Electroencephalogram Application for the Analysis of Stress Relief in the Seasonal Landscape
Abstract
:1. Introduction
- (1)
- The differences in seasonal natural landscape from the viewpoint of physiology and perception were explored, as well as the differences among different landscape types. Do natural landscapes in one season relieve stress more effectively than landscapes in another season, and do some landscape types have better stress recovery effects than others?
- (2)
- The relationship between the restoration outcomes scale (ROS), willingness to visit (WTV), cultural ecosystem services (CES), and EEG data was coupled. At the same time, it provides a more objective idea and method for cultural ecosystem services evaluation.
2. Materials and Methods
2.1. Materials
2.2. Subjects
2.3. EEG Recording and Questionnaire Survey
2.4. Statistical Analysis
3. Results
3.1. EEG Analysis of Different Landscapes
3.1.1. Seasonal Differences in Different Landscape
3.1.2. Gender Differences and Age Differences in Different Seasonal Landscapes
3.2. The Analysis of Questionnaire Survey
3.2.1. The Analysis of ROS
3.2.2. Willingness to Visit the Different Landscapes
3.2.3. The Relationship among EEG Data and ROS and WTV
3.3. The Analysis of Cognitive at CES
4. Discussion
4.1. Differences of Physiological Responses Based on EEG Data in Different Seasonal Landscapes
4.2. The Difference of Stress Recovery Based on Questionnaire Survey in Different Seasonal Landscapes
4.3. The Seasonality of the Landscape Affects the Cultural Ecosystem Services That People Receive in It
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulrich, R.S. Natural versus Urban Scenes. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Ulrich, R.S. Aesthetic and Affective Response to Natural Environment. In Behavior and the Natural Environment. Human Behavior and Environment (Advances in Theory and Research); Altman, I., Wohlwill, J.F., Eds.; Springer: Boston, MA, USA, 1983; Volume 6, pp. 85–125. [Google Scholar]
- Tang, I.-C.; Tsai, Y.-P.; Lin, Y.-J.; Chen, J.-H.; Hsieh, C.-H.; Hung, S.-H.; Sullivan, W.; Tang, H.-F.; Chang, C.-Y. Using functional Magnetic Resonance Imaging (fMRI) to analyze brain region activity when viewing landscapes. Landsc. Urban Plan. 2017, 162, 137–144. [Google Scholar] [CrossRef]
- Schafer, P.J.; Serman, M.; Arnold, M.; Corona-Strauss, F.I.; Strauss, D.J.; Seidler-Fallbohmer, B.; Seidler, H. Evaluation of an objective listening effort measure in a selective, multi-speaker listening task using different hearing aid settings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 4647–4650. [Google Scholar] [CrossRef]
- Keshavarz, B.; Campos, J.L.; Berti, S. Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Front. Psychol. 2015, 6, 1581. [Google Scholar] [CrossRef] [PubMed]
- Norwood, M.F.; Lakhani, A.; Maujean, A.; Zeeman, H.; Creux, O.; Kendall, E. Brain activity, underlying mood and the environment: A systematic review. J. Environ. Psychol. 2019, 65, 101321. [Google Scholar] [CrossRef]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Whalen, P.J.; Rauch, S.L.; Etcoff, N.L.; McInerney, S.C.; Lee, M.B.; Jenike, M.A. Masked Presentations of Emotional Facial Expressions Modulate Amygdala Activity without Explicit Knowledge. J. Neurosci. 1998, 18, 411–418. [Google Scholar] [CrossRef]
- LeDoux, J.E. Emotion Circuits in the Brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef]
- Aston-Jones, G. Brain structures and receptors involved in alertness. Sleep Med. 2005, 6, S3–S7. [Google Scholar] [CrossRef]
- Laumann, K.; Gärling, T.; Stormark, K.M. Rating scale measures of restorative components of environments. J. Environ. Psychol. 2001, 21, 31–44. [Google Scholar] [CrossRef]
- Velarde, M.; Fry, G.; Tveit, M. Health effects of viewing landscapes—Landscape types in environmental psychology. Urban For. Urban Green. 2007, 6, 199–212. [Google Scholar] [CrossRef]
- Tilley, S.; Neale, C.; Patuano, A.; Cinderby, S. Older People’s Experiences of Mobility and Mood in an Urban Environment: A Mixed Methods Approach Using Electroencephalography (EEG) and Interviews. Int. J. Environ. Res. Public Health 2017, 14, 151. [Google Scholar] [CrossRef]
- Kuper, R. Here and Gone: The Visual Effects of Seasonal Changes in Plant and Vegetative Characteristics on Landscape Preference Criteria. Landsc. J. 2013, 32, 65–78. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, W.; Li, R. Visual preference of trees: The effects of tree attributes and seasons. Urban For. Urban Green. 2017, 25, 19–25. [Google Scholar] [CrossRef]
- Paddle, E.; Gilliland, J. Orange Is the New Green: Exploring the Restorative Capacity of Seasonal Foliage in Schoolyard Trees. Int. J. Environ. Res. Public Health 2016, 13, 497. [Google Scholar] [CrossRef] [PubMed]
- Rafi, Z.N.; Kazemi, F.; Tehranifar, A. Public preferences toward water-wise landscape design in a summer season. Urban For. Urban Green. 2019, 48, 126563. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J. Effects of evergreen trees on landscape preference and perceived restorativeness across seasons. Landsc. Res. 2020, 45, 649–661. [Google Scholar] [CrossRef]
- Song, C.; Joung, D.; Ikei, H.; Igarashi, M.; Aga, M.; Park, B.-J.; Miwa, M.; Takagaki, M.; Miyazaki, Y. Physiological and psychological effects of walking on young males in urban parks in winter. J. Physiol. Anthr. 2013, 32, 18. [Google Scholar] [CrossRef]
- Takayama, N.; Saito, H.; Fujiwara, A.; Horiuchi, M. The effect of slight thinning of managed coniferous forest on landscape appreciation and psychological restoration. Prog. Earth Planet. Sci. 2017, 4, 17. [Google Scholar] [CrossRef]
- Bielinis, E.; Omelan, A.; Boiko, S.; Bielinis, L. The restorative effect of staying in a broad-leaved forest on healthy young adults in winter and spring. Balt. For. 2018, 24, 218–227. [Google Scholar]
- Sacchelli, S.; Grilli, G.; Capecchi, I.; Bambi, L.; Barbierato, E.; Borghini, T. Neuroscience Application for the Analysis of Cultural Ecosystem Services Related to Stress Relief in Forest. Forests 2020, 11, 190. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Hartig, T.; Staats, H. The need for psychological restoration as a determinant of environmental preferences. J. Environ. Psychol. 2006, 26, 215–226. [Google Scholar] [CrossRef]
- Korpela, K.M.; Ylén, M.; Tyrväinen, L.; Silvennoinen, H. Favorite green, waterside and urban environments, restorative experiences and perceived health in Finland. Health Promot. Int. 2010, 25, 200–209. [Google Scholar] [CrossRef]
- Jiang, B.; Li, D.; Larsen, L.; Sullivan, W. A Dose-Response Curve Describing the Relationship between Urban Tree Cover Density and Self-Reported Stress Recovery. Environ. Behav. 2014, 48, 607–629. [Google Scholar] [CrossRef]
- Berman, M.G.; Jonides, J.; Kaplan, S. The Cognitive Benefits of Interacting with Nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef]
- Berto, R. Exposure to restorative environments helps restore attentional capacity. J. Environ. Psychol. 2005, 25, 249–259. [Google Scholar] [CrossRef]
- Shafer, E.L.; Mietz, J. It Seems Possible to Quantify Scenic Beauty in Photographs; Northeastern Forest Experiment Station: Upper Darby, PA, USA, 1970. [Google Scholar]
- Rossman, B.B.; Ulehla, Z.J. Psychological Reward Values Associated with Wilderness Use: A Functional-Reinforcement Approach. Environ. Behav. 1977, 9, 41–66. [Google Scholar] [CrossRef]
- Ridding, L.E.; Redhead, J.W.; Oliver, T.H.; Schmucki, R.; McGinlay, J.; Graves, A.R.; Morris, J.; Bradbury, R.B.; King, H.; Bullock, J.M. The importance of landscape characteristics for the delivery of cultural ecosystem services. J. Environ. Manag. 2018, 206, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Assessment, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Church, A.; Burgess, J.; Ravenscroft, N.; Bird, W.; Brady, E.; Crang, M.; Fish, R.; Gruffudd, P.; Mourato, S.; Pretty, J. Chapter 16: Cultural Services, National Ecosystem Assessment; Final Report to United Nations Environment Programme (UNEP); World Conservation Monitoring Centre (WCMC): Cambridge, UK, 2011. [Google Scholar]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef]
- Pivik, R.T.; Broughton, R.J.; Coppola, R.; Davidson, R.J.; Fox, N.; Nuwer, M.R. Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 1993, 30, 547–558. [Google Scholar] [CrossRef]
- Keil, A.; Debener, S.; Gratton, G.; Junghöfer, M.; Kappenman, E.S.; Luck, S.J.; Luu, P.; Miller, G.A.; Yee, C.M. Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology 2013, 51, 1–21. [Google Scholar] [CrossRef]
- Fridlund, A.J.; Cacioppo, J.T. Guidelines for Human Electromyographic Research. Psychophysiology 1986, 23, 567–589. [Google Scholar] [CrossRef]
- Gabard-Durnam, L.J.; Wilkinson, C.; Kapur, K.; Tager-Flusberg, H.; Levin, A.R.; Nelson, C.A. Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat. Commun. 2019, 10, 4188. [Google Scholar] [CrossRef] [PubMed]
- Conneau, A.C.; Essid, S. Assessment of new spectral features for eeg-based emotion recognition. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 4698–4702. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Li, D.; Jane, H.-A. Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landsc. Urban Plan. 2017, 167, 72–83. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z. To judge what color the subject watched by color effect on brain activity. Int. J. Comput. Sci. Netw. Secur. 2011, 11, 80–83. [Google Scholar]
- Elliot, A.J.; Maier, M.A.; Moller, A.; Friedman, R.; Meinhardt, J. Color and psychological functioning: The effect of red on performance attainment. J. Exp. Psychol. Gen. 2007, 136, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.-C.; Luo, M.R.; Wright, A. A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Res. Appl. 2004, 29, 232–240. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, H.S. A study on interior wall color based on measurement of emotional responses. Sci. Emot. Sensib. 2009, 12, 205–214. [Google Scholar]
- Zhang, X.J.; Chen, J.; Li, Q.Y.; Liu, J.C.; Tao, J.P. Color quantification and evaluation of landscape aesthetic quality for autumn landscape forest based on visual characteristics in subalpine region of western Sichuan, China. Yingyong Shengtai Xuebao 2020, 31, 45–54. [Google Scholar] [CrossRef]
Factor | Df | Sum Sq | Mean Sq | F Value | Pr (>F) |
---|---|---|---|---|---|
Landscape type | 2 | 0.17 | 0.09 | 8.63 | 0.00 ** |
Season | 1 | 0.38 | 0.38 | 37.85 | 0.00 *** |
Gender | 1 | 0.19 | 0.19 | 18.83 | 0.00 *** |
Age | 1 | 0.07 | 0.07 | 7.22 | 0.01 ** |
Landscape type: season | 2 | 0.00 | 0.00 | 0.14 | 0.87 |
Landscape type: gender | 2 | 0.01 | 0.01 | 0.58 | 0.56 |
Season: gender | 1 | 0.03 | 0.03 | 3.10 | 0.08 • |
Landscape type: age | 2 | 0.04 | 0.02 | 2.04 | 0.13 |
Season: age | 1 | 0.01 | 0.01 | 0.75 | 0.39 |
Gender: age | 1 | 1.36 | 1.36 | 136.88 | 0.00 *** |
Landscape type: season: gender | 2 | 0.01 | 0.00 | 0.44 | 0.64 |
Landscape type: season: age | 2 | 0.02 | 0.01 | 0.95 | 0.39 |
Landscape type: gender: age | 2 | 0.08 | 0.04 | 3.89 | 0.02 * |
Season: gender: age | 1 | 0.01 | 0.01 | 0.58 | 0.44 |
Landscape type: season: gender: age | 2 | 0.02 | 0.01 | 1.21 | 0.30 |
Residuals | 186 | 1.85 | 0.01 |
Electrode | WG | WF | WW | SG | SF | SW |
---|---|---|---|---|---|---|
Fp1 | 1.13 ± 0.42 | 1.19 ± 0.49 | 1.08 ± 0.48 | 0.87 ± 0.37 | 0.93 ± 0.46 | 1.08 ± 0.52 |
Fp2 | 1.20 ± 0.55 | 1.37 ± 0.62 | 1.30 ± 0.62 | 0.99 ± 0.45 | 1.14 ± 0.54 | 1.27 ± 0.63 |
F3 | 0.77 ± 0.19 | 0.88 ± 0.2 | 0.84 ± 0.23 | 0.67 ± 0.16 | 0.73 ± 0.23 | 0.75 ± 0.22 |
F4 | 0.80 ± 0.21 | 0.90 ± 0.24 | 0.92 ± 0.31 | 0.72 ± 0.19 | 0.77 ± 0.24 | 0.82 ± 0.29 |
C3 | 0.66 ± 0.13 | 0.68 ± 0.13 | 0.67 ± 0.13 | 0.54 ± 0.11 | 0.55 ± 0.14 | 0.58 ± 0.15 |
C4 | 0.67 ± 0.11 | 0.72 ± 0.14 | 0.69 ± 0.15 | 0.57 ± 0.11 | 0.60 ± 0.14 | 0.59 ± 0.14 |
P3 | 0.64 ± 0.12 | 0.65 ± 0.13 | 0.65 ± 0.12 | 0.53 ± 0.09 | 0.56 ± 0.14 | 0.56 ± 0.13 |
P4 | 0.65 ± 0.11 | 0.69 ± 0.12 | 0.67 ± 0.14 | 0.56 ± 0.10 | 0.60 ± 0.12 | 0.58 ± 0.12 |
O1 | 0.72 ± 0.13 | 0.78 ± 0.16 | 0.74 ± 0.18 | 0.62 ± 0.17 | 0.63 ± 0.15 | 0.61 ± 0.15 |
O2 | 0.69 ± 0.11 | 0.72 ± 0.12 | 0.69 ± 0.12 | 0.57 ± 0.12 | 0.62 ± 0.15 | 0.59 ± 0.14 |
F7 | 0.64 ± 0.13 | 0.67 ± 0.12 | 0.70 ± 0.19 | 0.57 ± 0.12 | 0.60 ± 0.12 | 0.64 ± 0.17 |
F8 | 0.68 ± 0.16 | 0.76 ± 0.21 | 0.77 ± 0.23 | 0.62 ± 0.16 | 0.69 ± 0.15 | 0.69 ± 0.22 |
T7 | 0.58 ± 0.13 | 0.59 ± 0.12 | 0.61 ± 0.13 | 0.56 ± 0.19 | 0.57 ± 0.16 | 0.54 ± 0.15 |
T8 | 0.62 ± 0.20 | 0.69 ± 0.25 | 0.70 ± 0.28 | 0.62 ± 0.23 | 0.64 ± 0.25 | 0.65 ± 0.28 |
P7 | 0.54 ± 0.08 | 0.58 ± 0.10 | 0.55 ± 0.11 | 0.46 ± 0.10 | 0.48 ± 0.10 | 0.50 ± 0.10 |
P8 | 0.60 ± 0.10 | 0.64 ± 0.15 | 0.64 ± 0.16 | 0.54 ± 0.15 | 0.55 ± 0.11 | 0.57 ± 0.18 |
Fz | 0.76 ± 0.14 | 0.82 ± 0.17 | 0.79 ± 0.20 | 0.64 ± 0.13 | 0.70 ± 0.19 | 0.71 ± 0.20 |
Cz | 0.75 ± 0.14 | 0.78 ± 0.18 | 0.76 ± 0.17 | 0.62 ± 0.12 | 0.66 ± 0.16 | 0.65 ± 0.15 |
Pz | 0.68 ± 0.12 | 0.71 ± 0.15 | 0.69 ± 0.13 | 0.58 ± 0.10 | 0.61 ± 0.14 | 0.60 ± 0.12 |
FC1 | 0.73 ± 0.12 | 0.77 ± 0.15 | 0.75 ± 0.16 | 0.60 ± 0.12 | 0.65 ± 0.16 | 0.65 ± 0.16 |
FC2 | 0.73 ± 0.12 | 0.77 ± 0.14 | 0.75 ± 0.17 | 0.62 ± 0.11 | 0.66 ± 0.16 | 0.66 ± 0.15 |
CP1 | 0.68 ± 0.13 | 0.71 ± 0.16 | 0.70 ± 0.14 | 0.56 ± 0.11 | 0.60 ± 0.15 | 0.59 ± 0.14 |
CP2 | 0.69 ± 0.13 | 0.73 ± 0.16 | 0.70 ± 0.15 | 0.58 ± 0.12 | 0.62 ± 0.15 | 0.60 ± 0.14 |
FC5 | 0.67 ± 0.17 | 0.70 ± 0.11 | 0.71 ± 0.14 | 0.58 ± 0.13 | 0.61 ± 0.14 | 0.65 ± 0.17 |
FC6 | 0.65 ± 0.14 | 0.71 ± 0.15 | 0.73 ± 0.16 | 0.64 ± 0.10 | 0.67 ± 0.13 | 0.66 ± 0.13 |
CP5 | 0.56 ± 0.07 | 0.57 ± 0.10 | 0.56 ± 0.09 | 0.45 ± 0.09 | 0.46 ± 0.11 | 0.48 ± 0.12 |
CP6 | 0.59 ± 0.10 | 0.63 ± 0.13 | 0.61 ± 0.13 | 0.51 ± 0.11 | 0.53 ± 0.12 | 0.52 ± 0.12 |
FT9 | 0.49 ± 0.08 | 0.51 ± 0.10 | 0.52 ± 0.11 | 0.42 ± 0.10 | 0.44 ± 0.10 | 0.45 ± 0.11 |
FT10 | 0.54 ± 0.12 | 0.57 ± 0.13 | 0.57 ± 0.16 | 0.48 ± 0.13 | 0.50 ± 0.13 | 0.49 ± 0.12 |
Variable | Grass | Forest | Water | Mean |
---|---|---|---|---|
Winter | 0.69 ± 0.11 | 0.74 ± 0.12 | 0.73 ± 0.15 | 0.72 ± 0.13 |
Summer | 0.60 ± 0.11 | 0.63 ± 0.14 | 0.65 ± 0.16 | 0.62 ± 0.13 |
Winter vs. Summer | 0.02 * | 0.01 * | 0.14 | 0.03 * |
Variable | Gender Difference | Age Difference | ||||
---|---|---|---|---|---|---|
Male | Female | Male vs. Female | Old | Young | Old vs. Young | |
Winter | 0.69 ± 0.12 | 0.78 ± 0.11 | 0.01 * | 0.71 ± 0.13 | 0.75 ± 0.12 | 0.81 |
Summer | 0.62 ± 0.13 | 0.63 ± 0.14 | 0.99 | 0.61 ± 0.14 | 0.64 ± 0.13 | 0.89 |
ROS | WG | WF | WW | SG | SF | SW |
---|---|---|---|---|---|---|
Q1 | 3.17 ± 0.82 | 3.29 ± 0.89 | 3.20 ± 0.80 | 3.86 ± 0.85 | 3.97 ± 0.82 | 3.89 ± 0.90 |
Q2 | 3.23 ± 0.73 | 3.43 ± 0.88 | 3.43 ± 0.81 | 3.51 ± 1.01 | 4.09 ± 0.74 | 3.69 ± 0.76 |
Q3 | 2.83 ± 0.71 | 3.09 ± 0.82 | 2.94 ± 0.8 | 3.29 ± 0.62 | 3.51 ± 0.78 | 3.37 ± 0.81 |
Q4 | 3.23 ± 0.69 | 3.49 ± 0.85 | 3.40 ± 0.74 | 3.91 ± 0.66 | 4.00 ± 0.77 | 3.74 ± 0.95 |
Q5 | 3.11 ± 0.90 | 3.49 ± 0.89 | 3.31 ± 0.58 | 3.71 ± 0.79 | 3.74 ± 0.95 | 3.46 ± 0.74 |
Q6 | 3.49 ± 0.82 | 3.71 ± 0.67 | 3.89 ± 0.47 | 3.94 ± 0.68 | 3.97 ± 0.66 | 3.97 ± 0.45 |
Total6 | 3.18 ± 0.51 | 3.41 ± 0.69 | 3.36 ± 0.48 | 3.70 ± 0.59 | 3.88 ± 0.62 | 3.72 ± 0.62 |
ANOVA | Tuckey Test Binary Comparisons | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Factor | Df | Sum Sq | Mean Sq | F Value | Pr (>F) | Test | diff | lwr | upr | p adj |
Job | 3 | 7.78 | 2.59 | 13.63 | 0.00 *** | SG vs. WG | 0.53 | 0.12 | 0.94 | 0.00 ** |
Sports categories | 3 | 1.89 | 0.63 | 3.31 | 0.02 * | SF vs. WF | 0.47 | 0.06 | 0.88 | 0.01 * |
Vehicle ownership | 2 | 1.77 | 0.89 | 4.65 | 0.01 * | SW vs. WW | 0.32 | −0.09 | 0.74 | 0.23 |
Native | 2 | 2.27 | 1.14 | 5.97 | 0.00 ** | SF vs. SG | 0.18 | −0.24 | 0.59 | 0.86 |
Frequency to nature | 3 | 13.66 | 4.55 | 23.94 | 0.00 *** | SW vs. SG | −0.02 | −0.43 | 0.39 | 1.00 |
Age | 1 | 0.69 | 0.69 | 3.65 | 0.06 • | SW vs. SF | −0.20 | −0.61 | 0.22 | 0.79 |
Gender | 1 | 7.24 | 7.24 | 38.07 | 0.00 *** | WF vs. WG | 0.24 | −0.17 | 0.65 | 0.60 |
Season | 2 | 10.15 | 10.15 | 53.36 | 0.00 *** | WW vs. WG | 0.19 | −0.23 | 0.60 | 0.83 |
Landscape | 2 | 1.74 | 0.87 | 4.58 | 0.01 * | WW vs. WF | −0.05 | −0.46 | 0.36 | 1.00 |
Residuals | 191 | 36.33 | 0.19 | |||||||
Total | 5 | 12.06 | 2.41 | 6.88 | 0.00 *** | |||||
Residuals | 204 | 71.46 | 0.35 |
WTV | WG | WF | WW | SG | SF | SW |
---|---|---|---|---|---|---|
WTV (pro) | 3.03 ± 0.75 | 3.23 ± 0.84 | 3.34 ± 0.68 | 4.00 ± 0.77 | 4.03 ± 0.75 | 3.94 ± 0.68 |
WTV (km) | 24.86 ± 25.6 | 30.00 ± 32.43 | 23.49 ± 24.79 | 55.57 ± 47.38 | 54.57 ± 45.67 | 35.14 ± 38.83 |
WTV (min) | 38.29 ± 29.6 | 39.29 ± 24.35 | 31.86 ± 24.44 | 60.43 ± 41.02 | 62.71 ± 41.5 | 48.29 ± 38.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, M. Electroencephalogram Application for the Analysis of Stress Relief in the Seasonal Landscape. Int. J. Environ. Res. Public Health 2021, 18, 8522. https://doi.org/10.3390/ijerph18168522
Wang Y, Xu M. Electroencephalogram Application for the Analysis of Stress Relief in the Seasonal Landscape. International Journal of Environmental Research and Public Health. 2021; 18(16):8522. https://doi.org/10.3390/ijerph18168522
Chicago/Turabian StyleWang, Yuting, and Ming Xu. 2021. "Electroencephalogram Application for the Analysis of Stress Relief in the Seasonal Landscape" International Journal of Environmental Research and Public Health 18, no. 16: 8522. https://doi.org/10.3390/ijerph18168522
APA StyleWang, Y., & Xu, M. (2021). Electroencephalogram Application for the Analysis of Stress Relief in the Seasonal Landscape. International Journal of Environmental Research and Public Health, 18(16), 8522. https://doi.org/10.3390/ijerph18168522