Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Skin Temperature
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hildebrandt, C.; Raschner, C.; Ammer, K. An Overview of Recent Application of Medical Infrared Thermography in Sports Medicine in Austria. Sensors 2010, 10, 4700–4715. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical Applications of Infrared Thermography: A Review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared Thermal Imaging in Medicine. Physiol. Meas. 2012, 33, R33. [Google Scholar] [CrossRef]
- Fernández-Cuevas, I.; Lastras, J.A.; Galindo, V.E.; Carmona, P.G. Infrared thermography for the detection of injury in sports medicine. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Biological and Medical Physics, Biomedical Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–109. ISBN 978-3-319-47409-0. [Google Scholar]
- Priego Quesada, J.I.; Cibrián Ortiz de Anda, R.M.; Pérez-Soriano, P.; Salvador Palmer, R. Introduction: Historical perspective of infrared thermography and its application in sport science. In Application of Infrared Thermography in Sports Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–23. ISBN 978-3-319-47410-6. [Google Scholar]
- Zeng, S.; Chen, Q.; Wang, X.; Hong, K.; Li, J.; Li, P.; Cheng, X.; Su, H. Longer Rewarming Time in Finger Cooling Test in Association with HbA1c Level in Diabetics. Microvasc. Res. 2016, 107, 72–75. [Google Scholar] [CrossRef]
- Greaney, J.L.; Kenney, W.L.; Alexander, L.M. Neurovascular Mechanisms Underlying Augmented Cold-Induced Reflex Cutaneous Vasoconstriction in Human Hypertension. J. Physiol. 2017, 595, 1687–1698. [Google Scholar] [CrossRef] [PubMed]
- House, C.M.; Taylor, R.J.; Oakley, E.H.N. Repeatability of a Cold Stress Test to Assess Cold Sensitization. Occup. Med. 2015, 65, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eglin, C.M.; Costello, J.T.; Bailey, S.J.; Gilchrist, M.; Massey, H.; Shepherd, A.I. Effects of Dietary Nitrate Supplementation on the Response to Extremity Cooling and Endothelial Function in Individuals with Cold Sensitivity. A Double Blind, Placebo Controlled, Crossover, Randomised Control Trial. Nitric Oxide 2017, 70, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priego-Quesada, J.I.; Pérez-Guarner, A.; Gandia-Soriano, A.; Oficial-Casado, F.; Galindo, C.; de Anda, R.M.C.O.; Piñeiro-Ramos, J.D.; Sánchez-Illana, Á.; Kuligowski, J.; Barbosa, M.A.G.; et al. Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship With Perceptive, Performance, and Oxidative-Stress Biomarkers. Int. J. Sports Physiol. Perform. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Horikoshi, M.; Inokuma, S.; Kijima, Y.; Kobuna, M.; Miura, Y.; Okada, R.; Kobayashi, S. Thermal Disparity between Fingers after Cold-Water Immersion of Hands: A Useful Indicator of Disturbed Peripheral Circulation in Raynaud Phenomenon Patients. Intern. Med. 2016, 55, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Zaproudina, N.; Lipponen, J.A.; Eskelinen, P.; Tarvainen, M.P.; Karjalainen, P.A.; Närhi, M. Measurements of Skin Temperature Responses to Cold Exposure of Foot and Face in Healthy Individuals: Variability and Influencing Factors. Clin. Physiol. Funct. Imaging 2011, 31, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.; Eglin, C.; House, J.; Tipton, M. The Contribution of Blood Flow to the Skin Temperature Responses during a Cold Sensitivity Test. Eur. J. Appl. Physiol. 2013, 113, 2411–2417. [Google Scholar] [CrossRef] [PubMed]
- Sawasaki, N.; Iwase, S.; Mano, T. Effect of Skin Sympathetic Response to Local or Systemic Cold Exposure on Thermoregulatory Functions in Humans. Auton. Neurosci. 2001, 87, 274–281. [Google Scholar] [CrossRef]
- O’Brien, C. Reproducibility of the Cold-Induced Vasodilation Response in the Human Finger. J. Appl. Physiol. 2005, 98, 1334–1340. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya Yacin, S.M.; Philip, J. Infrared Thermography Based Studies on the Effect of Age on Localized Cold Stress Induced Thermoregulation in Human. Infrared Phys. Technol. 2016, 76, 592–602. [Google Scholar] [CrossRef]
- Keramidas, M.E.; Kölegård, R.; Mekjavic, I.B.; Eiken, O. Acute Effects of Normobaric Hypoxia on Hand-Temperature Responses during and after Local Cold Stress. High Alt. Med. Biol. 2014, 15, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Leijon-Sundqvist, K.; Tegner, Y.; Juntti, U.; Karp, K.; Lehto, N. Hand Skin Temperature—Are There Warm and Cold Rewarming Patterns after Cold Stress Test. Thermol. Int. 2016, 26, 81–87. [Google Scholar]
- Faes, T.J.C.; Wagemans, M.F.M.; Cillekens, J.M.; Scheffer, G.-J.; Karemaker, J.M.; Bertelsmann, F.W. The Validity and Reproducibility of the Skin Vasomotor Test—Studies in Normal Subjects, after Spinal Anaesthesia, and in Diabetes Mellitus. Clin. Auton. Res. 1993, 3, 319–324. [Google Scholar] [CrossRef]
- Norrbrand, L.; Kölegard, R.; Keramidas, M.E.; Mekjavic, I.B.; Eiken, O. No Association between Hand and Foot Temperature Responses during Local Cold Stress and Rewarming. Eur. J. Appl. Physiol. 2017, 117, 1141–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GRPro® 2.1 Cold Therapy Unit|Cryotherapy Unit for Athlete & Patient Recovery. Available online: https://gameready.com/gr-pro-cold-therapy-unit/ (accessed on 27 July 2021).
- Su, E.P.; Perna, M.; Boettner, F.; Mayman, D.J.; Gerlinger, T.; Barsoum, W.; Randolph, J.; Lee, G. A Prospective, Multi-Center, Randomised Trial to Evaluate the Efficacy of a Cryopneumatic Device on Total Knee Arthroplasty Recovery. J. Bone Joint Surg. 2012, 94, 153–156. [Google Scholar] [CrossRef]
- Nabıyev, V.N.; Ayhan, S.; Adhıkarı, P.; Cetın, E.; Palaoglu, S.; Acaroglu, R.E. Cryo-Compression Therapy After Elective Spinal Surgery for Pain Management: A Cross-Sectional Study With Historical Control. Neurospine 2018, 15, 348–352. [Google Scholar] [CrossRef]
- Klaber, I.; Greeff, E.; O’Donnell, J. Compressive Cryotherapy Is Superior to Cryotherapy Alone in Reducing Pain after Hip Arthroscopy. J. Hip Preserv. Surg. 2019, 6, 364–369. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Kunzler, M.R.; Carpes, F.P. Methodological aspects of infrared thermography in human assessment. In Application of Infrared Thermography in Sports Science; Springer International Publishing: Cham, Switzerland, 2017; pp. 49–79. ISBN 978-3-319-47410-6. [Google Scholar]
- Zaproudina, N.; Varmavuo, V.; Airaksinen, O.; Närhi, M. Reproducibility of Infrared Thermography Measurements in Healthy Individuals. Physiol. Meas. 2008, 29, 515. [Google Scholar] [CrossRef] [PubMed]
- Marins, J.C.B.; Moreira, D.G.; Cano, S.P.; Quintana, M.S.; Soares, D.D.; de Andrade Fernandes, A.; da Silva, F.S.; Costa, C.M.A.; dos Santos Amorim, P.R. Time Required to Stabilize Thermographic Images at Rest. Infrared Phys. Technol. 2014, 65, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Steketee, J. Spectral Emissivity of Skin and Pericardium. Phys. Med. Biol. 1973, 18, 686. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.V.; Sparrow, S.A. Developing Criteria for Establishing Interrater Reliability of Specific Items: Applications to Assessment of Adaptive Behavior. Am. J. Ment. Defic. 1981, 86, 127–137. [Google Scholar]
- Shechtman, O. The coefficient of variation as an index of measurement reliability. In Methods of Clinical Epidemiology; Doi, S.A.R., Williams, G.M., Eds.; Springer Series on Epidemiology and Public Health; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–49. ISBN 978-3-642-37131-8. [Google Scholar]
- Kropman, R.H.J.; Kiela, G.; Moll, F.L.; de Vries, J.-P.P.M. Variations in Anatomy of the Popliteal Artery and Its Side Branches. Vasc. Endovasc. Surg. 2011, 45, 536–540. [Google Scholar] [CrossRef]
- Daanen, H. Central and Peripheral Control of Finger Blood Flow in the Cold. Ph.D. Thesis, Free University, Amsterdam, The Netherlands, 1997. [Google Scholar]
- Costa, C.M.A.; Sillero-Quintana, M.; Piñonosa Cano, S.; Moreira, D.G.; Brito, C.J.; Fernandes, A.A.; Pussieldi, G.A.; Marins, J.C.B. Daily Oscillations of Skin Temperature in Military Personnel Using Thermography. BMJ Mil. Health 2016, 162, 335–342. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Formenti, D.; Costa, C.M.A.; de Andrade Fernandes, A.; Sillero-Quintana, M. Circadian and Gender Differences in Skin Temperature in Militaries by Thermography. Infrared Phys. Technol. 2015, 71, 322–328. [Google Scholar] [CrossRef]
- Smolander, J.; Härmä, M.; Lindgvist, A.; Kolari, P.; Laitinen, L.A. Circadian Variation in Peripheral Blood Flow in Relation to Core Temperature at Rest. Europ. J. Appl. Physiol. 1993, 67, 192–196. [Google Scholar] [CrossRef]
- Leijon-Sundqvist, K.; Lehto, N.; Juntti, U.; Karp, K.; Andersson, S.; Tegner, Y. Thermal Response after Cold-Water Provocation of Hands in Healthy Young Men. Thermol. Int. 2015, 25, 48–53. [Google Scholar]
- Burkes, S.A.; Patel, M.; Adams, D.M.; Hammill, A.M.; Eaton, K.P.; Randall Wickett, R.; Visscher, M.O. Infantile Hemangioma Status by Dynamic Infrared Thermography: A Preliminary Study. Int. J. Dermatol. 2016, 55, e522–e532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amri, A.; Pulko, S.H.; Wilkinson, A.J. Potentialities of Steady-State and Transient Thermography in Breast Tumour Depth Detection: A Numerical Study. Comput. Methods Programs Biomed. 2016, 123, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; He, Z.Z.; Yang, Y.; Liu, J. MRI-Based Three-Dimensional Thermal Physiological Characterization of Thyroid Gland of Human Body. Med. Eng. Phys. 2014, 36, 16–25. [Google Scholar] [CrossRef] [PubMed]
ICC | SE | Within-Subject CV (%) | Between-Subject CV (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9:00–11:00 | 9:00–19:00 | 9:00–9:00 Day 2 | All Moments | 9:00–11:00 | 9:00–19:00 | 9:00–9:00 Day 2 | All Moments | 9:00–11:00 | 9:00–19:00 | 9:00–9:00 Day 2 | All Moments | 9:00–11:00 | 9:00–19:00 | 9:00–9:00 Day 2 | All Moments | |
β0 | ||||||||||||||||
Anterior thigh | 0.44 | 0.46 | 0.33 | 0.47 | 0.5 | 0.6 | 0.6 | 0.4 | 15 | 19 | 17 | 18 | 25 | 28 | 31 | 26 |
Knee | 0.59 | 0.64 | 0.71 | 0.63 | 0.8 | 0.8 | 0.8 | 0.5 | 19 | 20 | 17 | 20 | 38 | 38 | 39 | 34 |
Anterior leg | 0.49 | 0.64 | 0.73 | 0.54 | 0.4 | 0.5 | 0.5 | 0.3 | 12 | 12 | 11 | 15 | 21 | 25 | 26 | 23 |
Posterior thigh | 0.63 | 0.53 | 0.69 | 0.59 | 0.5 | 0.5 | 0.6 | 0.4 | 9 | 12 | 10 | 12 | 16 | 18 | 21 | 18 |
Posterior knee | 0.58 | 0.40 | 0.42 | 0.43 | 0.6 | 0.5 | 0.6 | 0.4 | 15 | 16 | 15 | 17 | 25 | 24 | 25 | 24 |
Posterior leg | 0.73 | 0.78 | 0.69 | 0.68 | 0.5 | 0.5 | 0.5 | 0.4 | 7 | 8 | 9 | 10 | 18 | 18 | 19 | 18 |
β1 | ||||||||||||||||
Anterior thigh | 0.41 | 0.31 | 0.36 | 0.43 | 0.08 | 0.08 | 0.09 | 0.06 | 18 | 25 | 22 | 23 | 32 | 33 | 36 | 32 |
Knee | 0.52 | 0.60 | 0.77 | 0.60 | 0.12 | 0.11 | 0.12 | 0.07 | 27 | 24 | 17 | 24 | 46 | 44 | 47 | 41 |
Anterior leg | 0.42 | 0.61 | 0.68 | 0.55 | 0.06 | 0.07 | 0.07 | 0.05 | 18 | 16 | 16 | 18 | 28 | 31 | 31 | 28 |
Posterior thigh | 0.53 | 0.38 | 0.64 | 0.58 | 0.08 | 0.08 | 0.10 | 0.06 | 14 | 15 | 16 | 15 | 25 | 24 | 31 | 25 |
Posterior knee | 0.57 | 0.28 | 0.39 | 0.33 | 0.09 | 0.08 | 0.08 | 0.06 | 19 | 21 | 19 | 23 | 31 | 30 | 29 | 30 |
Posterior leg | 0.59 | 0.74 | 0.69 | 0.69 | 0.07 | 0.08 | 0.08 | 0.05 | 12 | 9 | 11 | 12 | 23 | 22 | 23 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priego-Quesada, J.I.; Gandia-Soriano, A.; Pellicer-Chenoll, M.T.; Catalá-Vilaplana, I.; Bermejo-Ruiz, J.L.; Encarnación-Martínez, A.; Salvador-Palmer, R.; Cibrián Ortiz de Anda, R. Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 8295. https://doi.org/10.3390/ijerph18168295
Priego-Quesada JI, Gandia-Soriano A, Pellicer-Chenoll MT, Catalá-Vilaplana I, Bermejo-Ruiz JL, Encarnación-Martínez A, Salvador-Palmer R, Cibrián Ortiz de Anda R. Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study. International Journal of Environmental Research and Public Health. 2021; 18(16):8295. https://doi.org/10.3390/ijerph18168295
Chicago/Turabian StylePriego-Quesada, Jose Ignacio, Alexis Gandia-Soriano, Maria Teresa Pellicer-Chenoll, Ignacio Catalá-Vilaplana, Jose Luis Bermejo-Ruiz, Alberto Encarnación-Martínez, Rosario Salvador-Palmer, and Rosa Cibrián Ortiz de Anda. 2021. "Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study" International Journal of Environmental Research and Public Health 18, no. 16: 8295. https://doi.org/10.3390/ijerph18168295
APA StylePriego-Quesada, J. I., Gandia-Soriano, A., Pellicer-Chenoll, M. T., Catalá-Vilaplana, I., Bermejo-Ruiz, J. L., Encarnación-Martínez, A., Salvador-Palmer, R., & Cibrián Ortiz de Anda, R. (2021). Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study. International Journal of Environmental Research and Public Health, 18(16), 8295. https://doi.org/10.3390/ijerph18168295