L.; Bergendorf, U.; Karlsson, J.-E.; Westberg, H.; Tinnerberg, H. Comparison and evaluation of multiple users’ usage of the exposure and risk tool: Stoffenmanager 5.1. Ann. Occup. Hyg. 2015, 59, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Savic, N.; Lee, E.G.; Gasic, B.; Vernez, D. Inter-assessor agreement for TREXMO and its models outside the translation framework. Ann. Work Expo. Health 2019, 63, 814–820. [Google Scholar] [CrossRef]
- Ehnes, C.; Genz, M.; Duwenhorst, J.; Krasnow, J.; Bleeke, J.; Schwarz, K.; Koch, W.; Schuchardt, S. Characterization of aerosol release during spraying of isocyanate products. Ann. Work Expo. Health 2019, 63, 773–783. [Google Scholar] [CrossRef]
- Federal Institute for Occupational Safety and Health (BAuA). Human Exposure to Biocidal Products: Measurement of Inhalation and Dermal Exposure during the Application of Biocide Foams. Available online: https://www.baua.de/EN/Tasks/Research/Research-projects/f2366.html (accessed on 9 June 2021).
- Koivisto, A.J.; Kling, K.I.; Hanninen, O.; Jayjock, M.; Londahl, J.; Wierzbicka, A.; Fonseca, A.S.; Uhrbrand, K.; Boor, B.E.; Jimenez, A.S.; et al. Source specific exposure and risk assessment for indoor aerosols. Sci. Total Environ. 2019, 668, 13–24. [Google Scholar] [CrossRef]
- Bremmer, H.J.; van Engelen, J.G.M. Paint Products Fact Sheet: To Assess the Risks for the Consumer: Updated Version for Consexpo 4; RIVM Report 320104008/2007 Bilthoven (NL); Rijksinstituut voor Volksgezondheid en Milieu (RIVM): Utrecht, The Netherlands, 2006. [Google Scholar]
- Meesters, J.A.J.; Nijkamp, M.M.; Schuur, A.G.; te Biesebeek, J.D. Consexpo fact sheets. In Cleaning Products Fact Sheet: Default Parameters for Estimating Consumer Exposure: Updated Version 2018; National Institute for Public Health and the Environment (RIVM): Bilthoven, The Netherlands, 2018. [Google Scholar]
- Schneider, K.; Recke, S.; Kaiser, E.; Götte, S.; Berkefeld, H.; Lässig, J.; Rüdiger, T.; Lindtner, O.; Oltmanns, J. Consumer behaviour survey for assessing exposure from consumer products: A feasibility study. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Environmental Protection Agency. Household Solvent Products: A National Usage Survey. Final Report. Prepared for U.S. EPA by Westat, Inc., Under Subcontract to Battelle Columbus Operations; U.S. Environmental Protection Agency: Washington, DC, USA, 1987. [Google Scholar]
- Abt Association Inc. (Abt). Methylene Chloride Consumer Use Study Survey Findings. Health & Environmental Research Online (HERO); U.S. Consumer Product Safety Commission: Bethesda, MD, USA, 1992. [Google Scholar]
- Weerdesteijn, M.C.H.; Bremmer, H.J.; Zeilmaker, M.J.; van Veen, M.P. Hygienic Cleaning Products Used in the Kitchen—Exposure and Risks; RIVM, Rijksinstituut voor Volksgezondheid en Milieu: Bilthoven, The Netherlands, 1999. [Google Scholar]
- Johnson, A.; Lucica, E. Survey on Indoor Use and Use Patterns of Consumer Products in EU Member States; WP5 Survey Report; IPSOS: Paris, France, 2012. [Google Scholar]
- Bennett, D.H.; Wu, X.M.; Teague, C.H.; Lee, K.; Cassady, D.L.; Ritz, B.; Hertz-Picciotto, I. Passive sampling methods to determine household and personal care product use. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 148–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Lee, K.; Hwang, Y.; Kim, J.H. Determining the exposure factors of personal and home care products for exposure assessment. Food Chem. Toxicol. 2015, 77, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Jang, Y.; Lim, M.; Park, J.Y.; Yang, W.; Lee, K. Characteristics of exposure factors and inhalation exposure to selected spray consumer products in Korean population. Regul. Toxicol. Pharmacol. 2020, 110, 104513. [Google Scholar] [CrossRef]
- Steiling, W.; Buttgereit, P.; Hall, B.; O’Keeffe, L.; Safford, B.; Tozer, S.; Coroama, M. Skin exposure to deodorants/antiperspirants in aerosol form. Food Chem. Toxicol. 2012, 50, 2206–2215. [Google Scholar] [CrossRef]
- Jayjock, M.A. Estimating overspray exposure potential from aerosol sprayed products onto surfaces. J. Occup. Environ. Hyg. 2012, 9, D155–D160. [Google Scholar] [CrossRef]
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment—Chapter R.12: Use Description. Available online: https://echa.europa.eu/documents/10162/13632/information_requirements_r12_en.pdf (accessed on 9 June 2021).
- Schinkel, J.; Warren, N.; Fransman, W.; van Tongeren, M.; McDonnell, P.; Voogd, E.; Cherrie, J.W.; Tischer, M.; Kromhout, H.; Tielemans, E. Advanced reach tool (ART): Calibration of the mechanistic model. J. Environ. Monit. 2011, 13, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Rother, D.; Schlüter, U. Occupational exposure to diisocyanates in the European Union. Ann. Work. Expo. Health 2021. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Guidance on the BPR: Volume III Human Health, Assessment & Evaluation (Parts B+C). Available online: https://echa.europa.eu/documents/10162/23036412/biocides_guidance_human_health_ra_iii_part_bc_en.pdf/30d53d7d-9723–7db4–357a-ca68739f5094 (accessed on 9 June 2021).
- Bleck, D.; Müller, A.; Holthenrich, D.; Schlüter, U. Exposure and protective measures during the application of antifouling paint. Gefahrst. Reinhalt. Luft 2009, 69, 215–221. [Google Scholar]
- Tannahill, S.; Robertson, A.; Cherrie, B. A Comparison of Two Different Methods for Assessment of Dermal Exposure to Non-Agricultural Pesticides in Three Sectors; IOM Report tm/96/07; IOM: Edingburgh, UK, 1996. [Google Scholar]
- Nuyttens, D.; Braekman, P.; Windey, S.; Sonck, B. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag. Sci. 2009, 65, 781–790. [Google Scholar] [CrossRef]
- Nuyttens, D.; Windey, S.; Sonck, B. Comparison of operator exposure for five different greenhouse spraying applications. J. Agric. Saf. Health 2004, 10, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Snippe, R. Respiratory and Dermal Exposure to Disinfectants during the Disinfection of Cattle Trucks; TNO report v3725; TNO Chemistry: Zeist, The Netherlands, 2001. [Google Scholar]
- Brouwer, D.; Bierman, E.; Beijer, M.; de Pater, A.; Drooge, H. Potential Dermal Exposure during Spray Painting. Modifiers of Exposure and Implication for Study Design and Modelling; TNO Report v99.1102; TNO Chemistry: Zeist, The Netherlands, 2001. [Google Scholar]
- ECHA. Use Maps: Use Maps Library. Available online: https://echa.europa.eu/csr-es-roadmap/use-maps/use-maps-library (accessed on 9 June 2021).
- OECD. Emission Scenario Documents: Product Type 18—Insecticides, Acaricides and Products to Control Other Arthropods. Available online: https://www.echa.europa.eu/de/guidance-documents/guidance-on-biocides-legislation/emission-scenario-documents (accessed on 9 June 2021).
- Tickner, J.; Friar, J.; Creely, K.S.; Cherrie, J.W.; Pryde, D.E.; Kingston, J. The development of the EASE model. Ann. Occup. Hyg. 2005, 49, 103–110. [Google Scholar]
- Creely, K.S.; Tickner, J.; Soutar, A.J.; Hughson, G.W.; Pryde, D.E.; Warren, N.D.; Rae, R.; Money, C.; Phillips, A.; Cherrie, J.W. Evaluation and further development of EASE model 2.0. Ann. Occup. Hyg. 2005, 49, 135–145. [Google Scholar] [PubMed] [Green Version]
- UK MAFF. Estimation of Exposure and Absorption of Pesticides by Spray Operators (UK MAFF) 1986 and the Predictive Operator Exposure Model (POEM—UK MAFF); UK MAFF Scientific Subcommittee on Pesticides and British Agrochemicals Joint Medical Panel: York, UK, 1992. [Google Scholar]
- Lundehn, J.; Westphal, D.; Kieczka, H.; Krebs, B.; Loecher-Bolz, S.; Maasfeld, W.; Pick, E.-D. Uniform Principles for Safeguarding the Health of Applicators of Plant Protection Products. Uniform Principles for Operator Protection; Biologische Bundesanstalt fuer Land- und Forstwirtschaft, Braunschweig (Germany), Fachgruppe fuer Chemische Mittelpruefung: Braunschweig, Germany, 1992. [Google Scholar]
- Pesticide Handlers Exposure Database. US Environmental Protection Agency, Health and Welfare Canada, National Agricultural Chemicals Association, Vesar Inc.: Springfield, IL, USA, 1992. Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/occupational-pesticide-handler-exposure-data (accessed on 9 June 2021).
- U.S. EPA. Occupational Pesticide Handler Unit Exposure Surrogate Reference Table, May 2021; US Environmental Protection Agency, Office of Pesticide Programs: Washington, DC, USA, 2021. [Google Scholar]
- Van Hemmen, J.J. Assessment of Occupational Exposure to Pesticides in Agriculture. Part III: Application; Min. SZW, Arbeidsinspectie; DGA: The Hague, The Netherlands, 1992. [Google Scholar]
- Van Hemmen, J.J. Assessment of Occupational Exposure to Pesticides in Agriculture: Part I: General Aspects; Min. SZW, Arbeidsinspectie; DGA: The Hague, The Netherlands, 1992. [Google Scholar]
- Spaan, S.; Gerritsen, R.; Goede, H. BROWSE: Bystanders, Residents, Operators and Workers Exposure Models for Plant Protection Products; Seventh Framework Programme; Theme: Environment (Including Climate Change): Deliverable 1.1 Review of Existing Models and Data for Operator Exposure; Food and Environment Research Agency: London, UK, 2011. [Google Scholar]
- Taylor, J.R.; O’Shaughnessy, P.T.; Reynolds, S.J. Estimating personal exposures based on mass balance material usage rates: Validation of a ventilation model in a spray paint booth. J. Occup Environ. Hyg. 2004, 1, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Carlton, G.N.; Flynn, M.R. A model to estimate worker exposure to spray paint mists. Appl. Occup. Environ. Hyg. 1997, 12, 375–382. [Google Scholar] [CrossRef]
- Carlton, G.N.; Flynn, M.R. Field evaluation of an empirical—Conceptual exposure model. Appl. Occup. Environ. Hyg. 1997, 12, 555–561. [Google Scholar] [CrossRef]
- Flynn, M.R.; Gatano, B.L.; McKernan, J.L.; Dunn, K.H.; Blazicko, B.A.; Carlton, G.N. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting. Ann. Occup. Hyg. 1999, 43, 67–76. [Google Scholar] [CrossRef]
- Tan, Y.M.; Flynn, M.R. Experimental evaluation of a mathematical model for predicting transfer efficiency of a high volume-low pressure air spray gun. Appl. Occup. Environ. Hyg. 2000, 15, 785–793. [Google Scholar] [CrossRef]
- Tan, Y.M.; Flynn, M.R.; Buller, T.S. A field evaluation of the impact of transfer efficiency on worker exposure during spray painting. Ann. Occup. Hyg. 2002, 46, 103–112. [Google Scholar]
- Tan, Y.M.; Flynn, M.R. Methods for estimating the transfer efficiency of a compressed air spray gun. Appl. Occup. Environ. Hyg. 2002, 17, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.R.; Sills, E.D. On the use of computational fluid dynamics in the prediction and control of exposure to airborne contaminants-an illustration using spray painting. Ann Occup Hyg. 2000, 44, 191–202. [Google Scholar] [CrossRef]
- BAMA. BAMA Indoor Air Model—Issue 1. Available online: https://www.Bama.Co.Uk/product.Php?Product_id=11 (accessed on 9 June 2021).
- Delmaar, C. Comparing the BAMA Indoor Air and ConsExpo Inhalation Models. Available online: https://www.Rivm.Nl/bibliotheek/rapporten/320104009.Pdf (accessed on 9 June 2021).
- Van-Wendel-de-Joode, B.; Brouwer, D.H.; Vermeulen, R.; van Hemmen, J.J.; Heederik, D.; Kromhout, H. DREAM: A method for semi-quantitative dermal exposure assessment. Ann. Occup. Hyg. 2003, 47, 71–87. [Google Scholar] [PubMed] [Green Version]
- Berger-Preiss, E.; Koch, W.; Gerling, S.; Kock, H.; Appel, K.E. Use of biocidal products (insect sprays and electro-vaporizer) in indoor areas--exposure scenarios and exposure modeling. Int. J. Hyg. Environ. Health 2009, 212, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, J.; Fransman, W.; Heussen, H.; Kromhout, H.; Marquart, H.; Tielemans, E. Cross-validation and refinement of the Stoffenmanager as a first tier exposure assessment tool for REACH. Occup. Environ. Med. 2010, 67, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, J.; Miller, B.G.; MacCalman, L.; Rashid, S.; van Tongeren, M. Evaluation of Tier 1 Exposure Assessment Models under REACH (ETEAM) Project—Substudy Report on External Validation Exercise; Teilbericht zur externen Validierung: Dortmund, Germany, 2015. [Google Scholar]
- Ishii, S.; Katagiri, R.; Kitamura, K.; Shimojima, M.; Wada, T. Evaluation of the ECETOC TRA model for workplace inhalation exposure to ethylbenzene in Japan. J. Chem. Health Saf. 2017, 24, 8–20. [Google Scholar] [CrossRef]
- Landberg, H.E.; Axmon, A.; Westberg, H.; Tinnerberg, H. A study of the validity of two exposure assessment tools: Stoffenmanager and the Advanced REACH Tool. Ann. Work Expo. Health 2017, 61, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Savic, N.; Gasic, B.; Schinkel, J.; Vernez, D. Comparing the Advanced REACH Tool’s (ART) estimates with Switzerland’s occupational exposure data. Ann. Work Expo. Health 2017, 61, 954–964. [Google Scholar] [CrossRef]
- LeBlanc, M.; Allen, J.G.; Herrick, R.F.; Stewart, J.H. Comparison of the near field/far field model and the Advanced REACH Tool (ART) model v1.5: Exposure estimates to benzene during parts washing with mineral spirits. Int. J. Hyg. Environ. Health 2018, 221, 231–238. [Google Scholar] [CrossRef] [PubMed]
Tool/Model | Scope | Target | Spray Model | Route | Reference |
---|---|---|---|---|---|
AISE REACT | Household products (related to PC 35 & PC 3 under REACH). | Consumer | Simple mechanistic model for deterministic exposure estimates | inhalation, dermal | [38,39] |
AOEM | Plant protection products (Outdoor and greenhouse) | Occupational bystander | Empirical approach by using categories for stochastic exposure estimates | inhalation, dermal (body, hands, head) | [9,27,40] |
ART | Various work place situations under REACH | occupational | Conceptual framework based on scores and modifying factors calibrated with measured data | Inhalation | [31,32] |
BROWSE | Plant protection products | Occupational bystander | Mechanistic approach calibrated with measured data | Inhalation, dermal | [41,42,43] |
CEM | Several models for consumer product applications | Consumer | Mechanistic model for deterministic exposure estimates | inhalation | [44] |
ConsExpo | Several models for consumer product applications | consumer, (occupational) | Simple and sophisticated mechanistic models for deterministic and stochastic exposure estimates | inhalation, dermal | [23,45] |
dART | Various work place situations Adaptation of ART for dermal exposure | occupational | Stochastic hybrid model including BEAT and BROWSE findings | dermal | [3,46,47] |
ECETOC TRA consumer EGRET | Household and DIY products related to PCs under REACH | consumer | Simple mechanistic model for deterministic exposure estimates | inhalation, dermal | [48,49,50,51,52,53,54] |
ECETOC TRA worker | Various work place situations under REACH Screening tool | occupational | Empirical approach for deterministic exposure estimates (75th percentiles) for industrial and professional spraying | inhalation, dermal | [48,49,50,51,52,53] |
MEASE | Various work place situations under REACH with focus on metal processing | occupational | See ECETOC TRA worker | inhalation, dermal | [55] |
RISKOFDERM | Various work place situations for dermal exposure | occupational | Empirical approach for stochastic exposure estimates | dermal (body, hands) | [56,57] |
SprayExpo | Manual spraying activities for non-volatiles | occupational, (consumer) | Sophisticated mechanistic model for deterministic exposure estimates on a higher tier level | inhalation, dermal | [4,6] |
Stoffenmanager | Various work place situations in the framework of OSH, national legislations, and REACH | occupational | Conceptual framework calibrated with measured data for stochastic exposure estimates | Inhalation (+ qualitative dermal control banding module) | [58,59,60] |
TNsG spraying models | Biocidal products | occupational, consumer | Empirical approach with several models for stochastic estimates | dermal (body, hands), (inhalation not all models) | [20,61,62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, S.; Meyer, J.; Roitzsch, M.; Delmaar, C.; Koch, W.; Schwarz, J.; Heiland, A.; Schendel, T.; Jung, C.; Schlüter, U. Modelling Exposure by Spraying Activities—Status and Future Needs. Int. J. Environ. Res. Public Health 2021, 18, 7737. https://doi.org/10.3390/ijerph18157737
Hahn S, Meyer J, Roitzsch M, Delmaar C, Koch W, Schwarz J, Heiland A, Schendel T, Jung C, Schlüter U. Modelling Exposure by Spraying Activities—Status and Future Needs. International Journal of Environmental Research and Public Health. 2021; 18(15):7737. https://doi.org/10.3390/ijerph18157737
Chicago/Turabian StyleHahn, Stefan, Jessica Meyer, Michael Roitzsch, Christiaan Delmaar, Wolfgang Koch, Janine Schwarz, Astrid Heiland, Thomas Schendel, Christian Jung, and Urs Schlüter. 2021. "Modelling Exposure by Spraying Activities—Status and Future Needs" International Journal of Environmental Research and Public Health 18, no. 15: 7737. https://doi.org/10.3390/ijerph18157737
APA StyleHahn, S., Meyer, J., Roitzsch, M., Delmaar, C., Koch, W., Schwarz, J., Heiland, A., Schendel, T., Jung, C., & Schlüter, U. (2021). Modelling Exposure by Spraying Activities—Status and Future Needs. International Journal of Environmental Research and Public Health, 18(15), 7737. https://doi.org/10.3390/ijerph18157737