Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction and Quality Assessment
2.5. Analysis
3. Results and Discussion
3.1. Study Characteristics
3.2. Risk Factors for Melanoma Stratified by Sex/Gender
3.3. Somatic Mutations in known CM Driver Genes
3.4. Sex/Gender as a Potential Predictive Factor for Melanoma
3.5. Sex/Gender as a Potential Prognostic Factor for Melanoma
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 14 April 2021).
- Mauvais-Jarvis, F.; Merz, N.B.; Barnes, P.J.; Brinton, R.D.; Carrero, J.J.; De Meo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef]
- Rubin, G. The Traffic in Women: Notes on the Political Economy of Sex. In Toward an Anthropology of Woman; Monthly Review Press: New York, NY, USA, 1975. [Google Scholar]
- Kanetsky, P.A.; Ge, F.; Najarian, D.; Swoyer, J.; Panossian, S.; Schuchter, L.; Holmes, R.; Guerry, D.; Rebbeck, T.R. Assessment of polymorphic variants in the melanocortin-1 receptor gene with cutaneous pigmentation using an evolutionary approach. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 808–819. [Google Scholar]
- Hernando, B.; Ibarrola-Villava, M.; Peña-Chilet, M.; Alonso, S.; Ribas, G.; Martinez-Cadenas, G. Sex and MC1R variants in human pigmentation: Differences in tanning ability and sensitivity to sunlight between sexes. J. Dermatol. Sci. 2016, 84, 346–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendt, J.; Mueller, C.; Rauscher, S.; Fae, I.; Fischer, G.; Okamoto, I. Contributions by MC1R Variants to Melanoma Risk in Males and Females. JAMA Dermatol. 2018, 154, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D.T.; Demenais, F.; Goldstein, A.M.; Bergman, W.; Newton Bishop, J.; Bressac-de Paillerets, B.; Chompret, A.; Ghiorzo, P.; Gruis, N.; Hansson, J.; et al. Melanoma Genetics Consortium. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl. Cancer Inst. 2002, 94, 894–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargen, M.R.; Pfeiffer, R.M.; Yang, X.R.; Tucker, M.A.; Goldstein, A.M. Variation in Cutaneous Patterns of Melanomagenesis According to Germline CDKN2A/CDK4 Status in Melanoma-Prone Families. J. Investig. Dermatol. 2020, 140, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Gironi, L.C.; Colombo, E.; Pasini, B.; Giorgione, R.; Farinelli, P.; Zottarelli, F.; Esposto, E.; Zavattaro, E.; Allara, E.; Ogliara, P.; et al. Melanoma-prone families: New evidence of distinctive clinical and histological features of melanomas in CDKN2A mutation carriers. Arch. Dermatol. Res. 2018, 310, 769–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helgadottir, H.; Tuominen, R.; Olsson, H.; Hansson, J.; Höiom, V. Cancer risks and survival in patients with multiple primary melanomas: Association with family history of melanoma and germline CDKN2A mutation status. J. Am. Acad. Dermatol. 2017, 77, 893–901. [Google Scholar] [CrossRef]
- der Rhee, J.I.; Krijnen, P.; Gruis, N.A.; de Snoo, F.A.; Vasen, H.F.A.; Putter, H.; Kukutsch, N.A.; Bergman, W. Clinical and histologic characteristics of malignant melanoma in families with a germline mutation in CDKN2A. J. Am. Acad. Dermatol. 2011, 65, 281–288. [Google Scholar] [CrossRef]
- Kocarnik, J.M.; Park, S.L.; Han, J.; Dumitrescu, L.; Cheng, I.; Wilkens, L.R.; Schumacher, F.R.; Kolonel, L.; Carlson, C.S.; Crawford, D.C.; et al. Pleiotropic and sex-specific effects of cancer GWAS SNPs on melanoma risk in the population architecture using genomics and epidemiology (PAGE) study. PLoS ONE 2015, 10, 19. [Google Scholar] [CrossRef]
- Olsen, C.M.; Carroll, H.J.; Whiteman, D.C. Familial melanoma: A meta-analysis and estimates of attributable fraction. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Karagas, M.R.; Stannard, V.A.; Mott, L.A.; Slattery, M.J.; Spencer, S.K.; Weinstock, M.A. Use of tanning devices and risk of basal cell and squamous cell skin cancers. J. Natl. Cancer Inst. 2002, 94, 224–226. [Google Scholar] [CrossRef]
- Ting, W.; Schultz, K.; Cac, N.N.; Peterson, M.; Walling, H.W. Tanning bed exposure increases the risk of malignant melanoma. Int. J. Dermatol. 2007, 46, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, D.E.; Brenner, D.R.; Demers, P.A.; Villeneuve, P.J.; Friedenreich, C.M.; King, W.D. Indoor tanning and skin cancer in Canada: A meta-analysis and attributable burden estimation. Cancer Epidemiol. 2019, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Thompson, J.F.; Pandeya, N.; Whiteman, D.C. Evaluation of Sex-Specific Incidence of Melanoma. JAMA Dermatol. 2020, 156, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Ladizinski, B.; Lee, K.C.; Ladizinski, R.; Federman, D.G. Indoor Tanning Amongst Young Adults: Time to Stop sleeping on the Benning of Sunbeds. J. Gen. Intern. Med. 2013, 28, 1551–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Acevedo, A.J.; Green, A.C.; Sinclair, C.; van Deventer, E.; Gordon, L.G. Indoor tanning prevalence after the International Agency for Research on Cancer statement on carcinogenicity of artificial tanning devices: Systematic review and meta-analysis. Br. J. Dermatol. 2019, 182, 849–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, S.; Tkachenko, E.; Yeung, H.; Mostaghimi, A. Skin cancer and skin cancer risk behaviors among sexual and gender minority population: A systematic review. J. Am. Acad. Dermatol. 2020, 83, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.H.; Arron, S.T.; Mansh, M. Skin Cancer and Skin cancer risk factors in sexual and gender minorities. Dermatol. Clin. 2020, 38, 209–218. [Google Scholar] [CrossRef]
- Mansh, M.; Katz, K.A.; Linos, E.; Chren, M.M.; Arron, S. Association of skin cancer and indoor tanning in sexual minority men and women. JAMA Dermatol. 2015, 151, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Morrison, M.A.; Morrison, T.G.; Sager, C.L. Does body satisfaction differ between gay men and lesbian women and heterosexual men and women? A meta analytic review. Body Image 2004, 1, 127–138. [Google Scholar] [CrossRef]
- Myrick, J.G.; Noar, S.M.; Sontag, J.M.; Kelley, D. Connections between sources of health and beauty information and indoor tanning behavior among college women. J. Am. Coll. Health 2020, 68, 163–168. [Google Scholar] [CrossRef]
- Gillen, M.M.; Markey, C.N. The role of body image and depression in tanning behaviors and attitudes. Behav. Med. 2012, 38, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Hillhouse, G.C.J.; Thompson, J.K.; Jacobsen, P.B.; Hillhouse, J. Investigating the role of appearance-based factors in predicting sunbathing and tanning salon use. J. Behav. Med. 2009, 32, 532–544. [Google Scholar] [CrossRef]
- Rosario, M.; Li, F.; Wypij, D.; Roberts, A.L.; Corliss, H.L.; Charlton, B.M.; Frazier, A.L.; Austin, S.B. Disparities by sexual orientation in frequent engagement in cancer-related risk behaviors: A 12-year follow-up. Am. J. Public Health 2016, 106, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.N.; Nanney, L.B.; Boyd, A.S.; King, L.E., Jr.; Ellis, D.L. Oestrogen receptor-beta expression in melanocytic lesions. Exp. Dermatol. 2006, 15, 971–980. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Silvestris, F. Obesity as a Major Risk Factor for Cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Sergentanis, T.N.; Antoniadis, A.G.; Gogas, H.J.; Antonopoulos, C.N.; Adami, H.O.; Ekbom, A.; Petridou, E.T. Obesity and risk of malignant melanoma: A meta-analysis. Eur. J. Cancer 2013, 49, 642–657. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Spencer, E.A.; Appleby, P.N.; Davey, G.K.; Key, T.J. Validity of selfreported height and weight in 4808 EPIC-Oxford participants. Public Health Nutr. 2002, 5, 561–565. [Google Scholar] [CrossRef]
- Kuczmarski, M.F.; Kuczmarski, R.J.; Najjar, M. Effects of age on validity of self-reported height, weight, and body mass index: Findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J. Am. Diet. Assoc. 2001, 101, 28–36. [Google Scholar] [CrossRef]
- Yu, D.J.; Li, X.J.; Morice, A.; Wu, L.J.; Sun, W.; Zhao, T.L. Height and risk of melanoma: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2018, 11, 4426–4435. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Solar and Ultraviolet Radiation; International Agency for Research on Cancer: Lyon, France, 1992; Volume 55, pp. 1–316. [Google Scholar]
- Miligi, L. Ultraviolet Radiation Exposure: Some Observations and Considerations, Focusing on Some Italian Experiences, on Cancer Risk, and Primary Prevention. Environments 2020, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Jhappan, C.; Noonan, F.P.; Merlino, G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene 2003, 22, 3099–3112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelucchi, C.; Tramacere, I.; Boffetta, P.; Negri, E.; La Vecchia, C. Alcohol consumption and cancer risk. Nutr. Cancer 2011, 63, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Warthan, M.M.; Sewell, D.S.; Marlow, R.A.; Warthan, M.L.; Wagner Jr, R.F. The economic impact of acute sunburn. Arch. Dermatol. 2003, 139, 1003–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saladi, R.N.; Nektalova, T.; Fox, J.L. Induction of skin carcinogenicity by alcohol and ultraviolet light. Clin. Exp. Dermatol. 2010, 35, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.; Pasquali, E.; Bellocco, R.; Bagnardi, V.; Scotti, L.; Islami, F.; Negri, E.; Boffetta, P.; Pelucchi, C.; Corrao, G.; et al. Alcohol drinking and cutaneous melanoma risk: A systematic review and dose-risk meta-analysis. Br. J. Dermatol. 2014, 170, 1021–1028. [Google Scholar] [CrossRef]
- Suppa, M.; Gandini, S.; Bulliard, J.L.; Daxhelet, M.; Zamagni, M.; Forsea, A.M.; Longo, M.I.; Del Marmol, V. Who, why, where: An overview of determinants of sunbed use in Europe. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 6–12. [Google Scholar] [CrossRef]
- Secretan, B.; Straif, K.; Baan, R.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part E: Tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 2009, 10, 1033–1034. [Google Scholar] [CrossRef]
- Song, F.; Qureshi, A.A.; Gao, X.; Li, T.; Han, J. Smoking and risk of skin cancer: A prospective analysis and a meta-analysis. Int. J. Epidemiol. 2012, 41, 1694–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odenbro, A.; Gillgren, P.; Bellocco, R.; Boffetta, P.; Håkansson, N.; Adami, J. The risk for cutaneous malignant melanoma, melanoma in situ and intraocular malignant melanoma in relation to tobacco use and body mass index. Br. J. Dermatol. 2007, 156, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Balint, K.; Xiao, M.; Pinnix, C.C.; Soma, A.; Veres, I.; Juhasz, I.; Brown, E.J.; Capobianco, A.J.; Herlyn, M.; Liu, Z.J. Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression. J. Clin. Investig. 2005, 115, 3166–3176. [Google Scholar] [CrossRef]
- Grant, W.B. Skin aging from ultraviolet irradiance and smoking reduces risk of melanoma: Epidemiological evidence. Anticancer Res. 2008, 28, 4003–4008. [Google Scholar]
- Yew, Y.W.; Lai, Y.C.; Schwartz, R.A. Coffee Consumption and Melanoma: A Systematic Review and Meta-Analysis of Observational Studies. Am. J. Clin. Dermatol. 2016, 17, 113–123. [Google Scholar] [CrossRef]
- Huber, W.W.; Parzefall, W. Modification of N-acetyltransferaseserases and glutathione S-transferases by coffee components: Possible relevance for cancer risk. Methods Enzymol. 2005, 401, 307–341. [Google Scholar] [CrossRef]
- Kang, N.J.; Lee, K.W.; Shin, B.J.; Jung, S.K.; Hwang, M.K.; Bode, A.M.; Heo, Y.S.; Lee, H.J.; Dong, Z. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 2009, 30, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.A.; Chae, J.I.; Shim, J.H. Natural diterpenes from coffee cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J. Biomed. Sci. 2012, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, C.; Quesada, A.R.; Medina, M.A. Anti-angiogenic and antiinflammatory properties of kahweol, a coffee diterpene. PLoS ONE 2011, 6, e23407. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Wang, J.Y.; Nemzer, B. Antioxidant and Antiradical Activity of Coffee. Antioxidants 2013, 2, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef]
- Inzelberg, R.; Israeli-Korn, S.D. The particular relationship between Parkinson’s disease and malignancy: A focus on skin cancers. J. Neural. Transm. 2009, 116, 1503–1507. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Neutel, D.; Mestre, T.; Coelho, M.; Rosa, M.M.; Rascol, O.; Sampaio, C. Skin cancer and Parkinson’s disease. Mov. Disord. 2010, 25, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Rui Liu, R.; Gao, X.; Lu, Y.; Chen, H. Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 2011, 76. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, A.; Driver, J.A.; Schernhammer, E.S. Parkinson’s disease and cancer risk: A systematic review and meta-analysis. Cancer Causes Control 2010, 21, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Yang, X.D.; Chen, S.D.; Xiao, Q. The association between Parkinson’s disease and melanoma: A systematic review and meta-analysis. Transl. Neurodegener. 2015, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Xiqun Chen, X.; Feng, D.; Schwarzschild, M.A.; Gao, X. Red hair, MC1R variants, and risk for Parkinson’s disease- a meta-analysis. Ann. Clin. Transl. Neurol. 2017, 4, 212–216. [Google Scholar] [CrossRef]
- Dao, H., Jr.; Kazin, R.A. Gender differences in skin: A review of the literature. Gend. Med. 2007, 4, 308–328. [Google Scholar] [CrossRef]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef]
- Dellavalle, R.P.; Drake, A.; Graber, M.; Heilig, L.F.; Hester, E.J.; Johnson, K.R.; McNealy, K.; Schilling, L. Statins and fibrates for preventing melanoma (Review). Cochrane Libr. 2005. [Google Scholar] [CrossRef]
- Fink, C.A.; Bates, M.N. Melanoma and ionizing radiation: Is there a causal relationship? Radiat. Res. 2005, 164, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Pukkala, E.; Helminen, M.; Haldorsen, T.; Hammar, N.; Kojo, K.; Linnersjö, A.; Rafnsson, V.; Tulinius, H.; Tveten, U.; Auvinen, A. Cancer incidence among Nordic airline cabin crew. Int. J. Cancer 2012, 131, 2886–2897. [Google Scholar] [CrossRef]
- Reynolds, P.; Cone, J.; Layefsky, M.; Goldberg, D.E.; Hurley, S. Cancer incidence in California flight attendants (United States). Cancer Causes Control 2002, 13, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Boice, D.J.; Blettner, M.; Auvinen, A. Epidemiologic studies of pilots and aircrew. Health Phys. 2000, 79, 576–584. [Google Scholar] [CrossRef]
- McNeely, E.; Mordukhovich, I.; Staffa, S.; Tideman, S.; Gale, S.; Coull, B. Cancer prevalence among flight attendants compared to the general population. Environ. Health 2018, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, G.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of somatic mutation in human cancer genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Watson, I.R.; Takahashi, K.; Futreal, P.A.; Chin, L. Emerging patterns of somatic mutations in cancer. Nat. Rev. Genet. 2013, 14, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Hodis, E.; Watson, I.R.; Kryukov, G.V.; Arold, S.T.; Imielinski, M.; Theurillat, J.P.; Nickerson, E.; Auclair, D.; Li, L.; Place, C.; et al. A landscape of driver mutations in melanoma. Cell 2012, 150, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Lotz, M.; Budden, T.; Furney, S.J.; Virós, A. Molecular subtype, biological sex and age shape melanoma tumour evolution. Br. J. Dermatol. 2021, 184, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Artomov, M.; Goggins, W.; Daly, M.; Tsao, H. Gender Disparity and Mutation Burden in Metastatic Melanoma. J. Natl. Cancer Inst. 2015, 20, 107. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Castañeda, L.D.; Nova, J.A.; Tovar-Parra, J.D. Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma: A systemic review. Melanoma Res. 2020, 30, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Muenst, S.; Läubli, H.; Soysal, S.D.; Zippelius, A.; Tzankov, A.; Hoeller, S. The immune system and cancer evasion strategies: Therapeutic concepts. J. Intern. Med. 2016, 279, 541–562. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015, 15, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018, 11, 39. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Grassadonia, A.; Isabella Sperduti, I.; Vici, P.; Iezzi, L.; Brocco, D.; Gamucci, T.; Pizzuti, L.; Maugeri-Saccà, M.; Marchetti, P.; Cognetti, G.; et al. Effect of Gender on the Outcome of Patients Receiving Immune Checkpoint Inhibitors for Advanced Cancer: A Systematic Review and Meta-Analysis of Phase III Randomized Clinical Trials. J. Clin. Med. 2018, 7, 542. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Wallis, C.J.D.; Butaney, M.; Satkunasivam, R.; Freedland, S.J.; Patel, S.P.; Hamid, O.; Pal, S.K.; Klaassen, Z. Association of Patient Sex with Efficacy of Immune Checkpoint Inhibitors and Overall Survival inAdvanced Cancers A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ju, Q.; Jia, K.; Yu, J.; Shi, H.; Wu, H.; Jiang, M. Correlation between sex and efficacy of immune checkpoint inhibitors (PD-1 and CTLA-4 inhibitors). Int. J. Cancer 2018, 143, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.S.K. Treg and CTLA-4: Two intertwining pathways to immune tolerance. J. Autoimmun. 2013, 45, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oertelt-Prigione, S. The influence of sex and gender on the immune response. Autoimmun. Rev. 2012, 11, A479–A485. [Google Scholar] [CrossRef]
- Bellenghi, M.; Puglisi, R.; Pontecorvi, G.; De Fao, A.; Carè, A.; Mattia, G. Sex and Gender Disparities in Melanoma. Cancers 2020, 12, 1819. [Google Scholar] [CrossRef]
- Ives, N.J.; Suciu, S.; Eggermont, A.M.M.; Kirkwood, J.; Lorigan, P.; Markovic, S.N.; Garbe, C.; Wheatley, K. Adjuvant interferon-a for the treatment of high-risk melanoma: An individual patient data meta-analysis. Eur. J. Cancer 2017, 82, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dong, M.; Shui, Y.; Zhang, Y.; Zhang, Z.; Mi, Y.; Zuo, X.; Jiang, L.; Liu, K.; Liu, Z.; et al. A pooled analysis of the prognostic value of PD L1 in melanoma: Evidence from 1062 patients. Cancer Cell Int. 2020, 20, 96. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.A.; Slominski, A.; Linette, G.P.; Martin, C.M., Jr.; Ross, J.S. Biomarkers in melanoma: Staging, prognosis, and detection of early metastases. Expert Rev. Mol. Diagn. 2003, 3, 303–330. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Suciu, S.; Testori, A.; Kruit, A.W.; Marsden, J.; Punt, C.J.; Santinami, M.; Salès, F.; Schadendorf, D.; Patel, P.; et al. Ulceration and stage are predictive of interferon efficacy in melanoma: Results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur. J. Cancer 2012, 48, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Fusaro, R.M.; Danes, B.S.; Kimberling, W.J.; Lynch, J.F. A Review of Hereditary Malignant Melanoma Including Biomarkers in Familial Atypical Multiple Mole Melanoma Syndrome. Cancer Genet Cytogenet 1983, 8, 325–358. [Google Scholar] [CrossRef]
- Tanemura, A.; van Hoesel, A.Q.; Mori, T.; Yu, T.; Hoon, D.S.B. The role of estrogen receptor in melanoma. Expert Opin. Ther. Targets 2007, 11, 1639–1648. [Google Scholar] [CrossRef]
- Manola, J.; Atkins, M.; Ibrahim, J.; Kirkwood, J. Prognostic Factors in Metastatic Melanoma: A Pooled Analysis of Eastern Cooperative Oncology Group Trials. J. Clin. Oncol. 2000, 18, 3782–3793. [Google Scholar] [CrossRef] [PubMed]
- Kupferman, M.E.; Kubik, M.W.; Bradford, C.R.; Civantos, F.J.; Devaney, K.O.; Medina, J.E.; Rinaldo, A.; Stoeckli, S.J.; Takes, R.P.; Ferlito, A. The role of sentinel lymph node biopsy for thin cutaneous melanomas of the head and neck. Am. J. Otolaryngol. 2014, 35, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Måsbäck, A.; Olsson, H.; Westerdahl, J.; Ingvar, C.; Jonsson, N. Prognostic factors in invasive cutaneous malignant melanoma: A population-based study and review. Melanoma Res. 2001, 11, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I. Malignant Melanoma: Prognostic Indicators. Mayo Clin. Proc. 1997, 72, 356–361. [Google Scholar] [CrossRef]
- de Vries, E.; Nijsten, T.E.C.; Visser, O.; Bastiaannet, E.; van Hattem, S.; Janssen-Heijnen, M.L.; Coebergh, J.W.W. Superior survival of females among 10 538 Dutch melanoma patients is independent of Breslow thickness, histologic type and tumor site. Ann. Oncol. 2008, 19, 583–589. [Google Scholar] [CrossRef]
- Rogers, G.S.; Braun, S.M. Prognostic factors. Dermatol. Clin. 2002, 20, 647–658. [Google Scholar] [CrossRef]
- Autier, P.; Boniol, M.; Severi, G.; Pedeux, R.; Grivegnée, A.R.; Doré, J.F. Sex differences in numbers of nevi on body sites of young European children: Implications for the etiology of cutaneous melanoma. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 2003–2005. [Google Scholar]
- Bulliard, J.L.; Cox, B.; Elwood, J.M. Comparison of the site distribution of melanoma in New Zealand and Canada. Int. J. Cancer 1997, 72, 231–235. [Google Scholar] [CrossRef]
- Elwood, J.M.; Gallagher, R.P. Body site distribution of cutaneous malignant melanoma in relationship to patterns of sun exposure. Int. J. Cancer 1998, 78, 276–280. [Google Scholar] [CrossRef]
- Green, A.; MacLennan, R.; Youl, P.; Martin, N. Site distribution of cutaneous melanoma in Queensland. Int. J. Cancer 1993, 53, 232–236. [Google Scholar] [CrossRef]
- Joosse, A.; Collette, S.; Suciu, S.; Nijsten, T.; Lejeune, F.; Kleeberg, U.R.; Coebergh, J.W.W.; Eggermont, A.M.M.; de Vries, E. Superior Outcome of Women with Stage I/ II Cutaneous Melanoma: Pooled Analysis of Four European Organisation for Research and Treatment of Cancer Phase III Trials. J. Clin. Oncol. 2012, 30, 2240–2247. [Google Scholar] [CrossRef]
- Joosse, A.; Collette, S.; Suciu, S.; Nijsten, T.; Patel, P.M.; Keilholz, U.; Eggermont, A.M.M.; Coebergh, J.W.W.; de Vries, E. Sex Is an Independent Prognostic Indicator for Survival and Relapse/Progression-Free Survival in Metastasized Stage III to IV Melanoma: A Pooled Analysis of Five European Organisation for Research and Treatment of Cancer Randomized Controlled Trials. J. Clin. Oncol. 2013, 31, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.R.; Luo, L.; Berwick, M. Sex Differences in Melanoma. Curr. Epidemiol. Rep. 2019, 6, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, R.; Cockburn, M.G.; Peng, D.H. Prevalence and predictors of skin self-examination: Prospects for melanoma prevention and early detection. Int. J. Dermatol. 2008, 47, 993–1003. [Google Scholar] [CrossRef]
- Nosrati, A.; Wei, M.L. Sex disparities in melanoma outcomes: The role of biology. Arch. Biochem. Biophys. 2014, 563, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Han, S.N.; Feng, S.J.; Liu, Y. Prognostic and clinicopathological significance of the platelet-to-lymphocyte ratio in melanoma: A meta-analysis involving 2099 patients. Kaohsiung J. Med. Sci. 2020, 1–8. [Google Scholar] [CrossRef]
- Hay, K.; McDougal, L.; Percival, V.; Henry, S.; Klugman, J.; Wurie, H.; Raven, J.; Shabalala, F.; Fielding-Miller, R.; Dey, A.; et al. Disrupting gender norms in health systems: Making the case for change. Lancet 2019, 393, 2535–2549. [Google Scholar] [CrossRef]
- Bauer, G.R.; Braimoh, J.; Scheim, A.I.; Dharma, C. Transgender-inclusive measures of sex/gender for population surveys: Mixed-methods evaluation and recommendations. PLoS ONE 2017, 12, e0178043. [Google Scholar]
KERRYPNX | Article type | Study Designs | Exposure | Sex | N Studies | OR (95% CI) | |
---|---|---|---|---|---|---|---|
O’Sullivan D.E. (2019) | MA | Co, CC, NCC | Indoor tanning | M W | 8 8 | PAR = 4.60 PAR = 10.10 | |
Rota M. (2014) | MA | Co, CC | Alcohol drinking | M W | 3 3 | 1.47 (0.94–2.29) 1.26 (1.19–1.35) | 45.7% 0% |
Yik W. Y. (2015) | MA | Co, CC | Coffee consumption | M W | 4 5 | 1.22 (0.83–1.77) 0.62 (0.47–0.82) | |
Song F. (2012) | MA | NCC | Smoking | M W | 4 3 | 0.73 (0.67–0.80) 0.95 (0.85–1.05) | 57.3% 0% |
Dellavalle R. (2009) | Rev | RCT | Statins | M W | 3 2 | 0.88 (0.54–1.44) 0.94 (0.59–1.51) | |
Fink C. A. (2005) | Rev | Co | Cabin attendants | M W | SIR = 2.9 (1.1–6.4) SIR = 1.7 (1.01–2.7) | ||
Fink C. A. (2005) | Rev | Co | Flight attendants | M W | SIR = 3.9 (0.74–11.6) SIR = 2.5 (1.28–4.38) | ||
Huang P. (2015) | MA | Co, CC, Cross | Parkinson Disease | M W | 8 7 | 1.64 (1.27–2.13) 1.38 (1.04–1.82) | 41.1% 45.3% |
Liu R. (2011) | NA | Co, CC, NCC, Cross | Parkinson Disease | M W | 8 5 | 2.04 ((1.55–2.69) 1.52 (0.85–2.75) | 0% 54.5% |
Sergentanis N.T (2012) | MA | Co | BMI: Overweight | M | 5 | 1.29 (1.15–1.45) | 35.6% |
W | 5 | 0.99 (0.92–1.07) | 23.4% | ||||
Obesity | M | 6 | 1.30 (1.17–1.45) | 26% | |||
W | 5 | 0.87 (0.70–1.08) | 37.2% | ||||
Both ^ | M | 1 | 1.74 (0.85–3.68) | ||||
W | 2 | 0.80 (0.64–0.99) | 0% | ||||
BSA: | |||||||
Obesity | M | 5 | 1.84 (1.39–2.45) | 31.0% | |||
W | 7 | 1.37 (0.94–2.00) | 46.8% | ||||
Both ^ | M | 2.01 | |||||
W | 1.51 (1.04–2.19) | ||||||
Renehan A.G. (2008) | Rev | Co, NCC, CT | 5 kg/m2 increase in BMI | M W | 6 5 | 1.17 (1.05–1.30) 0.96 (0.92–1.01) | 44% 0% |
Yu D.J. (2018) | Rev | Co | 10-cm increment in the height | M W | 3 7 | 1.52 (1.01–2.29) 1.27 (1.18–1.36) | 72.8% 59.5% |
Singer S. (2020) | Rev | Cross | Sexual minority populations | 1.70 (1.10–2.70) |
KERRYPNX | Article Type | Study Design | Exposure | Outcome | Sex | N Studies | HR (95% CI) | |
---|---|---|---|---|---|---|---|---|
Grassadonia A (2018) | MA | RCT | ICIs (anti CTLA-4) | OS | M W | 3 3 | 0.67 (0.49–0.89) 0.80 (0.68–0.93) | 77% 0% |
Wu Y. (2018) | MA | RCT | ICIs | M | 5 | 0.53 (0.44–0.62) | ||
OS PFS | W | 5 | 0.73 (0.59–0.86) | |||||
M | 5 | 0.52 (0.40–0.64) | ||||||
W | 5 | 0.56 (0.39–0.72) | ||||||
Conforti F. (2018) | MA | RCT | ICIs | OS | M W | 7 7 | 0.66 (0.55–0.79) 0.79 (0.70–0.90) | 60% 0% |
Natalie J. Ives (2017) | MA | RCT | IFN-alpha | EFS | M W | 15 15 | 0.89 (0.79–0.99) 0.88 (0.76–1.01) | |
Christopher J. D. Wallis (2019) | MA | RCT | IO (immunotherapy) | OS | M W | 4 4 | 0.68 (0.48–0.97) 0.83 (0.68–1.00) | |
Yang J. (2020) | PA | RCT | Sex | PD-L1 | 7 | 1.29 (0.9–1.84) | 30.3% |
Article Type | Study Design | Exposure | Outcome | Sample Size | OR (95% CI) | ||
---|---|---|---|---|---|---|---|
Sai Nan Han (2020) | MA | Co | sex | PLR | 180 | 1.14 (0.23–5.66) | 76.4% |
Masback A. (2001) | Rev | Co | sex | OS | 711 | 0.80 (0.80–0.90) | |
Manola J. (2000) | PA | RCT | sex | OS | 547 | 0.87 (0.77–0.98) | |
Stage I/II: | 2672 | ||||||
OS | 0.70 (0.59–0.83) | ||||||
DSS | 0.74 (0.62–0.88) | ||||||
TLNM | 0.70 (0.51–0.96) | ||||||
TDM | 0.69 (0.59–0.81) | ||||||
Jossee A. (2013) | PA | RCT | sex | Stage III: | |||
DSS | 0.85 (0.76–0.95) | ||||||
RFS | 2734 | 0.86 (0.77–0.95) | |||||
OS | 0.81 (0.72–0.91) | ||||||
Stage IV: | 1306 | ||||||
DSS | 0.81 (0.72–0.92) | ||||||
PFS | 0.79 (0.70–0.88) | ||||||
OS | 0.82 (0.72–0.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ecclesiis, O.; Caini, S.; Martinoli, C.; Raimondi, S.; Gaiaschi, C.; Tosti, G.; Queirolo, P.; Veneri, C.; Saieva, C.; Gandini, S.; et al. Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7945. https://doi.org/10.3390/ijerph18157945
D’Ecclesiis O, Caini S, Martinoli C, Raimondi S, Gaiaschi C, Tosti G, Queirolo P, Veneri C, Saieva C, Gandini S, et al. Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(15):7945. https://doi.org/10.3390/ijerph18157945
Chicago/Turabian StyleD’Ecclesiis, Oriana, Saverio Caini, Chiara Martinoli, Sara Raimondi, Camilla Gaiaschi, Giulio Tosti, Paola Queirolo, Camilla Veneri, Calogero Saieva, Sara Gandini, and et al. 2021. "Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 15: 7945. https://doi.org/10.3390/ijerph18157945
APA StyleD’Ecclesiis, O., Caini, S., Martinoli, C., Raimondi, S., Gaiaschi, C., Tosti, G., Queirolo, P., Veneri, C., Saieva, C., Gandini, S., & Chiocca, S. (2021). Gender-Dependent Specificities in Cutaneous Melanoma Predisposition, Risk Factors, Somatic Mutations, Prognostic and Predictive Factors: A Systematic Review. International Journal of Environmental Research and Public Health, 18(15), 7945. https://doi.org/10.3390/ijerph18157945