Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis
Abstract
:1. Introduction
2. Behavioral Addictions, Latent Trait Model, and Person-Centered Approach
3. General Proclivity for Addictions
4. Gender and Addiction: Different Profiles for Women and Men
5. Personality and Addiction
6. Prevalence and Co-Occurrence
7. Hypotheses
8. Methods
8.1. Sample and Procedure
8.2. Measures
9. Statistical Analysis
10. Results
10.1. Preliminary Analysis
10.1.1. Descriptive Statistics and Correlations
10.1.2. Prevalence and Co-Occurrence of BAs
10.2. Latent Profile Analysis (Students Positively Screened for at Least One BA)
10.2.1. Latent Profiles
10.2.2. Latent Profile Membership and External Variables
10.2.3. Prevalence and Co-Occurrence of BAs in Latent Profiles
10.3. Latent Class Analysis (General Student Population)
10.3.1. Latent Classes
10.3.2. Latent Class Membership and External Variables
10.4. Latent Class Analysis (Students Positively Screened for at Least One BA)
10.4.1. Latent Classes
10.4.2. Latent Class Membership and External Variables
10.5. LPA Classification Congruence between General Student Sample and Subsample
11. Discussion
11.1. LPA vs. LCA
11.2. Prevalence and Co-Occurrence
11.3. Implications for Research and Interventions
11.4. Strengths and Limitations
12. Conclusions and Future Research Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charzyńska, E.; Sussman, S.; Atroszko, P.A. Profiles of potential behavioral addictions’ severity and their associations with gender, personality, and well-being: A person-centered approach. Addict. Behav. 2021, 119, 106941. [Google Scholar] [CrossRef]
- Fattore, L.; Melis, M. Exploring gender and sex differences in behavioral dyscontrol: From drug addiction to impulse control disorders. Front. Psychiatry 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Fattore, L.; Melis, M.; Fadda, P.; Fratta, W. Sex differences in addictive disorders. Front. Neuroendocrinol. 2014, 35, 272–284. [Google Scholar] [CrossRef]
- Munno, D.; Saroldi, M.; Bechon, E.; Sterpone, S.C.M.; Zullo, G. Addictive behaviors and personality traits in adolescents. CNS Spectr. 2016, 21, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.F. A general theory of addictions: A new theoretical model. J. Gambl. Behav. 1986, 2, 15–31. [Google Scholar] [CrossRef]
- Shaffer, H.J.; LaPlante, D.A.; LaBrie, R.A.; Kidman, R.C.; Donato, A.N.; Stanton, M.V. Toward a syndrome model of addiction: Multiple expressions, common etiology. Harv. Rev. Psychiatry 2004, 12, 367–374. [Google Scholar] [CrossRef]
- Krueger, R.F.; Nichol, P.E.; Hicks, B.M.; Markon, K.E.; Patrick, C.J.; Iacono, W.G.; McGue, M. Using latent trait modeling to conceptualize an alcohol problems continuum. Psychol. Assess. 2004, 16, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Parra, G.R.; DuBois, D.L.; Sher, K.J. Investigation of profiles of risk factors for adolescent psychopathology: A person-centered approach. J. Clin. Child Adolesc. Psychol. 2006, 35, 386–402. [Google Scholar] [CrossRef]
- Ulbricht, C.M.; Chrysanthopoulou, S.A.; Levin, L.; Lapane, K.L. The use of latent class analysis for identifying subtypes of depression: A systematic review. Psychiatry Res. 2018, 266, 228–246. [Google Scholar] [CrossRef]
- Kirisci, L. Measurement of liability to addiction: Dimensional approaches. Int. J. Pers. Cent. Med. 2016, 6, 250–259. [Google Scholar]
- Augsburger, M.; Wenger, A.; Haug, S.; Achab, S.; Khazaal, Y.; Billieux, J.; Schaub, M.P. The concept of buying-shopping disorder: Comparing latent classes with a diagnostic approach for in-store and online shopping in a representative sample in Switzerland. J. Behav. Addict. 2020, 9, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Maraz, A.; Király, O.; Demetrovics, Z. Commentary on: Are we overpathologizing everyday life? A tenable blueprint for behavioral addiction research: The diagnostic pitfalls of surveys: If you score positive on a test of addiction, you still have a good chance not to be addicted. J. Behav. Addict. 2015, 4, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Challet-Bouju, G.; Mariez, J.; Perrot, B.; Grall-Bronnec, M.; Chauchard, E. A Typology of buyers grounded in psychological risk factors for compulsive buying (impulsivity, self-esteem, and buying motives): Latent class analysis approach in a community sample. Front. Psychiatry 2020, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.; Mitchell, J.E.; Black, D.W.; Crosby, R.D.; Berg, K.; de Zwaan, M. Latent profile analysis and comorbidity in a sample of individuals with compulsive buying disorder. Psychiatry Res. 2010, 178, 348–353. [Google Scholar] [CrossRef]
- Deleuze, J.; Rochat, L.; Romo, L.; Van der Linden, M.; Achab, S.; Thorens, G.; Billieux, J. Prevalence and characteristics of addictive behaviors in a community sample: A latent class analysis. Addict. Behav. Rep. 2015, 1, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Loredo, V.; Grande-Gosende, A.; Fernández-Artamendi, S.; Secades-Villa, R.; Fernández-Hermida, J.R. Substance use and gambling patterns among adolescents: Differences according to gender and impulsivity. J. Gambl. Stud. 2019, 35, 63–78. [Google Scholar] [CrossRef]
- Cerniglia, L.; Griffiths, M.D.; Cimino, S.; De Palo, V.; Monacis, L.; Sinatra, M.; Tambelli, R. A latent profile approach for the study of internet gaming disorder, social media addiction, and psychopathology in a normative sample of adolescents. Psychol. Res. Behav. Manag. 2019, 12, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Marmet, S.; Studer, J.; Rougemont-Bücking, A.; Gmel, G. Latent profiles of family background, personality and mental health factors and their association with behavioural addictions and substance use disorders in young Swiss men. Eur. Psychiatry 2018, 52, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, S.; Pedersen, A.; Hanewinkel, R.; Isensee, B.; Morgenstern, M. Polysubstance use patterns and trajectories in vocational students—a latent transition analysis. Addict. Behav. 2016, 58, 136–141. [Google Scholar] [CrossRef]
- Choi, H.J.; Lu, Y.; Schulte, M.; Temple, J.R. Adolescent substance use: Latent class and transition analysis. Addict. Behav. 2018, 77, 160–165. [Google Scholar] [CrossRef]
- Lemoine, M.; Gmel, G.; Foster, S.; Marmet, S.; Studer, J. Multiple trajectories of alcohol use and the development of alcohol use disorder: Do Swiss men mature-out of problematic alcohol use during emerging adulthood? PLoS ONE 2020, 15, e0220232. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.; Muthén, L.K. Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcohol Clin. Exp. Res. 2000, 24, 882–891. [Google Scholar] [CrossRef]
- Charzyńska, E.; Gruszczyńska, E.; Heszen, I. Forgiveness and gratitude trajectories among persons undergoing alcohol addiction therapy. Addict. Res. Theory 2018, 26, 282–293. [Google Scholar] [CrossRef]
- Konkolý Thege, B.K.; Woodin, E.M.; Hodgins, D.C.; Williams, R.J. Natural course of behavioral addictions: A 5-year longitudinal study. BMC Psychiatry 2015, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Kairouz, S.; Dussault, F.; Monson, E. Co-occurring addictive behaviors: An analysis of risk profiles among university students. Addict. Res. Theory 2018, 26, 221–229. [Google Scholar] [CrossRef]
- Montourcy, M.; Hardouin, J.B.; Caillon, J.; Leboucher, J.; Rousselet, M.; Grall-Bronnec, M.; Challet-Bouju, G. Typology of patients with behavioral addictions or eating disorders during a one-year period of care: Exploring similarities of trajectory using growth mixture modeling coupled with latent class analysis. PLoS ONE 2018, 13, e0207398. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.; Huh, J.; Idrisov, B.; Galimov, A.; Espada, J.P.; Gonzálvez, M.T.; Sussman, S. Prevalence and co-occurrence of addictive behaviors among Russian and Spanish youth: A replication study. J. Drug Educ. 2017, 46, 32–46. [Google Scholar] [CrossRef]
- Konkolý Thege, B.; Hodgins, D.C.; Wild, T.C. Co-occurring substance-related and behavioral addiction problems: A person-centered, lay epidemiology approach. J. Behav. Addict. 2016, 5, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, S.; Pokhrel, P.; Sun, P.; Rohrbach, L.A.; Spruijt-Metz, D. Prevalence and co-occurrence of addictive behaviors among former alternative high school youth: A longitudinal follow-up study. J. Behav. Addict. 2015, 4, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, S.; Arpawong, T.E.; Sun, P.; Tsai, J.; Rohrbach, L.A.; Spruijt-Metz, D. Prevalence and co-occurrence of addictive behaviors among former alternative high school youth. J. Behav. Addict. 2014, 3, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Mok, J.Y.; Choi, S.W.; Kim, D.J.; Choi, J.S.; Lee, J.; Ahn, H.; Song, W.Y. Latent class analysis on internet and smartphone addiction in college students. Neuropsychiatr. Dis. Treat. 2014, 10, 817. [Google Scholar]
- Combes, C. Cluster analysis of patients suffering from addictions. In Trends in Practical Applications of Heterogeneous Multi-Agent Systems; The PAAMS Collection; Springer: Cham, Switzerland, 2014; pp. 69–77. [Google Scholar]
- Pikó, B.; Kiss, H. Dohányzás és okostelefon-függőség fiatalok körében: A motivációk differenciáló szerepe klaszterelemzésben [Eng. Smoking and smartphone addiction among youth: The differentiating role of motivations in cluster analysis]. Iskolakultúra 2019, 29, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Quinn, C.; Nykiel, L.; Pocuca, N.; Allan, J.; Moloney, G.; Hides, L. Latent class analysis of trauma, PTSD, addictive behaviours and mental health concerns. In Proceedings of the 16th European Society for Traumatic Stress Studies Conference, Rotterdam, The Netherlands, 14–16 June 2019; Taylor & Francis: Abingdon, UK, 2019. [Google Scholar]
- Kotov, R.; Gamez, W.; Schmidt, F.; Watson, D. Linking “Big” Personality Traits to Anxiety, Depressive, and Substance Use Disorders: A Meta-Analysis. Psychol. Bull. 2010, 136, 768–821. [Google Scholar] [CrossRef] [PubMed]
- Rømer Thomsen, K.; Callesen, M.B.; Hesse, M.; Kvamme, T.L.; Pedersen, M.M.; Pedersen, M.U.; Voon, V. Impulsivity traits and addiction-related behaviors in youth. J. Behav. Addict. 2018, 7, 317–330. [Google Scholar] [CrossRef]
- McHugh, R.K.; Votaw, V.R.; Sugarman, D.E.; Greenfield, S.F. Sex and gender differences in substance use disorders. Clin. Psychol. Rev. 2018, 66, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.B.; McClellan, M.L.; Reed, B.G. Sex differences, gender and addiction. J. Neurosci. Res. 2017, 95, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.B.; Perry, A.N.; Westenbroek, C. Sex differences in the neural mechanisms mediating addiction: A new synthesis and hypothesis. Biol. Sex Differ. 2012, 3, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Fox, H.C.; Sinha, R. Sex differences in drug-related stress-system changes: Implications for treatment in substance-abusing women. Harv. Rev. Psychiatry 2009, 17, 103–119. [Google Scholar] [CrossRef]
- Atroszko, P.A. The Structure of Study Addiction: Selected Risk Factors and The Relationship With Stress, Stress Coping and Psychosocial Functioning. Unpublished. Unpublished Ph.D. Thesis, University of Gdańsk, Gdańsk, Poland, 2015. [Google Scholar]
- Wróbel, W. Study Addiction Among High School Students: Measurement and Relationship with Psychopathology, Personality, Quality of Life, and School Variables. Ph.D. Thesis, University of Gdańsk, Gdańsk, Poland, 2020. [Google Scholar]
- Su, W.; Han, X.; Yu, H.; Wu, Y.; Potenza, M.N. Do men become addicted to Internet gaming and women to social media? A meta-analysis examining gender-related differences in specific internet addiction. Comput. Hum. Behav. 2020, 113, 106480. [Google Scholar] [CrossRef]
- Marino, C.; Gini, G.; Vieno, A.; Spada, M.M. A comprehensive meta-analysis on problematic Facebook use. Comput. Hum. Behav. 2018, 83, 262–277. [Google Scholar] [CrossRef]
- Maraz, A.; Griffiths, M.D.; Demetrovics, Z. The prevalence of compulsive buying: A meta-analysis. Addiction 2016, 111, 408–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pursey, K.M.; Stanwell, P.; Gearhardt, A.N.; Collins, C.E.; Burrows, T.L. The prevalence of food addiction as assessed by the Yale Food Addiction Scale: A systematic review. Nutrients 2014, 6, 4552–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fam, J.Y. Prevalence of internet gaming disorder in adolescents: A meta-analysis across three decades. Scand. J. Psychol. 2018, 59, 524–531. [Google Scholar] [CrossRef]
- Baranowski, A.M.; Vogl, R.; Stark, R. Prevalence and determinants of problematic online pornography use in a sample of German women. J. Sex. Med. 2019, 16, 1274–1282. [Google Scholar] [CrossRef]
- Saad, G. Evolutionary consumption. J. Consult. Psychol. 2013, 23, 351–371. [Google Scholar] [CrossRef]
- Hallam, J.; Boswell, R.G.; DeVito, E.E.; Kober, H. Focus: Sex and gender health: Gender-related differences in food craving and obesity. Yale J. Biol. Med. 2016, 89, 161. [Google Scholar] [PubMed]
- Davis, C. Evolutionary and neuropsychological perspectives on addictive behaviors and addictive substances: Relevance to the “food addiction” construct. Subst. Abuse Rehabil. 2014, 5, 129. [Google Scholar] [CrossRef] [Green Version]
- Böhm, M.; Franz, P.; Dekker, A.; Matthiesen, S. Desire and dilemma-gender differences in German students’ consumption of pornography. Porn Stud. 2015, 2, 76–92. [Google Scholar] [CrossRef]
- Schmitt, D.P.; Jonason, P.K.; Byerley, G.J.; Flores, S.D.; Illbeck, B.E.; O’Leary, K.N.; Qudrat, A. A reexamination of sex differences in sexuality: New studies reveal old truths. Curr. Dir. Psychol. Sci. 2012, 21, 135–139. [Google Scholar] [CrossRef]
- Buss, D.M.; Schmitt, D.P. Sexual strategies theory: An evolutionary perspective on human mating. Psychol. Rev. 1993, 100, 204–232. [Google Scholar] [CrossRef]
- Hald, G.M. Gender differences in pornography consumption among young heterosexual Danish adults. Arch. Sex. Behav. 2006, 35, 577–585. [Google Scholar] [CrossRef]
- Kearns, L.L. High-stakes standardized testing & marginalized youth: An examination of the impact on those who fail. Can. J. Educ. 2011, 34, 112–130. [Google Scholar]
- Keverne, E.B. Genomic imprinting and the evolution of sex differences in mammalian reproductive strategies advances in genetics. Adv. Genet. 2007, 59, 217–243. [Google Scholar]
- Cross, C.P.; Copping, L.T.; Campbell, A. Sex differences in impulsivity: A meta-analysis. Psychol. Bull. 2011, 137, 97–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogg, T.; Roberts, B.W. Conscientiousness and health-related behaviors: A meta-analysis of the leading behavioral contributors to mortality. Psychol. Bull. 2004, 130, 887. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, C.S.; Griffiths, M.D.; Pallesen, S.; Bilder, R.M.; Torsheim, T.; Aboujaoude, E. The Bergen Shopping Addiction Scale: Reliability and validity of a brief screening test. Front. Psychol. 2015, 6, 1374. [Google Scholar] [CrossRef] [Green Version]
- Brunault, P.; Ducluzeau, P.H.; Courtois, R.; Bourbao-Tournois, C.; Delbachian, I.; Réveillère, C.; Ballon, N. Food addiction is associated with higher neuroticism, lower conscientiousness, higher impulsivity, but lower extraversion in obese patient candidates for bariatric surgery. Subst. Use Misuse 2018, 53, 1919–1923. [Google Scholar] [CrossRef]
- Uzarska, A.; Czerwiński, S.K.; Atroszko, P.A. Measurement of shopping addiction and its relationship with personality traits and well-being among Polish undergraduate students. Curr. Psychol. 2021, 1–17. [Google Scholar] [CrossRef]
- Robinson, B.E. Chained to the Desk: A Guidebook for Workaholics, Their Partners and Children, and the Clinicians Who Treat Them; New York University Press: New York, NY, USA, 2014. [Google Scholar]
- Atroszko, P. Response to: Loscalzo and Giannini (2018). A boon of incoherence: Insights on the relationship between study/work addiction and obsessive-compulsive personality disorder. Psychiatria i Psychologia Kliniczna 2019, 19, 237–243. [Google Scholar] [CrossRef]
- Atroszko, P.A.; Demetrovics, Z.; Griffiths, M.D. Beyond the myths about work addiction: Toward a consensus on definition and trajectories for future studies on problematic overworking: A response to the commentaries on: Ten myths about work addiction (Griffiths et al., 2018). J. Behav. Addict. 2019, 8, 7–15. [Google Scholar] [CrossRef]
- Atroszko, P.A.; Sawicki, A.; Kamble, S.V. Cross-cultural pilot study on the relationship between study addiction and narcissism among undergraduate students in Poland and India. Health Psychol. Rep. 2019, 7, 325–333. [Google Scholar] [CrossRef]
- Atroszko, P.A.; Andreassen, C.S.; Griffiths, M.D.; Pallesen, S. Study addiction—A new area of psychological study: Conceptualization, assessment, and preliminary empirical findings. J. Behav. Addict. 2015, 4, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircaburun, K.; Süral, İ.; March, E.; Balta, S.; Emirtekin, E.; Griffiths, M.D. Study addiction and ‘dark’ personality traits: A cross-sectional survey study among emerging adults. J. Addict. Dis. 2021, 39, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.T.; Guan, L.; Maples, J.L.; Williamson, R.L.; Miller, J.D. The downsides of extreme conscientiousness for psychological well-being: The role of obsessive compulsive tendencies. J. Pers. 2016, 84, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Oh, I.S.; Robbins, S.B.; Ilies, R.; Holland, E.; Westrick, P. Too much of a good thing: Curvilinear relationships between personality traits and job performance. J. Appl. Psychol. 2011, 96, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atroszko, P.A.; Demetrovics, Z.; Griffiths, M.D. Work addiction, obsessive-compulsive personality disorder, burn-out, and global burden of disease: Implications from the ICD-11. Int. J. Environ. Res. Public Health 2020, 17, 660. [Google Scholar] [CrossRef] [Green Version]
- Klontz, B.; Britt, S.L.; Archuleta, K.L.; Klontz, T. Disordered money behaviors: Development of the Klontz money behavior inventory. J. Financial Ther. 2012, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Doleck, T.; Lajoie, S. Social networking and academic performance: A review. Educ. Inf. Technol. 2018, 23, 435–465. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, M.L.; Schaefer, I.; Varker, T.; Kartal, D.; Forbes, D.; Bryant, R.A.; Felmingham, K. A systematic review of person-centered approaches to investigating patterns of trauma exposure. Clin. Psychol. Rev. 2017, 57, 208–225. [Google Scholar] [CrossRef] [PubMed]
- Rivera, P.M.; Fincham, F.D.; Bray, B.C. Latent classes of maltreatment: A systematic review and critique. Child Maltreat. 2018, 23, 3–24. [Google Scholar] [CrossRef]
- Van Smeden, M.; Naaktgeboren, C.A.; Reitsma, J.B.; Moons, K.G.; de Groot, J.A. Latent class models in diagnostic studies when there is no reference standard—a systematic review. Am. J. Epidemiol. 2014, 179, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 11th Revision, Beta Draft. 2004. Available online: https://icd.who.int./browse11/l-m/en.2020 (accessed on 23 April 2021).
- Stevens, M.W.; Dorstyn, D.; Delfabbro, P.H.; King, D.L. Global prevalence of gaming disorder: A systematic review and meta-analysis. Aust. N. Z. J. Psychiatry 2020, 55, 553–568. [Google Scholar] [CrossRef]
- Feng, W.; Ramo, D.E.; Chan, S.R.; Bourgeois, J.A. Internet gaming disorder: Trends in prevalence 1998–2016. Addict. Behav. 2017, 75, 17–24. [Google Scholar] [CrossRef]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of Internet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [Green Version]
- Darvesh, N.; Radhakrishnan, A.; Lachance, C.C.; Nincic, V.; Sharpe, J.P.; Ghassemi, M.; Straus, S.E.; Tricco, A.C. Exploring the prevalence of gaming disorder and Internet gaming disorder: A rapid scoping review. Syst. Rev. 2020, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Brunborg, G.S.; Hanss, D.; Mentzoni, R.A.; Pallesen, S. Core and peripheral criteria of video game addiction in the game addiction scale for adolescents. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittek, C.T.; Finserås, T.R.; Pallesen, S.; Mentzoni, R.A.; Hanss, D.; Griffiths, M.D.; Molde, H. Prevalence and predictors of video game addiction: A study based on a national representative sample of gamers. Int. J. Ment. Health Addict. 2016, 14, 672–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Lau, Y.C.; Chan, L.; Luk, J.W. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup analysis of classification schemes and cultural values. Addict. Behav. 2021, 117, 106845. [Google Scholar] [CrossRef]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar]
- De Cock, R.; Vangeel, J.; Klein, A.; Minotte, P.; Rosas, O.; Meerkerk, G.-J. Compulsive Use of Social Networking Sites in Belgium: Prevalence, Profile, and the Role of Attitude Toward Work and School. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 166–171. [Google Scholar] [CrossRef]
- Balcerowska, J.M.; Bereznowski, P.; Biernatowska, A.; Atroszko, P.A.; Pallesen, S.; Andreassen, C.S. Is it meaningful to distinguish between Facebook addiction and social networking sites addiction? Psychometric analysis of Facebook addiction and social networking sites addiction scales. Curr. Psychol. 2020, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Alabi, O.F. A survey of Facebook addiction level among selected Nigerian university undergraduates. New Media Mass Commun. 2013, 10, 70–80. [Google Scholar]
- Khumsri, M.M.; Yingyeun, R.; Manwong, M.; Hanprathet, N.; Phanasathit, M. Prevalence of Facebook addiction and related factors among Thai high school students. J. Med. Assoc. Thai. 2015, 98, 51–60. [Google Scholar]
- Mies, G.W.; Treur, J.L.; Larsen, J.K.; Halberstadt, J.; Pasman, J.A.; Vink, J.M. The prevalence of food addiction in a large sample of adolescents and its association with addictive substances. Appetite 2017, 118, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; White, M.A.; Masheb, R.M.; Morgan, P.T.; Crosby, R.D.; Grilo, C.M. An examination of the food addiction construct in obese patients with binge eating disorder. Int. J. Eat. Disord. 2012, 45, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, C.; Weiß, A.; Schulte, E.M.; Meule, A.; Ellrott, T. Prevalence of ‘food addiction’ as measured with the Yale Food Addiction Scale 2.0 in a representative German sample and its association with sex, age and weight categories. Obes. Facts 2017, 10, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Bőthe, B.; Tóth-Király, I.; Demetrovics, Z.; Orosz, G. The short version of the Problematic Pornography Consumption Scale (PPCS-6): A reliable and valid measure in general and treatment-seeking populations. J. Sex Res. 2020, 58, 342–352. [Google Scholar] [CrossRef]
- Kor, A.; Zilcha-Mano, S.; Fogel, Y.A.; Mikulincer, M.; Reid, R.C.; Potenza, M.N. Psychometric development of the problematic pornography use scale. Addict. Behav. 2014, 39, 861–868. [Google Scholar] [CrossRef]
- Ley, D.; Prause, N.; Finn, P. The emperor has no clothes: A review of the ‘pornography addiction’ model. Curr. Sex. Health Rep. 2014, 6, 94–105. [Google Scholar] [CrossRef]
- Atroszko, P.A.; Andreassen, C.S.; Griffiths, M.D.; Pallesen, S. The relationship between study addiction and work addiction: A cross-cultural longitudinal study. J. Behav. Addict. 2016, 5, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Lawendowski, R.; Bereznowski, P.; Wróbel, W.K.; Kierzkowski, M.; Atroszko, P.A. Study addiction among musicians: Measurement, and relationship with personality, social anxiety, performance and psychosocial functioning. Music Sci. 2019, 24, 449–474. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Demetrovics, Z.; Atroszko, P.A. Ten myths about work addiction. J. Behav. Addict. 2018, 7, 845–857. [Google Scholar] [CrossRef]
- Sussman, S.; Lisha, N.; Griffiths, M. Prevalence of the addictions: A problem of the majority or the minority? Eval. Health Prof. 2010, 34, 3–56. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Griffiths, M.D.; Hetland, J.; Kravina, L.; Jensen, F.; Pallesen, S. The prevalence of workaholism: A survey study in a nationally representative sample of Norwegian employees. PLoS ONE 2014, 9, e102446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atroszko, P.A.; Pallesen, S.; Griffiths, M.D.; Andreassen, C.S. Work addiction in Poland: Adaptation of the Bergen Work Addiction Scale and relationship with psychopathology. Health Psychol. Rep. 2017, 5, 345–355. [Google Scholar] [CrossRef]
- Bisht, A.; Godiyal, S. Study addiction among higher secondary girls students. Int. J. Adv. Multidiscip. Res. 2016, 3, 1–5. [Google Scholar]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The relationships between behavioral addictions and the five-factor model of personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, C.; Schipfer, M.; Ellrott, T.; Cook, B. “Always do your best!”—The relationship between food addiction, exercise dependence, and perfectionism in amateur athletes. Ger. J. Exerc. Sport Res. 2019, 50, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Wagenmakers, E.J.; Wetzels, R.; Borsboom, D.; van der Maas, H.L.; Kievit, R.A. An agenda for purely confirmatory research. Perspect. Psychol. Sci. 2012, 7, 632–638. [Google Scholar] [CrossRef]
- Lemmens, J.S.; Valkenburg, P.M.; Peter, J. Development and validation of a game addiction scale for adolescents. Media Psychol. 2009, 12, 77–95. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Torsheim, T.; Brunborg, G.S.; Pallesen, S. Development of a Facebook addiction scale. Psychol. Rep. 2012, 110, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.W.; Rosser, B.S.; Erickson, D.J. A brief scale to measure problematic sexually explicit media consumption: Psychometric properties of the Compulsive Pornography Consumption (CPC) scale among men who have sex with men. Sex. Addict. Compulsivity 2014, 21, 240–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemeshow, A.R.; Gearhardt, A.N.; Genkinger, J.M.; Corbin, W.R. Assessing the psychometric properties of two food addiction scales. Eat. Behav. 2016, 23, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B., Jr. A very brief measure of the Big-Five personality domains. J. Res. Pers. 2003, 37, 504–528. [Google Scholar] [CrossRef]
- Konrath, S.; Meier, B.P.; Bushman, B.J. Development and validation of the single item narcissism scale (SINS). PLoS ONE 2014, 9, e103469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skevington, S.M.; Lotfy, M.; O’Connell, K.A. The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A report from the WHOQOL group. Qual. Life Res. 2004, 13, 299–310. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Clarke, P.; Fisher, G.; House, J.; Smith, J.; Weir, D. Guide to Content of the HRS Psychosocial Leave-Behind Participant Lifestyle Questionnaires: 2004 & 2006; University of Michigan: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Model. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Tofighi, D.; Enders, C.K. Identifying the correct number of classes in growth mixture models. In Advances in Latent Variable Mixture Models; Hancock, G.R., Samuelsen, K.M., Eds.; Information Age Publishing, Inc.: Charlotte, NC, USA, 2008; pp. 317–341. [Google Scholar]
- DiStefano, C. Cluster analysis and latent class clustering techniques. In Handbook of Developmental Research Methods; Laursen, B., Little, T.D., Card, N.A., Eds.; The Guilford Press: New York, NY, USA, 2012; pp. 645–666. [Google Scholar]
- Hipp, J.R.; Bauer, D.J. Local solutions in the estimation of growth mixture models. Psychol. Methods 2006, 11, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Masyn, K.E. Latent class analysis and finite mixture modeling. In The Oxford Handbook of Quantitative Methods; Little, T.D., Ed.; Oxford University Press: Oxford, UK, 2013; pp. 551–611. [Google Scholar]
- Vermunt, J.K.; Magidson, J. Latent class cluster analysis. In Applied Latent Class Analysis; Hagenaars, J.A., McCutcheon, A.L., Eds.; Cambridge University Press: New York, NY, USA, 2002; pp. 89–106. [Google Scholar]
- Vermunt, J.K.; Magidson, J. Upgrade Manual for Latent GOLD 5.1.; Statistical Innovations Inc.: Belmont, NC, USA, 2016. [Google Scholar]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transitional Analysis: With applications in the Social, Behavioral, and Health Sciences; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Nagin, D. Group-Based Modeling of Development; Harvard University Press: Cambridge, UK, 2005. [Google Scholar]
- Vermunt, J.K.; Magidson, J. Latent GOLD 4.0 User’s Guide; Statistical Innovations Inc.: Belmont, NC, USA, 2005. [Google Scholar]
- Hagenaars, J.A.P. Latent structure models with direct effects between indicators: Local dependence models. Sociol. Methods Res. 1988, 16, 379–405. [Google Scholar] [CrossRef]
- Vermunt, J.K. Latent class modeling with covariates: Two improved three-step approaches. Political Anal. 2010, 18, 450–469. [Google Scholar] [CrossRef] [Green Version]
- Bolck, A.; Croon, M.A.; Hagenaars, J.A.P. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Anal. 2004, 12, 3–27. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuss, O. The danger of dichotomizing continuous variables: A visualization. Teach. Stat. 2013, 35, 78–79. [Google Scholar] [CrossRef]
- Irwin, J.R.; McClelland, G.H. Negative consequences of dichotomizing continuous predictor variables. J. Mark. Res. 2003, 40, 366–371. [Google Scholar] [CrossRef]
- Royston, P.; Altman, D.G.; Sauerbrei, W. Dichotomizing continuous predictors in multiple regression: A bad idea. Stat. Med. 2006, 25, 127–141. [Google Scholar] [CrossRef]
- Dawson, N.V.; Weiss, R. Dichotomizing continuous variables in statistical analysis: A practice to avoid. Med. Decis. Mak. 2012, 32, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Antons, S.; Brand, M. Trait and state impulsivity in males with tendency towards Internet-pornography-use disorder. Addict. Behav. 2018, 79, 171–177. [Google Scholar] [CrossRef]
- Darrat, A.A.; Darrat, M.A.; Amyx, D. How impulse buying influences compulsive buying: The central role of consumer anxiety and escapism. J. Retail. Consum. Serv. 2016, 31, 103–108. [Google Scholar] [CrossRef]
- Flight, R.L.; Rountree, M.M.; Beatty, S.E. Feeling the urge: Affect in impulsive and compulsive buying. J. Mark. Theory Pract. 2012, 20, 453–466. [Google Scholar] [CrossRef]
- Cuzen, N.L.; Stein, D.J. Behavioral addiction: The nexus of impulsivity and compulsivity. In Behavioral Addictions; Academic Press: Cambridge, MA, USA, 2014; pp. 19–34. [Google Scholar]
- Watts, A.L.; Boness, C.L.; Loeffelman, J.E.; Steinley, D.; Sher, K.J. Does crude measurement contribute to observed unidimensionality of psychological constructs? An example with DSM-5 alcohol use disorder. J. Abnorm. Psychol. 2021. [Google Scholar] [CrossRef]
- Lane, S.P.; Steinley, D.; Sher, K.J. Meta-analysis of DSM alcohol use disorder criteria severities: Structural consistency is only ‘skin deep’. Psychol. Med. 2016, 46, 1769. [Google Scholar] [CrossRef] [Green Version]
- Boness, C.L.; Lane, S.P.; Sher, K.J. Assessment of withdrawal and hangover is confounded in the Alcohol Use Disorder and Associated Disabilities Interview Schedule: Withdrawal prevalence is likely inflated. Alcohol. Clin. Exp. Res. 2016, 40, 1691–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boness, C.L.; Lane, S.P.; Sher, K.J. Not all alcohol use disorder criteria are equally severe: Toward severity grading of individual criteria in college drinkers. Psychol. Addict. Behav. 2019, 33, 35. [Google Scholar] [CrossRef]
- Carras, M.C.; Kardefelt-Winther, D. When addiction symptoms and life problems diverge: A latent class analysis of problematic gaming in a representative multinational sample of European adolescents. Eur. Child Adolesc. Psychiatry 2018, 27, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Atroszko, P.A.; Andreassen, C.S.; Griffiths, M.D.; Pallesen, S. Study addiction: A cross-cultural longitudinal study examining temporal stability and predictors of its changes. J. Behav. Addict. 2016, 5, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Murcia, S.; Agüera, Z.; Paslakis, G.; Munguia, L.; Granero, R.; Sánchez-González, J.; Fernández-Aranda, F. Food addiction in eating disorders and obesity: Analysis of clusters and implications for treatment. Nutrients 2019, 11, 2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.B.; Wu, A.M.; Feng, L.F.; Deng, Y.; Li, J.H.; Chen, Y.X.; Lau, J.T. Classification of probable online social networking addiction: A latent profile analysis from a large-scale survey among Chinese adolescents. J. Behav. Addict. 2020, 9, 698–708. [Google Scholar] [CrossRef]
- Brand, M.; Rumpf, H.J.; Demetrovics, Z.; Müller, A.; Stark, R.; King, D.L.; Chamberlain, S.R. Which conditions should be considered as disorders in the International Classification of Diseases (ICD-11) designation of “other specified disorders due to addictive behaviors”? J. Behav. Addict. 2020, 1–10. [Google Scholar] [CrossRef]
- Clark, M.A.; Michel, J.S.; Zhdanova, L.; Pui, S.Y.; Baltes, B.B. All work and no play? A meta-analytic examination of the correlates and outcomes of workaholism. J. Manag. 2016, 42, 1836–1873. [Google Scholar] [CrossRef]
- Atroszko, P.A.; Atroszko, B. The costs of work-addicted managers in organizations: Towards integrating clinical and organizational frameworks. Amfiteatru Econ. 2020, 22((Special Issue 14)), 1265–1282. [Google Scholar]
- Fletcher, P.C.; Kenny, P.J. Food addiction: A valid concept? Neuropsychopharmacology 2018, 43, 2506–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, E.M.; Potenza, M.N.; Gearhardt, A.N. A commentary on the “eating addiction” versus food addiction perspectives on addictive-like food consumption. Appetite 2017, 115, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Gordon, E.L.; Ariel-Donges, A.H.; Bauman, V.; Merlo, L.J. What is the evidence for “food addiction”? A systematic review. Nutrients 2018, 10, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gearhardt, A.N.; Hebebrand, J. The concept of “food addiction” helps inform the understanding of overeating and obesity: Debate Consensus. Am. J. Clin. Nutr. 2021, 113, 274–276. [Google Scholar] [CrossRef]
- Riley, R.D.; Ensor, J.; Snell, K.I.; Harrell, F.E.; Martin, G.P.; Reitsma, J.B.; van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef] [Green Version]
Profiles | ||||
---|---|---|---|---|
Levels of BAs | Elevated levels of study, Facebook, shopping, and food addictions | Elevated levels of gaming and pornography addictions | Elevated levels of all BAs | Average or low levels of all BAs |
Prevalence | 28.6% | 24.6% | 23.1% | 23.7% |
Label | Female-majority | Male-majority | General proclivity towards BAs | Low risk of BAs |
Potential predictors and consequences | ||||
Gender (women) | 92% | 18% | 34% | 58% |
Emotional stability | Lowest | |||
Narcissism | Highest | |||
Conscientiousness | Highest | Low | Low | |
Extraversion | Highest | |||
Quality of life | Lowest | |||
Health quality | Highest | Lowest | ||
Sleep quality | Lowest | |||
Perceived stress | Highest | |||
Anxiety | Low | Highest | ||
Hopelessness | Highest |
Type of Addiction | Sample Type | Sample Size | Analysis | Measurement | Clusters Represent | Reference |
---|---|---|---|---|---|---|
study, shopping, gaming, Facebook, pornography, food | Sample of general undergraduate student population | 1182 | LPA | Continuous scores on addiction scales | Addiction severity Gender differences | Charzyńska et al., 2021 [1] |
internet gaming, social media (impulsiveness and psychopathology) | General adolescent population sample | 643 | LPA | Continuous scores on addiction scales | Addiction severity/risk Age differences | Cerniglia et al., 2019 [17] |
alcohol, tobacco, cannabis, gambling | General adolescent population sample | 1644 | LCA | Frequency of behavior and dichotomized continuous addiction scales | Addiction risk Gender differences Complex patterns | Martínez-Loredo et al., 2019 [16] |
alcohol, drugs, smoking, gambling | General student population sample | 2139 | LCA | Frequency of behavior and continuous addiction scales recoded as categorical | Probability of behavior/addiction risk | Kairouz et al., 2018 [25] |
gambling, sexual addiction, buying, videogame use, eating disorders | Clinical sample | 302 | Growth Mixture Models and LCA | Addiction Severity Index | Severity of addiction Level of behavior Complex patterns | Montourcy et al., 2018 [26] |
cigarettes, alcohol, hard drugs, eating, gambling, Internet, love, sex, exercise, work, shopping | General adolescent population sample | 715 Russian 811 Spanish | LCA | Dichotomous responses on addiction questions | Addiction presence | Tsai et al., 2017 [27] |
alcohol, tobacco, marijuana, cocaine, gambling, eating, shopping, sex, video gaming, work | General population sample | 2728 | Hierarchical cluster analyses | Occurrence of excessive behavior: dichotomized | Probability of behavior/addiction risk Gender differences Complex patterns | Konkolý Thege et al., 2016 [28] |
alcohol, tobacco, cannabis, other drugs, gambling, shopping, exercise, Internet, mobile phone, work, overeating | General population sample | 770 | LCA | Frequency of excessive behavior dichotomized | Probability of behavior/addiction risk | Deleuze et al., 2015 [15] |
cigarettes, alcohol, hard drugs, shopping, gambling, Internet, love, sex, eating, work, exercise | Sample of former alternative high school youth at risk for addictions | 538 | LCA, LTA (latent transition analysis) | Dichotomous responses on addiction questions | Addiction presence Probability of transitioning from one class to another | Sussman et al., 2015 [29] |
cigarettes, alcohol, other/hard drugs, eating, gambling, Internet, shopping, love, sex, exercise, work | Sample of former alternative high school youth at risk for addictions | 717 | LCA | Dichotomous responses on addiction questions | Addiction presence | Sussman et al., 2014 [30] |
Internet, smartphone | General university student population sample | 448 | LCA | Continuous scores on addiction scales recoded into categorical (no description of how) | Level of behavior/addiction risk | Mok et al., 2014 [31] |
alcohol, drugs, tobacco, cannabis, substitute opiate prescribing, behavioral addiction without eating disorders | Clinical sample | 301 | Cluster analysis | Addiction severity coded as categorical | Severity of addiction/addiction risk Complex patterns | Combes 2014 [32] |
Variable | Measure | Number of Items | Range of Response Options | Reference |
---|---|---|---|---|
Behavioral addictions | ||||
Study addiction | Bergen Study Addiction Scale (BStAS) | 7 | never (1) to always (5) | Atroszko et al., 2015 [67] |
Shopping addiction | Bergen Shopping Addiction Scale (BSAS) | 7 | completely disagree (1) to completely agree (5) | Andreassen et al., 2015 [60]; |
Gaming addiction | Game Addiction Scale (GAS) | 7 | never (1) to very often (5) | Lemmens, Valkenburg, and Peter 2009 [106]; |
Facebook addiction | Bergen Facebook Addiction Scale (BFAS) | 6 | very rarely (1) to very often (5) | Andreassen, Torsheim et al., 2012 [107]; |
Pornography addiction | Compulsive Pornography Consumption (CPC) Scale | 6 | never (1) to very frequently (5) | Noor, Rosser, and Erickson 2014 [108] |
Food addiction | Modified Yale Food Addiction Scale (mYFAS) | 9 | never (1) to 4 or more times a week or daily (5) | Lemeshow et al., 2016 [109] |
Personality | ||||
Big Five personality | Ten Item Personality Inventory (TIPI) | 10 | strongly disagree (1) to strongly agree (7) | Gosling, Rentfrow, and Swann 2003 [110] |
Narcissism | Single-Item Narcissism Scale (SINS) | 1 | no (1) to yes (9) | Konrath, Meier, and Bushman 2014 [111] |
Functioning | ||||
General quality of life, health quality, and sleep quality | Items based on the WHOQOL-BREF | 3 | very dissatisfied (1) to very satisfied (9) or very poor (1) to very good (9) | Atroszko 2015 [41] Skevington et al., 2004 [112] |
Perceived stress | Perceived Stress Scale (PSS-4) | 4 | never (1) to very often (5) | Cohen, Kamarck, and Mermelstein 1983 [113] |
Short anxiety scale | Short Anxiety Scale (SAS) | 5 | never (1) to most of the time (4). | Clarke et al., 2008 [114] |
Hopelessness | Short Hopelessness Scale (SHS) | 4 | I totally disagree (1) to I totally agree (6) | Clarke et al., 2008 [114] |
Variables | M | SD | Range | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Study addiction a | 21.11 | 6.26 | 7–35 | 1 | |||||||||||
(2) Shopping addiction a | 14.83 | 6.53 | 7–35 | −0.01 | 1 | ||||||||||
(3) Gaming addiction a | 13.93 | 8.12 | 7–35 | −0.26 *** | 0.10 | 1 | |||||||||
(4) Facebook addiction a | 14.85 | 6.40 | 6–30 | 0.04 | 0.31 *** | −0.06 | 1 | ||||||||
(5) Pornography addiction a | 9.95 | 5.75 | 6–30 | −0.11 | 0.25 *** | 0.44 *** | 0.15 ** | 1 | |||||||
(6) Food addiction a | 22.67 | 8.56 | 9–45 | −0.03 | 0.28 *** | 0.05 | 0.34 *** | 0.14 * | 1 | ||||||
(7) Study addiction b | 49.2% c | – | – | 0.79 *** | −0.17 ** | −0.32 *** | −0.15 ** | −0.20 *** | −0.24 *** | 1 | |||||
(8) Shopping addiction b | 12.5% c | – | – | −0.10 | .67 *** | 0.07 | 0.11 * | 0.14 * | 0.12 * | −0.15 ** | 1 | ||||
(9) Gaming addiction b | 19.0% c | – | – | −0.28 *** | 0.00 | 0.80 *** | −0.13 * | 0.21 *** | −0.04 | −0.29 *** | 0.03 | 1 | |||
(10) Facebook addiction b | 18.3% c | – | – | −0.05 | 0.08 | −0.08 | 0.71 *** | 0.03 | 0.17 ** | −0.17 ** | 0.04 | −0.09 | 1 | ||
(11) Pornography addiction b | 6.4% c | – | – | −0.02 | 0.14 * | 0.11 | 0.10 | 0.65 *** | 0.06 | −0.08 | 0.09 | 0.00 | 0.07 | 1 | |
(12) Food addiction b | 33.9% c | – | – | −0.08 | 0.16 ** | −0.02 | 0.26 *** | 0.06 | 0.79 *** | −0.23 *** | 0.06 | −0.12 * | 0.08 | 0.00 | 1 |
(13) Gender | 58.1% d | – | – | −0.15 ** | 0.09 | 0.56 *** | −0.07 | 0.61 *** | −0.04 | −0.20 *** | 0.05 | 0.36 *** | −0.05 | 0.27 *** | −0.06 |
(14) Age | 20.55 | 1.66 | 18–30 | 0.06 | 0.12 * | 0.01 | 0.09 | 0.00 | 0.13 * | −0.01 | .04 | 0.04 | 0.01 | −0.08 | 0.13 * |
(15) Extraversion | 8.63 | 2.99 | 2–14 | 0.10 | 0.02 | −0.14 * | 0.10 | −0.15 ** | 0.00 | 0.12 * | −0.01 | −0.11 | 0.01 | −0.04 | −0.01 |
(16) Agreeableness | 9.31 | 2.46 | 2–14 | 0.08 | −0.24 *** | −0.07 | .00 | −0.06 | −0.13 * | 0.10 | −0.17 ** | −0.09 | 0.07 | −0.10 | −0.09 |
(17) Conscientiousness | 9.18 | 2.89 | 2–14 | 0.33 *** | −0.13 * | −0.28 *** | −0.05 | −0.18 ** | −0.16 ** | 0.39 *** | −0.10 | −0.21 *** | −0.03 | −0.04 | −0.07 |
(18) Emotional stability | 7.71 | 2.77 | 2–14 | 0.01 | −0.03 | 0.12 * | −0.03 | 0.08 | −0.12 * | −0.02 | −0.01 | 0.07 | −0.04 | 0.02 | −0.09 |
(19) Openness | 9.80 | 2.29 | 2–14 | −0.04 | −0.05 | −0.08 | −0.06 | −0.21 *** | −0.09 | .04 | −0.02 | 0.01 | 0.02 | −0.17 ** | −0.06 |
(20) Narcissism | 4.24 | 2.38 | 1–9 | −0.03 | 0.19 *** | 0.06 | 0.15 ** | 0.17 ** | 0.11 | −0.10 | 0.14 * | 0.03 | 0.05 | 0.18 ** | 0.06 |
(21) General quality of life | 6.70 | 1.48 | 1–9 | 0.05 | 0.01 | −0.04 | 0.00 | −0.01 | −0.12 | 0.08 | 0.03 | −0.06 | −0.03 | −0.01 | −0.07 |
(22) Health quality | 5.59 | 2.20 | 1–9 | −0.10 | −0.10 | −0.03 | −0.09 | −0.09 | −0.18 ** | −0.06 | −0.01 | 0.02 | −0.07 | −0.13 * | 0.04 |
(23) Sleep quality | 4.60 | 2.20 | 1–9 | −12 * | 0.04 | −0.05 | 0.05 | 0.01 | −0.08 | −0.15 ** | 0.01 | −0.05 | 0.06 | −0.02 | −0.05 |
(24) Perceived stress | 12.11 | 2.95 | 4–20 | 0.01 | −0.05 | 0.02 | 0.10 | 0.03 | 0.16 ** | −0.02 | −0.03 | 0.06 | 0.10 | 0.02 | 0.13 * |
(25) Anxiety | 10.90 | 3.06 | 5–20 | 0.09 | 0.11 * | 0.07 | 0.16 ** | 0.03 | 0.23 *** | −0.01 | 0.01 | 0.01 | 0.12 * | 0.01 | 0.16 ** |
(26) Hopelessness | 10.35 | 4.73 | 4–24 | −0.07 | 0.16 ** | 0.17 ** | 0.15 ** | 0.17 ** | 0.25 *** | −0.16 ** | 0.07 | 0.14 * | 0.12 * | 0.08 | 0.20 *** |
Potential BAs | Percentage of co-Occurrence of a Given BA | Average Co-Occurrence of Other BAs | |||||
---|---|---|---|---|---|---|---|
Study Addiction | Shopping Addiction | Gaming Addiction | Facebook Addiction | Pornography Addiction | Food Addiction | ||
Study addiction | – | 7.5% | 7.5% | 11.8% | 4.4% | 23.0% | 10.8% |
Shopping addiction | 29.3% | – | 22.0% | 22.0% | 12.2% | 41.5% | 25.4% |
Gaming addiction | 19.4% | 14.5% | – | 11.3% | 6.5% | 22.6% | 14.8% |
Facebook addiction | 31.7% | 15.0% | 11.7% | – | 10.0% | 41.7% | 22.0% |
Pornography addiction | 33.3% | 23.8% | 19.1% | 28.6% | – | 33.3% | 27.6% |
Food addiction | 33.3% | 15.3% | 12.6% | 22.5% | 6.3% | – | 18.0% |
Average co-occurrence of a given BA | 29.4% | 15.2% | 14.6% | 19.2% | 7.9% | 32.4% | 19.8% |
Sociodemographics and Personality | Overall Wald Test | Standardized Scores | Wald’s Values for the Pairwise Comparisons among Profiles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
z1 | z2 | z3 | z4 | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 | ||
Gender a | 76.93 *** | 96.33% | 22.90% | 77.72% | 29.62% | 52.75 | 8.80 | 34.21 | 33.09 | 6.10 | 14.77 |
Age | 10.80 ** | 0.11 | −0.33 | −0.14 | 0.18 | 8.22 | 3.34 | 2.08 | 3.18 | 3.93 | 0.08 |
Extraversion | 1.58 | 0.16 | −0.15 | 0.11 | −0.15 | 1.37 | 0.77 | 0.34 | 0.27 | 0.45 | 0.05 |
Agreeableness | 0.51 | 0.08 | 0.06 | −0.04 | −0.12 | 0.24 | 0.01 | 0.32 | 0.27 | 0.00 | 0.35 |
Conscientiousness | 13.64 ** | 0.39 | −0.04 | −0.16 | −0.31 | 1.50 | 7.82 | 11.92 | 0.27 | 1.27 | 0.87 |
Emotional stability | 2.15 | 0.02 | 0.00 | −0.18 | 0.09 | 1.69 | 0.63 | 0.44 | 0.51 | 0.87 | 0.01 |
Openness | 6.06 | 0.08 | 0.04 | 0.30 | −0.29 | 1.21 | 2.89 | 0.32 | 0.06 | 2.67 | 3.94 |
Narcissism | 5.92 | −0.13 | −0.21 | −0.06 | 0.33 | 2.85 | 0.10 | 0.86 | 0.06 | 5.69 | 3.93 |
Well-being indicators | |||||||||||
General quality of life | 1.47 | 0.03 | 0.00 | 0.11 | −0.10 | 0.03 | 0.25 | 0.77 | 0.33 | 0.30 | 1.33 |
Health quality | 12.97 ** | 0.10 | 0.30 | −0.07 | −0.29 | 1.66 | 0.98 | 7.47 | 3.47 | 11.44 | 1.45 |
Sleep quality | 0.13 | 0.01 | −0.03 | −0.03 | 0.02 | 0.05 | 0.06 | 0.00 | 0.00 | 0.06 | 0.07 |
Perceived stress | 2.84 | −0.08 | −0.01 | −0.06 | 0.13 | 0.22 | 0.02 | 2.55 | 0.06 | 0.70 | 1.02 |
Anxiety | 11.44 ** | −0.11 | −0.27 | 0.16 | 0.22 | 0.97 | 1.97 | 5.44 | 4.30 | 9.28 | 0.10 |
Hopelessness | 10.51 * | −0.11 | −0.17 | −0.09 | 0.29 | 0.17 | 0.02 | 7.90 | 0.18 | 7.57 | 3.77 |
Sociodemographics and Personality | Wald Test | Standardized Score | |
---|---|---|---|
z1 | z2 | ||
Gender a | 5.22 * | 51.38% | 62.23% |
Age | 5.65 * | −0.03 | 0.36 |
Extraversion | 0.59 | 0.02 | −0.20 |
Agreeableness | 1.54 | 0.06 | −0.56 |
Conscientiousness | 1.45 | 0.02 | −0.20 |
Emotional stability | 9.76 ** | 0.06 | −0.58 |
Openness | 2.40 | 0.03 | −0.25 |
Narcissism | 10.74 ** | −0.06 | 0.58 |
Well-being indicators | |||
General quality of life | 9.40 ** | 0.05 | −0.48 |
Health quality | 25.52 *** | 0.07 | −0.71 |
Sleep quality | 26.60 *** | 0.07 | −0.66 |
Perceived stress | 63.87 *** | −0.10 | 1.06 |
Anxiety | 48.03 *** | −0.10 | 0.99 |
Hopelessness | 46.28 *** | −0.10 | 1.02 |
Sociodemographics and Personality | Overall Wald Test | Standardized Scores | Wald’s Values for the Pairwise Comparisons among Classes | ||||
---|---|---|---|---|---|---|---|
z1 | z2 | z3 | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | ||
Gender a | 20.99 *** | 60.84% | 72.89% | 16.75% | 0.23 | 19.51 | 17.30 |
Age | 1.83 | 0.06 | −0.06 | −0.03 | 0.43 | 1.68 | 0.47 |
Extraversion | 2.35 | −0.02 | 0.15 | −0.34 | 0.35 | 1.55 | 2.32 |
Agreeableness | 6.47 * | −0.13 | 0.25 | −0.19 | 3.02 | 1.74 | 6.05 |
Conscientiousness | 36.07 *** | −0.17 | 0.50 | −0.64 | 24.58 | 5.99 | 29.21 |
Emotional stability | 1.38 | −0.06 | 0.04 | 0.14 | 0.31 | 0.89 | 1.36 |
Openness | 3.15 | −0.06 | 0.11 | −0.05 | 0.19 | 3.15 | 1.38 |
Narcissism | 5.83 | 0.16 | −0.24 | 0.03 | 3.82 | 3.06 | 0.03 |
Well-being indicators | |||||||
General quality of life | 1.51 | −0.02 | 0.08 | −0.13 | 0.57 | 0.38 | 1.40 |
Health quality | 1.01 | −0.05 | 0.03 | 0.11 | 0.44 | 0.91 | 0.20 |
Sleep quality | 2.41 | 0.09 | −0.12 | −0.01 | 2.41 | 0.24 | 0.41 |
Perceived stress | 2.07 | 0.09 | −0.11 | −0.03 | 2.01 | 0.52 | 0.20 |
Anxiety | 3.67 | 0.11 | −0.10 | −0.15 | 2.32 | 2.69 | 0.08 |
Hopelessness | 16.24 *** | 0.18 | −0.32 | 0.16 | 14.24 | 0.03 | 8.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atroszko, P.A.; Atroszko, B.; Charzyńska, E. Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8590. https://doi.org/10.3390/ijerph18168590
Atroszko PA, Atroszko B, Charzyńska E. Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis. International Journal of Environmental Research and Public Health. 2021; 18(16):8590. https://doi.org/10.3390/ijerph18168590
Chicago/Turabian StyleAtroszko, Paweł A., Bartosz Atroszko, and Edyta Charzyńska. 2021. "Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis" International Journal of Environmental Research and Public Health 18, no. 16: 8590. https://doi.org/10.3390/ijerph18168590
APA StyleAtroszko, P. A., Atroszko, B., & Charzyńska, E. (2021). Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis. International Journal of Environmental Research and Public Health, 18(16), 8590. https://doi.org/10.3390/ijerph18168590