Cost-Effectiveness of Colorectal Cancer Genetic Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants
2.3. Study Perspective, Instruments, and Resources Used
2.4. Outcomes
2.5. Estimating Resources Used and Cost Analysis
2.6. Cost-Effectiveness Analysis
2.7. Assumptions and Analytical Choice
- A better screening method is able to detect CRC at an early stage;
- The earlier the stage at which CRC is diagnosed, the better the QALY gain;
- Samples in both screening groups had been tested positive and confirmed to have CRC;
- Total cost management includes the costs of screening and treatment.
2.8. Currency, Price Date, and Conversion
2.9. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Cost Analysis
3.3. Outcomes
3.4. Life-Years (LYs) and Quality-Adjusted Life-Years (QALYs)
3.5. Life-Years (LYs) and Quality-Adjusted Life-Years (QALYs) Gained by Patients Who Underwent Genetic Testing
3.6. Cost-Effectiveness Analysis
3.7. Sensitivity Analysis
4. Discussion
Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cancer Fact Sheets 2018. Available online: https://www.who.int/newsroom/fact-sheets/detail/cancer (accessed on 1 January 2020).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: Globocan sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Torre, L.A.; Soerjomataram, I.; Hayes, R.B.; Bray, F.; Weber, T.K.; Jemal, A. Global patterns and trends in colorectal cancer incidence in young adults. Gut 2019, 68, 2179–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizah, A.M.; Hashimah, B.; Nirmal, K.; Siti Zubaidah, A.R.; Puteri, N.A.; Nabihah, A.; Sukumaran, R.; Balqis, B.; Nadia, S.M.R.; Sharifah, S.S.S.; et al. Malaysia Cancer Statistics from the Malaysian National Cancer Registry Report 2012–2016; National Cancer Institute, Ministry of Health Malaysia: Putrajaya, Malaysia, 2019.
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.I. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Brosens, L.A.; Offerhaus, G.J.A.; Giardiello, F.M. Hereditary colorectal cancer: Genetics and screening. Surg. Clin. N. Am. 2015, 95, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Lynch, H.T.; Shaw, T.G. Practical genetics of colorectal cancer. Chin. Clin. Oncol. 2013, 2, 12. [Google Scholar] [PubMed]
- Gupta, S.; Provenzale, D.; Llor, X.; Halverson, A.L.; Grady, W.; Chung, D.C.; Haraldsdottir, S.; Markowitz, A.J.; Slavin, T.P., Jr.; Hampel, H.; et al. NCCN guidelines insights: Genetic/familial high-risk assessment: Colorectal, version 2.2019. J. Natl. Compr. Canc. Netw. 2019, 17, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Lorans, M.; Dow, E.; Macrae, F.A.; Winship, I.M.; Buchanan, D.D. Update on hereditary colorectal cancer: Improving the clinical utility of multigene panel testing. Clin. Colorectal Cancer 2018, 17, e293–e305. [Google Scholar] [CrossRef] [Green Version]
- Prince, A.E.; Cadigan, R.J.; Henderson, G.E.; Evans, J.P.; Adams, M.; Coker-Schwimmer, E.; Penn, D.C.; Van Riper, M.; Corbie-Smith, G.; Jonas, D.E. Is there evidence that we should screen the general population for Lynch syndrome with genetic testing? A systematic review. Pharmgenom. Pers. Med. 2017, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Hamzehzadeh, L.; Yousefi, M.; Ghaffari, S.H. Colorectal cancer screening: A comprehensive review to recent non-invasive methods. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 250–261. [Google Scholar]
- Carethers, J.M.; Jung, B.H. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 2015, 149, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Vasen, H.F.; Wijnen, J.T.; Menko, F.H.; Kleibeuker, J.H.; Taal, B.G.; Griffioen, G.; Nagengast, F.M.; Meijers-Heijboer, E.H.; Bertario, L.; Varesco, L.; et al. Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 1996, 110, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, L.A.; Peltomaki, P.; Mecklin, J.P.; Jarvinen, H.; Jass, J.R.; Green, J.S.; Lynch, H.T.; Watson, P.; Tallqvist, G.; Juhola, M.J.C.R. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994, 54, 1645–1648. [Google Scholar] [PubMed]
- Miyaki, M.; Konishi, M.; Tanaka, K.; Kikuchi-Yanoshita, R.; Muraoka, M.; Yasuno, M.; Igari, T.; Koike, M.; Chiba, M.; Mori, T. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat. Genet. 1997, 17, 271–272. [Google Scholar] [CrossRef]
- Aarnio, M.; Sankila, R.; Pukkala, E.; Salovaara, R.; Aaltonen, L.A.; De La Chapelle, A.; Peltomaki, P.; Mecklin, J.P.; Jarvinen, H.J. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int. J. Cancer 1999, 81, 214–218. [Google Scholar] [CrossRef]
- Giardiello, F.M.; Allen, J.I.; Axilbund, J.E.; Boland, C.R.; Burke, C.A.; Burt, R.W.; Church, J.M.; Dominitz, J.A.; Johnson, D.A.; Kaltenbach, T.; et al. Guidelines on genetic evaluation and management of Lynch syndrome: A consensus statement by the US multi-society task force on colorectal cancer. Gastroenterology 2014, 57, 1025–1048. [Google Scholar] [CrossRef]
- Vasen, H.; Stormorken, A.; Menko, F.; Nagengast, F.; Kleibeuker, J.; Griffioen, G.; Taal, B.; Moller, P.; Wijnen, J.T. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: A study of hereditary nonpolyposis colorectal cancer families. J. Clin. Oncol. 2001, 19, 4074–4080. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Bigas, M.; Boland, C.; Hamilton, S.; Henson, D.; Jass, J.; Khan, P.; Lynch, H.; Perucho, M.; Smyrk, T.H.; Sobin, L.; et al. A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: Meeting highlights and Bethesda guidelines. J. Natl. Cancer Inst. 1998, 89, 1758–1762. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; Chapelle, A.D.L.; Ruschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch Syndrome) and microsatellite instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
- Bonadona, V.; Bonaiti, B.; Olschwang, S.; Grandjouan, S.; Huiart, L.; Longy, M.; Guimbaud, R.; Buecher, B.; Bignon, Y.J.; Caron, O.; et al. French Cancer Genetics Network. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch Syndrome. JAMA 2011, 305, 2304–2310. [Google Scholar] [CrossRef]
- Azzani, M.; Dahlui, M.; Ishak, W.Z.W.; Roslani, A.C.; Su, T.T. Provider costs of treating colorectal cancer in government hospital of Malaysia. Malays. J. Med. Sci. 2019, 26, 73. [Google Scholar] [CrossRef] [PubMed]
- Azzani, M.; Roslani, A.C.; Su, T.T. Financial burden of colorectal cancer treatment among patients and their families in a middle-income country. Support Care Cancer 2016, 24, 4423–4432. [Google Scholar] [CrossRef]
- Azzani, M.; Yahya, A.; Roslani, A.C.; Su, T.T. Catastrophic health expenditure among colorectal cancer patients and families: A case of Malaysia. Asia Pac. J. Public Health 2017, 29, 485–494. [Google Scholar] [CrossRef]
- Mohd, N.; Ezat, S.; Aljunid, S.M.; Manaf, M.R.A.; Sulong, S.; Sagap, I.; Azrif, M. Cost analysis of colorectal cancer (CRC) management in UKM Medical Centre using Clinical Pathway. BMC Public Health 2012, 12, A40. [Google Scholar] [CrossRef] [Green Version]
- Ezat, S.; Natrah, M.; Aljunid, S.; Rizal, M.; Saperi, S.; Ismail, S.; Fuad, I.; Azrif, M.A. Economic evaluation of monoclonal antibody in the management of colorectal cancer. J. Cancer Res. Ther. 2013, 1, 34–39. [Google Scholar]
- Shah, S.A.; Neoh, H.M.; Rahim, S.; Azhar, Z.I.; Hassan, M.R.; Safian, N.; Jamal, R.J. Spatial analysis of colorectal cancer cases in Kuala Lumpur. Asian Pac. J. Cancer Prev. 2014, 15, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
- Veettil, S.K.; Lim, K.G.; Chaiyakunapruk, N.; Ching, S.M.; Hassan, M.R.A. Colorectal cancer in Malaysia: Its burden and implications for a multiethnic country. Asian J. Surg. 2017, 40, 481–489. [Google Scholar] [CrossRef]
- Beaulieu, N.; Bloom, D.; Bloom, R.; Breakaway, S. The Global Burden of Cancer-Challenges and Opportunities. A Report from the Economist Intelligent Unit; The Economist Intelligence Unit: Singapore, 2009. [Google Scholar]
- Bhoo-Pathy, N.; Ng, C.W.; Lim, G.C.C.; Tamin, N.S.I.; Sullivan, R.; Bhoo-Pathy, N.T.; Abdullah, M.M.; Kimman, M.; Subramaniam, S.; Saad, M.; et al. Financial toxicity after cancer in a setting with universal health coverage: A call for urgent action. J. Oncol. Pract. 2019, 15, e537–e546. [Google Scholar] [CrossRef]
- Favoriti, P.; Carbone, G.; Greco, M.; Pirozzi, F.; Pirozzi, R.E.M.; Corcione, F. Worldwide burden of colorectal cancer: A review. Updates Surg. 2016, 68, 7–11. [Google Scholar] [CrossRef]
- Subramanian, S.; Tangka, F.K.L.; Hoover, S.; Royalty, J.; Degroff, A.; Joseph, D. Costs of colorectal cancer screening provision in CDC’s colorectal cancer control program: Comparisons of colonoscopy and FOBT/FIT based screening. Eval. Program Plann. 2017, 62, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prager, G.W.; Braga, S.; Bystricky, B.; Qvortrup, C.; Criscitiello, C.; Esin, E.; Sonke, G.S.; Martinez, G.A.; Frenel, J.S.; Karamouzis, M.; et al. Global cancer control: Responding to the growing burden, rising costs and inequalities in access. ESMO Open 2018, 3, e000285. [Google Scholar] [CrossRef] [Green Version]
- Yabroff, K.R.; Borowski, L.; Lipscomb, J. Economic studies in colorectal cancer: Challenges in measuring and comparing costs. JNCI Monogr. 2013, 46, 62–78. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Colorectal Cancer 2017. Available online: https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html (accessed on 2 December 2018).
- Andersen, S.W.; Blot, W.J.; Lipworth, L.; Steinwandel, M.; Murff, H.J.; Zheng, W. Association of race and socioeconomic status with colorectal cancer screening, colorectal cancer risk, and mortality in Southern US adults. JAMA Netw. Open 2019, 2, e1917995. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; Garcia, F.A.; Gillman, M.W.; Harper, D.M.; Kemper, A.R.; Krist, A.H.; et al. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA 2016, 315, 2564–2575. [Google Scholar]
- Schreuders, E.H.; Ruco, A.; Rabeneck, L.; Schoen, R.E.; Sung, J.J.; Young, G.P.; Kuipers, E.J. Colorectal cancer screening: A global overview of existing programmes. Gut 2015, 64, 1637–1649. [Google Scholar] [CrossRef]
- Sung, J.J.; Ng, S.C.; Chan, F.K.; Chiu, H.M.; Kim, H.S.; Matsuda, T.; Ng, S.S.; Lau, J.Y.; Zheng, S.; Adler, S.; et al. An updated Asia Pacific Consensus Recommendations on Colorectal Cancer Screening. Gut 2015, 64, 121–132. [Google Scholar] [CrossRef]
- Swartz, A.W.; Eberth, J.M.; Josey, M.J.; Strayer, S.M. Reanalysis of all-cause mortality in the US Preventive Services Task Force 2016 Evidence Report on Colorectal Cancer Screening. Ann. Intern. Med. 2017, 167, 602–603. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health Malaysia. Guidelines for Screening Programs of Colorectal Cancer (Cancer of the Big Bowel); Ministry of Health Malaysia: Putrajaya, Malaysia, 2015.
- Ministry of Health Malaysia. Clinical Practice Guidelines: Management of Colorectal Cancer Malaysia Health Technology Assessment Section (MaHTAS); Ministry of Health Malaysia: Putrajaya, Malaysia, 2017.
- Al-Dubai, S.A.; Ganasegeran, K.; Alabsi, A.M.; Shah, S.A.; Razali, F.M.M.; Arokiasamy, J.T. Exploration of risk-taking behaviors and perceived susceptibility of colorectal cancer among Malaysian adults: A community based cross-sectional study. BMC Public Health 2013, 13, 930. [Google Scholar] [CrossRef] [Green Version]
- Payne, K.; Gavan, S.P.; Wright, S.J.; Thompson, A.J. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat. Rev. Genet. 2018, 19, 235–246. [Google Scholar] [CrossRef]
- Cenin, D.R.; Naber, S.K.; Lansdorp-Vogelaar, I.; Jenkins, M.A.; Buchanan, D.D.; Preen, D.B.; Ee, H.C.; O’Leary, P. Costs and outcomes of Lynch syndrome screening in the Australian colorectal cancer population. J. Gastroenterol. Hepatol. 2018, 33, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.E.; Kao, S.S.; Chung, R.H. Cost-effectiveness analysis of different genetic testing strategies for Lynch syndrome in Taiwan. PLoS ONE 2016, 11, e0160599. [Google Scholar] [CrossRef]
- Dinh, T.A.; Rosner, B.I.; Atwood, J.C.; Boland, C.R.; Syngal, S.; Vasen, H.F.; Gruber, S.B.; Burt, R.W. Health benefits and cost-effectiveness of primary genetic screening for Lynch syndrome in the general population. Cancer Prev. Res. 2011, 4, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D. When is genomic testing cost-effective? Testing for Lynch syndrome in patients with newly-diagnosed colorectal cancer and their relatives. Healthcare 2015, 3, 860–878. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J.; Killen, J.; Caruana, M.; Simms, K.; Taylor, N.; Frayling, I.M.; Snowsill, T.; Huxley, N.; Coupe, V.M.; Hughes, S.; et al. The predicted impact and cost-effectiveness of systematic testing of people with incident colorectal cancer for Lynch syndrome. Med. J. Aust. 2020, 212, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Vasen, H.F.; Ballegooijen, M.V.; Buskens, E.; Kleibeuker, J.K.; Taal, B.G.; Griffioen, G.; Nagengast, F.M.; Menko, F.H.; Khan, P.M. A cost-effectiveness analysis of colorectal screening for hereditary nonpolyposis colorectal carcinoma gene carriers. Cancer 1998, 82, 1632–1637. [Google Scholar] [CrossRef]
- Brazier, J.; Ratcliffe, J.; Saloman, J.; Tsuchiya, A. Measuring and Valuing Health Benefits for Economic Evaluation, 2nd ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Rabin, R.; de Charro, F. EQ-5D: A measure of health status from the EuroQol Group. Ann. Med. 2001, 33, 337–343. [Google Scholar] [CrossRef]
- Arifin, B.; Purba, F.D.; Herman, H.; Adam, J.M.; Atthobari, J.; Schuiling-Veninga, C.C.; Krabbe, P.F.M.; Postma, M.J. Comparing the EQ-5D-3L and EQ-5D-5L: Studying measurement and scores in Indonesian type 2 diabetes mellitus patients. Health Qual. Life Outcomes 2020, 18, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafie, A.A.; Thakumar, A.V.; Lim, C.J.; Luo, N.; Rand-Hendriksen, K.; Yusof, F.A.M. EQ-5D-5L valuation for the Malaysian population. Pharmacoeconomics 2019, 37, 715–725. [Google Scholar] [CrossRef]
- Yusof, F.A.; Goh, A.; Azmi, S. Estimating an EQ-5D value set for Malaysia using time trade-off and visual analogue scale methods. Value Health 2012, 15, S85–S90. [Google Scholar] [CrossRef] [Green Version]
- Van Reenen, M.; Janssen, B. EQ-5D-5L User Guide: Basic Information on How to Use the EQ-5D-5L Instrument; EuroQol Research Foundation: Rotterdam, The Netherlands, 2015. [Google Scholar]
- National Cancer Registry Ministry of Health Malaysia. Malaysian Study on Cancer Survival (Myscan); NCSM: Putrajaya, Malaysia, 2018.
- Lee, K.Y.; Ong, T.K.; Low, E.V.; Liow, S.Y.; Anchah, L.; Hamzah, S.; Liew, H.B.; Ali, R.M.; Ismail, O.; Ahmad, W.A.W.; et al. Cost of elective percutaneous coronary intervention in Malaysia: A multi-centre cross-sectional costing study. BMJ Open 2017, 7, e014307. [Google Scholar] [CrossRef]
- Mohd Dom, T.N.; Ayob, R.; Abd Muttalib, K.; Aljunid, S.M. National Economic Burden Associated with Management of Periodontitis in Malaysia. Int. J. Dent. 2016, 2016, 1891074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creese, A.; Parker, D. Cost Analysis in Primary Health Care. A Training Manual for Program Managers; WHO Publications Center: Albany, NY, USA, 1994. [Google Scholar]
- Drummond, M.F.; Sculpher, M.J.; Claxton, K.; Stoddart, G.L.; Torrance, G.W. Methods for the Economic Evaluation of Health Care Programmes; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Soares, M.O.; Walker, S.; Palmer, S.J.; Sculpher, M.J. Establishing the value of diagnostic and prognostic tests in health technology assessment. Med. Decis. Making 2018, 38, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Ramdzan, A.R.; Abd Rahim, M.A.; Mohamad Zaki, A.; Zaidun, Z.; Mohammed Nawi, A. Diagnostic accuracy of FOBT and colorectal cancer genetic testing: A systematic review & meta-analysis. Ann. Glob. Health 2019, 85, 70. [Google Scholar]
- Malaysia Health Technology Assessment Section. Establishing a Cost Effectiveness Threshold Value for Health Technologies. 2015. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj72dyg-pvyAhXQ1GEKHXYrD-MQFnoECAUQAw&url=https%3A%2F%2Fwww.moh.gov.my%2Findex.php%2Ffile_manager%2Fdl_item%2F54574649564546544945356c64334e735a5852305a5849764d6c394e5955685551564e66546d56336332786c6448526c636c3957623278664d5463756347526d&usg=AOvVaw3nD4VWGJ7Bekf9zAT3G8ym (accessed on 1 December 2020).
- Marseille, E.; Larson, B.; Kazi, D.S.; Kahn, J.G.; Rosen, S. Thresholds for the cost–effectiveness of interventions: Alternative approaches. Bull. World Health Organ. 2015, 93, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D. Assessing cost-effectiveness in healthcare: History of the $50,000 per qaly threshold. Expert Rev. Pharmacoecon. Outcomes Res 2008, 8, 165–178. [Google Scholar] [CrossRef]
- Tan-Torres Edejer, T.; Baltussen, R.; Adam, T.; Hutubessy, R.; Acharya, A.; Evans, D.B.; Murray, C.J. Making Choices in Health: WHO Guide to CostEffectiveness Analysis; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Lim, Y.W.; Shafie, A.A.; Chua, G.N.; Hassali, M.A.A. Determination of cost-effectiveness threshold for health care interventions in Malaysia. Value Health 2017, 20, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Bombard, Y.; Bach, P.B.; Offit, K. Translating genomics in cancer care. J. Natl. Compr. Canc. Netw. 2013, 11, 1343–1353. [Google Scholar] [CrossRef]
- Ngeow, J.; Heald, B.; Rybicki, L.A.; Orloff, M.S.; Chen, J.L.; Liu, X.; Yerian, L.; Willis, J.; Lehtonen, H.J.; Lehtonen, R.J.G. Prevalence of germline PTEN, BMPR1A, SMAD4, STK11, and ENG mutations in patients with moderate-load colorectal polyps. Gastroenterology 2013, 144, 1402–1409. [Google Scholar] [CrossRef] [Green Version]
- Gallego, C.J.; Shirts, B.H.; Bennette, C.S.; Guzauskas, G.; Amendola, L.M.; Horike-Pyne, M.; Hisama, F.M.; Pritchard, C.C.; Grady, W.M.; Burke, W.; et al. Next generation sequencing panels for the diagnosis of colorectal cancer and polyposis syndromes: A cost-effectiveness analysis. J. Clin. Oncol. 2015, 33, 2084–2091. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.K.; Lam, C.L.; Wan, Y.F.; Fong, D.Y. Cost-effectiveness simulation and analysis of colorectal cancer screening in Hong Kong Chinese population: Comparison amongst colonoscopy, guaiac and immunologic fecal occult blood testing. BMC Cancer 2015, 15, 705. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, M.; Kvizhinadze, G.; Boyd, M.; Barendregt, J.; Sarfati, D.; Wilson, N.; Blakely, T. Colorectal cancer screening: How health gains and cost-effectiveness vary by ethnic group, the impact on health inequalities, and the optimal age range to screen. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 1391–1400. [Google Scholar] [CrossRef] [Green Version]
- Ladabaum, U.; Mannalithara, A.; Meester, R.G.; Gupta, S.; Schoen, R.E. Cost-effectiveness and national effects of initiating colorectal cancer screening for average-risk persons at age 45 years instead of 50 years. Gastroenterology 2019, 157, 137–148. [Google Scholar] [CrossRef]
- Ladabaum, U.; Mannalithara, A.; Brill, J.V.; Levin, Z.; Bundorf, K.M. Contrasting effectiveness and cost-effectiveness of colorectal cancer screening under commercial insurance vs medicare. Am. J. Gastroenterol. 2018, 113, 1836–1847. [Google Scholar] [CrossRef]
- Ladabaum, U.; Wang, G.; Terdiman, J.; Blanco, A.; Kuppermann, M.; Boland, C.R.; Ford, J.; Elkin, E.; Phillips, K.A. Strategies to identify the Lynch syndrome among patients with colorectal cancer: A cost-effectiveness analysis. Ann. Intern. Med. 2011, 155, 69–79. [Google Scholar] [CrossRef]
- Mendivil, J.; Appierto, M.; Aceituno, S.; Comas, M.; Rue, M. Economic evaluations of screening strategies for the early detection of colorectal cancer in the average-risk population: A systematic literature review. PLoS ONE 2019, 14, e0227251. [Google Scholar] [CrossRef]
- Jahn, B.; Sroczynski, G.; Bundo, M.; Muhlberger, N.; Puntscher, S.; Todorovic, J.; Rochau, U.; Oberaigner, W.; Koffijberg, H.; Fischer, T.; et al. Effectiveness, benefit, harm and cost effectiveness of colorectal cancer screening in Austria. BMC Gastroenterol. 2019, 19, 209. [Google Scholar] [CrossRef] [Green Version]
- Heavener, T.; Mcstay, F.W.; Jaeger, V.; Stephenson, K.; Sager, L.; Sing, J. Assessing adherence and cost-benefit of colorectal cancer screening for accountable providers. Proc. (Bayl. Univ. Med. Cent.) 2019, 32, 490–497. [Google Scholar] [CrossRef]
- Jo, C. Cost-of-illness studies: Concepts, scopes, and methods. Clin. Mol. Hepatol. 2014, 20, 327. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Igarashi, A.; Sakamoto, T.; Saito, Y.; Esaki, M.; Matsuda, T. Cost-effectiveness analysis of colorectal cancer screening using colonoscopy, fecal immunochemical test, and risk score. J. Gastroenterol. Hepatol. 2020, 35, 1555–1561. [Google Scholar] [CrossRef]
- Peterse, E.F.; Meester, R.G.; de Jonge, L.; Omidvari, A.H.; Alarid-Escudero, F.; Knudsen, A.B.; Zauber, A.G.; Lansdorp-Vogelaar, I. Comparing the cost-effectiveness of innovative colorectal cancer screening tests. J. Natl. Cancer Inst. 2021, 113, 154–161. [Google Scholar] [CrossRef]
- Huang, W.; Yang, J.; Liu, Y.; Liu, C.; Zhang, X.; Fu, W.; Shi, L.; Liu, G. Assessing health-related quality of life of patients with colorectal cancer using EQ-5D-5L: A cross-sectional study in Heilongjiang of China. BMJ Open 2018, 8, e022711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkkila, N.; Torvinen, S.; Roine, R.P.; Sintonen, H.; Hanninen, J.; Taari, K.; Saarto, T. Health-related quality of life among breast, prostate, and colorectal cancer patients with end-stage disease. Qual. Life Res. 2014, 23, 1387–1394. [Google Scholar] [CrossRef]
- Downing, A.; Morris, E.J.; Richards, M.; Corner, J.; Wright, P.; Sebag-Montefiore, D.; Finan, P.; Kind, P.; Wood, C.; Lawton, S.; et al. Health-related quality of life after colorectal cancer in England: A patient-reported outcomes study of individuals 12 to 36 months after diagnosis. J. Clin Oncol. 2015, 33, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.; Joulain, F.; Naoshy, S.; Iqbal, U.; Muszbek, N.; Payne, K.A.; Ferry, D.; Goey, S.H. Assessing health-state utility values in patients with metastatic colorectal cancer: A utility study in the United Kingdom and the Netherlands. Int. J. Colorectal Dis. 2014, 29, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Patients n (%) | iFOBT n (%) | Genetic Testing n (%) | p-Value |
---|---|---|---|---|
Age in years, mean (SD) | 52.9 (15.8) | 54.9 (15.3) | 47.2 (16.2) | 0.159 a |
Age group in years | 0.009 b | |||
≤50 | 72 (36.0) | 30 (30.0) | 42 (42.0) | |
51–60 | 49 (24.5) | 28 (28.0) | 21 (21.0) | |
61–70 | 59 (29.5) | 31 (31.0) | 28 (28.0) | |
≥71 | 20 (10.0) | 11 (11.0) | 9 (9.0) | |
Gender | 0.235 a | |||
Men | 110 (55.0) | 57 (57.0) | 53 (53.0) | |
Women | 90 (45.0) | 43 (43.0) | 47 (47.0) | |
Ethnicity | 0.113 b | |||
Malay | 140 (70.0) | 73 (73.0) | 67 (67.0) | |
Chinese | 38 (19.0) | 15 (15.0) | 23 (23.0) | |
Indian | 22 (11.0) | 12 (12.0) | 10 (10.0) | |
Current working status | <0.001 a | |||
Yes | 145 (72.5) | 91 (91.0) | 54 (54.0) | |
No | 55 (27.5) | 9 (9.0) | 46 (46.0) | |
Monthly household income (RM) * | 0.036 b | |||
<1500 | 77 (38.5) | 41 (41.0) | 36 (36.0) | |
1500–3500 | 93 (46.5) | 41 (41.0) | 52 (52.0) | |
>3500 | 30 (15.0) | 18 (18.0) | 12 (12.0) | |
Education level | <0.001 b | |||
No education | 17 (8.5) | 6 (6.0) | 11 (11.0) | |
Primary | 30 (15.0) | 11 (11.0) | 19 (19.0) | |
Secondary | 117 (58.5) | 68 (68.0) | 49 (49.0) | |
Tertiary | 36 (18.0) | 15 (15.0) | 21 (21.0) | |
Marital status | 0.043 a | |||
Single | 43 (21.5) | 18 (18.0) | 25 (25.0) | |
Married | 157 (78.5) | 82 (82.0) | 75 (75.0) | |
Insurance coverage | 0.629 a | |||
Yes | 28 (14.0) | 15 (15.0) | 13 (13.0) | |
No | 172 (86.0) | 85 (85.0) | 87 (87.0) | |
Family history of cancer | <0.001 a | |||
Yes | 111 (55.5) | 40 (40.0) | 71 (71.0) | |
No | 89 (44.5) | 60 (60.0) | 29 (29.0) | |
Stage of cancer | <0.001 b | |||
1 | 16 (8.0) | 6 (6.0) | 10 (10.0) | |
2 | 77 (38.5) | 17 (17.0) | 60 (60.0) | |
3 | 79 (39.5) | 54 (54.0) | 25 (25.5) | |
4 | 28 (14.0) | 23 (23.0) | 5 (5.0) | |
Treatment | 0.218 b | |||
Surgery | 199 (99.5) | 100 (100.0) | 99 (99.0) | |
Radiotherapy | 21 (10.5) | 8 (8.0) | 13 (13.0) | |
Chemotherapy | 156 (78.0) | 87 (87.0) | 69 (69.0) |
Type of Cost | Costing Methods | iFOBT Mean (SE) | Genetic Testing Mean (SE) | Difference Mean (95% CI) |
---|---|---|---|---|
Capital cost (USD) | ||||
Building | Top-down | 62.48 (0.09) | 59.93 (0.03) | 2.568 (2.565–2.571) |
Equipment | Top-down | 8.58 (0.01) | 8.29 (0.05) | 0.300 (0.298–0.303) |
Recurrent cost (USD) | ||||
Human resource | Activity-based | 43.23 (0.48) | 56.96 (0.02) | 13.789 (13.771–13.808) |
Administration/overhead | Top-down | 118.13 (0.47) | 174.85 (0.10) | 56.329 (56.238–56.421) |
Utilities | Top-down | 69.59 (0.98) | 66.75 (0.05) | 2.787 (2.770–2.803) |
Maintenance | Top-down | 4.33 (0.06) | 4.15 (0.03) | 0.183 (0.180–0.185) |
Medication | Activity-based | 19.45 (0.66) | 0.74 (0.12) | 18.751 (18.741–18.760) |
Consumables | Activity-based | 1.15 (0.01) | 0.73 (0.09) | 0.407 (0.404–0.409) |
Laboratory investigation | Activity-based | 45.89 (0.05) | 603.86 (0.06) | 557.940 (557.931–557.949) |
Total cost (USD) | 372.83 (0.09) | 976.26 (0.07) | 603.424 (603.422–603.425) |
Attribute | Total Patients n (%) | iFOBT n (%) | Genetic Testing n (%) | p-Value |
---|---|---|---|---|
Mobility | 83 (37.4) | 60 (36.6) | 23 (39.7) | 0.678 a |
Self-care | 67 (30.2) | 49 (29.9) | 18 (31.0) | 0.869 a |
Usual activities | 86 (38.7) | 67 (40.9) | 19 (32.8) | 0.277 a |
Pain or discomfort | 114 (51.4) | 71 (43.3) | 43 (74.1) | <0.001 a |
Anxiety or depression | 98 (44.1) | 70 (42.7) | 28 (48.3) | 0.461 a |
Utility score, mean (SD)/median | 0.787 (0.273)/0.861 | 0.801 (0.264)/0.890 | 0.744 (0.296)/0.834 | 0.121 b |
VAS score, mean (SD)/median | 73.58 (18.47)/78.20 | 73.10 (17.28)/77.50 | 74.93 (21.59)/80.00 | 0.288 b |
Stage | Mean Survival Time | n | Total (Years) | Mean Utility Score | QALYs |
---|---|---|---|---|---|
iFOBT | |||||
I | 6.71 | 6 | 40.26 | 0.87 | 35.03 |
II | 6.51 | 17 | 110.67 | 0.74 | 81.90 |
III | 5.65 | 54 | 305.1 | 0.72 | 219.67 |
IV | 2.84 | 23 | 65.32 | 0.11 | 7.19 |
Total | 100 | 521.35 | 343.78 | ||
Per patient | 5.21 | 3.44 | |||
Genetic testing | |||||
I | 6.71 | 10 | 67.1 | 0.85 | 57.04 |
II | 6.51 | 60 | 390.60 | 0.82 | 320.29 |
III | 5.65 | 25 | 141.25 | 0.77 | 108.76 |
IV | 2.84 | 5 | 14.20 | 0.75 | 10.65 |
Total | 100 | 613.15 | 496.74 | ||
Per patient | 6.13 | 4.97 |
Item | iFOBT | Genetic Testing |
---|---|---|
LYs gained | 5.21 | 6.13 |
QALYs gained | 3.44 | 4.97 |
Provider cost (USD) | 372.83 | 976.26 |
Cost per LY (USD) | 71.56 | 159.26 |
Cost per QALY (USD) | 108.38 | 196.43 |
Stage of Cancer | Life-Years (LY) | iFOBT | Genetic Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
QoL | QALYs | n | QALYs (per 100 Patients) | QoL | QALYs | n | QALYs (per 100 Patients) | ||
I | 6.71 | 0.87 | 5.84 | 6 | 35.03 | 0.85 | 5.70 | 10 | 57.04 |
II | 6.51 | 0.74 | 4.82 | 17 | 81.90 | 0.82 | 5.34 | 60 | 320.29 |
III | 5.65 | 0.72 | 4.07 | 54 | 219.67 | 0.77 | 4.35 | 25 | 108.76 |
IV | 2.84 | 0.11 | 0.31 | 23 | 7.19 | 0.75 | 2.13 | 5 | 10.65 |
Total QALY gain | 343.78 | 496.74 | |||||||
Screening cost (per 100 patients) | USD 37,283.53 | USD 97,626.33 |
Stage of Cancer | Treatment [27] Cost (USD) | iFOBT | Genetic Testing | ||
---|---|---|---|---|---|
n | Cost (USD) | n | Cost (USD) | ||
I | 3,290.34 | 6 | 19,742.04 | 10 | 32,903.40 |
II | 4,771.01 | 17 | 81,107.17 | 60 | 286,260.60 |
III | 6031.88 | 54 | 325,721.52 | 25 | 150797.00 |
IV | 6612.80 | 23 | 152,094.40 | 5 | 33,064.00 |
Total treatment cost | 578,665.13 | 503,025.00 | |||
Screening cost (per 100 patients) | 37,283.53 | 97,626.33 | |||
Total cost of managing CRC patients | 615,948.66 | 600,651.33 |
Item | Base Case | Discount 3% | Discount 5% |
---|---|---|---|
iFOBT | |||
Mean provider cost (USD) (SD) | 372.83 (0.06) | 361.65 (0.03) | 354.19 (0.06) |
Life-years (LYs) gained | 5.21 | 5.05 | 4.95 |
QALYs gained | 3.44 | 3.34 | 3.27 |
Genetic testing | |||
Mean provider cost (USD) (SD) | 976.26 (0.05) | 946.97 (0.05) | 927.44 (0.05) |
Life-years (LYs) gained | 6.13 | 5.95 | 5.82 |
QALYs gained | 4.97 | 4.82 | 4.72 |
Mean provider cost (USD) difference (95% CI) | 603.424 (603.422-603.425) | 585.318 (585.317–585.319) | 573.25 (573.25–573.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramdzan, A.R.; Manaf, M.R.A.; Aizuddin, A.N.; Latiff, Z.A.; Teik, K.W.; Ch'ng, G.-S.; Ganasegeran, K.; Aljunid, S.M. Cost-Effectiveness of Colorectal Cancer Genetic Testing. Int. J. Environ. Res. Public Health 2021, 18, 8330. https://doi.org/10.3390/ijerph18168330
Ramdzan AR, Manaf MRA, Aizuddin AN, Latiff ZA, Teik KW, Ch'ng G-S, Ganasegeran K, Aljunid SM. Cost-Effectiveness of Colorectal Cancer Genetic Testing. International Journal of Environmental Research and Public Health. 2021; 18(16):8330. https://doi.org/10.3390/ijerph18168330
Chicago/Turabian StyleRamdzan, Abdul Rahman, Mohd Rizal Abdul Manaf, Azimatun Noor Aizuddin, Zarina A. Latiff, Keng Wee Teik, Gaik-Siew Ch'ng, Kurubaran Ganasegeran, and Syed Mohamed Aljunid. 2021. "Cost-Effectiveness of Colorectal Cancer Genetic Testing" International Journal of Environmental Research and Public Health 18, no. 16: 8330. https://doi.org/10.3390/ijerph18168330
APA StyleRamdzan, A. R., Manaf, M. R. A., Aizuddin, A. N., Latiff, Z. A., Teik, K. W., Ch'ng, G. -S., Ganasegeran, K., & Aljunid, S. M. (2021). Cost-Effectiveness of Colorectal Cancer Genetic Testing. International Journal of Environmental Research and Public Health, 18(16), 8330. https://doi.org/10.3390/ijerph18168330