Biomonitoring of Phthalates, Bisphenols and Parabens in Children: Exposure, Predictors and Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population
2.2. Sample and Data Collection
2.3. Determination of Urinary Biomarkers
2.4. Statistical Analysis
2.5. Risk Assessment
3. Results
3.1. Biomarker Urinary Levels
3.2. Determinants
3.3. Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Mercogliano, R.; Santonicola, S. Investigation on Bisphenol A Levels in Human Milk and Dairy Supply Chain: A Review. Food Chem. Toxicol. 2018, 114, 98–107. [Google Scholar] [CrossRef]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.; Pussemier, L.; Scippo, M.; et al. A Review of Dietary and Non-Dietary Exposure to Bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.; Wu, Y.; Widelka, M. Bisphenol Analogues Other than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- WHO. Joint FAO/WHO Expert Meeting to Review Toxicological and Health Aspects of Bisphenol A: Final Report, Including Report of Stakeholder Meeting on Bisphenol A, 1–5 November 2010, Ottawa, ON, Canada. Available online: http://whqlibdoc.who.int/publications/2011/97892141564274_eng.pdf (accessed on 20 November 2017).
- EFSA. Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015, 13, 3978. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Bruening, T. Assessing Exposure to Phthalates–the Human Biomonitoring Approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef]
- Commission Directive 2007/19/EC of 30 March 2007 Amending Directive 2002/72/EC Relating to Plastic Materials and Articles Intended to Come into Contact with Food and Council Directive 85/572/EEC Laying down the List of Simulants to be Used for Testing Migration of Constituents of Plastic Materials and Articles Intended to Come into Contact with Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:32007L0019R(02) (accessed on 23 June 2021).
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1907-20140410 (accessed on 23 June 2021).
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: https://ec.europa.eu/health/sites/default/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf (accessed on 21 June 2021).
- EMA, 2014. Guideline on the Use of Phthalates as Excipients in Human Medicinal Products. European Medicines Agency 20 November 2014. EMA/CHMP/SWP/362974/2012 Corr 2. Committee for Medicinal Products for Human Use (CHMP). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-phthalates-excipients-human-medicinal-products_en.pdf (accessed on 12 April 2020).
- Directive 2007/47/EC of the European Parliament and of the Council of 5 September 2007 Amending Council Directive 90/385/EEC on the Approximation of the Laws of the Member States Relating to Active Implantable Medical Devices, Council Directive 93/42/EEC Concerning Medical Devices and Directive 98/8/EC Concerning the Placing of Biocidal Products on the Market. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32007L0047 (accessed on 19 June 2021).
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and Exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Ejaredar, M.; Nyanza, E.C.; Ten Eycke, K.; Dewey, D. Phthalate Exposure and Childrens Neurodevelopment: A Systematic Review. Environ. Res. 2015, 142, 51–60. [Google Scholar] [CrossRef]
- Bledzka, D.; Gromadzinska, J.; Wasowicz, W. Parabens. from Environmental Studies to Human Health. Environ. Int. 2014, 67, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Ratajczak-Wrona, W.; Gorska, M.; Jablonska, E. Parabens and their Effects on the Endocrine System. Mol. Cell. Endocrinol. 2018, 474, 238–251. [Google Scholar] [CrossRef]
- EU Directive (2006), 2006/52/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 July 2006 Amending Directive 95/2/EC on Food Additives Other Than Colours and Sweeteners and Directive 94/35/EC on Sweeteners for Use in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0052R(01) (accessed on 18 June 2021).
- SANTE, 2017. European Commission, SANTE-2017–11668 Medicines Revision 2, VOLUME 2C. Guidelines Medicinal Products for Human Use Safety, Environment and Information. Excipients in the Labelling and Package Leaflet of Medicinal Products for Human Use. Brussels, March 2018. Available online: https://ec.europa.eu/health/sites/default/files/files/eudralex/vol-2/c/guidelines_excipients_march2018_en.pdf (accessed on 18 June 2021).
- EU Cosmetic Legislation. Available online: https://ec.europa.eu/growth/sectors/cosmetics/legislation_en (accessed on 19 June 2021).
- Carmona, E.; Andreu, V.; Pico, Y. Occurrence of Acidic Pharmaceuticals and Personal Care Products in Tuna River Basin: From Waste to Drinking Water. Sci. Total. Environ. 2014, 484, 53–63. [Google Scholar] [CrossRef]
- Ahn, H.; An, B.; Jung, E.; Yang, H.; Choi, K.; Jeung, E. Parabens Inhibit the Early Phase of Folliculogenesis and Steroidogenesis in the Ovaries of Neonatal Rats. Mol. Reprod. Dev. 2012, 79, 626–636. [Google Scholar] [CrossRef]
- Guerra, M.T.; Sanabria, M.; Leite, G.A.A.; Borges, C.S.; Cucielo, M.S.; Anselmo-Franci, J.A.; Foster, W.G.; Kempinas, W.G. Maternal Exposure to Butyl Paraben Impairs Testicular Structure and Sperm Quality on Male Rats. Environ. Toxicol. 2017, 32, 1273–1289. [Google Scholar] [CrossRef]
- Kang, K.; Che, J.; Ryu, D.; Kim, T.; Li, G.; Lee, Y. Decreased Sperm Number and Motile Activity on the F1 Offspring Maternally Exposed to Butyl p-Hydroxybenzoic Acid (Butyl Paraben). J. Vet. Med. Sci. 2002, 64, 227–235. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a Request from the Commission related to para hydroxybenzoates (E 214–219) Question number EFSA-Q-2004–063 (adopted on 13 July 2004). EFSA J. 2004, 2, 83. [Google Scholar]
- Volkel, W.; Bittner, N.; Dekant, W. Quantitation of Bisphenol A and Bisphenol A Glucuronide in Biological Samples by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Drug Metab. Dispos. 2005, 33, 1748–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moos, R.K.; Angerer, J.; Dierkes, G.; Bruening, T.; Koch, H.M. Metabolism and Elimination of Methyl, Iso- and n-Butyl Paraben in Human Urine after Single Oral Dosage. Arch. Toxicol. 2016, 90, 2699–2709. [Google Scholar] [CrossRef]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A. Metabolism of Phthalates in Humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef] [PubMed]
- HBM4EU. Available online: https://www.hbm4eu.eu/ (accessed on 15 February 2015).
- GerES-V 2015. Information of the study German Environmental Survey for Children and Adolescents GerES 2014–2017. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/355/dokumente/geresv_study_information_public_eng_1.pdf (accessed on 15 June 2020).
- Perez, R.; Domenech, E.; Coscolla, C.; Yusa, V. Human Biomonitoring of Food Contaminants in Spanish Children: Design, Sampling and Lessons Learned. Int. J. Hyg. Environ. Health 2017, 220, 1242–1251. [Google Scholar] [CrossRef]
- Sanchis, Y.; Coscolla, C.; Yusa, V. Analysis of Four Parabens and Bisphenols A, F, S in Urine, using Dilute and Shoot and Liquid Chromatography Coupled to Mass Spectrometry. Talanta 2019, 202, 42–50. [Google Scholar] [CrossRef]
- Dualde, P.; Leon, N.; Pardo, O.; Coscolla, C.; Vento, M.; Pastor, A.; Yusa, V. BETTERMILK Project. Risk Assessment of Exposure to Phthalates in Breastfeeding Women using Human Biomonitoring. Chemosphere 2020, 255, 127003. [Google Scholar] [CrossRef] [PubMed]
- SANTE/12682/2019. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://ec.europa.eu/food/system/files/2020-01/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf (accessed on 21 June 2021).
- Barr, D.; Wilder, L.; Caudill, S.; Gonzalez, A.; Needham, L.; Pirkle, J. Urinary Creatinine Concentrations in the US Population: Implications for Urinary Biologic Monitoring Measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. European Food Safety Authority; Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 96. Available online: www.efsa.europa.eu (accessed on 18 June 2021). [CrossRef] [Green Version]
- Gelman, A. Scaling Regression Inputs by Dividing by Two Standard Deviations. Stat. Med. 2008, 27, 2865–2873. [Google Scholar] [CrossRef]
- Konishi, S.; Kitagawa, G. Information Criteria and Statistical Modeling. In Information Criteria and Statistical Modeling; Springer: New York, NY, USA, 2008; pp. 1–273. [Google Scholar]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J.; Salibián-Barrera, M. Robust Statistics: Theory and Methods (with R), 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Steckling, N.; Gotti, A.; Bose-O’Reilly, S.; Chapizanis, D.; Costopoulou, D.; De Vocht, F.; Gari, M.; Grimalt, J.O.; Heath, E.; Hiscock, R.; et al. Biomarkers of Exposure in Environment-Wide Association Studies–Opportunities to Decode the Exposome using Human Biomonitoring Data. Environ. Res. 2018, 164, 597–624. [Google Scholar] [CrossRef]
- Katsikantami, I.; Colosio, C.; Alegakis, A.; Tzatzarakis, M.N.; Vakonaki, E.; Rizos, A.K.; Sarigiannis, D.A.; Tsatsakis, A.M. Estimation of Daily Intake and Risk Assessment of Organophosphorus Pesticides Based on Biomonitoring Data–the Internal Exposure Approach. Food Chem. Toxicol. 2019, 123, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Fonleyn, N.; Ute, A.Y.; Yer, S.B. Longitudinal Examination of 24-h Urinary Iodine Excretion in Schoolchildren as a Sensitive, Hydration Status-Independent Research Tool for Studying Iodine Status. Am. J. Clin. Nutr. 2006, 83, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Canada, 2019. Fifth Report on Human Biomonitoring on Environmental Chemicals in Canada. Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/fifth-report-human-biomonitoring.html (accessed on 15 June 2021).
- Guo, J.; Zhang, J.; Wu, C.; Xiao, H.; Lv, S.; Lu, D.; Qi, X.; Feng, C.; Liang, W.; Chang, X.; et al. Urinary Bisphenol A Concentrations and Adiposity Measures at Age 7 Years in a Prospective Birth Cohort. Chemosphere 2020, 251, 126340. [Google Scholar] [CrossRef]
- Gys, C.; Bamai, Y.A.; Araki, A.; Bastiaensen, M.; Caballero-Casero, N.; Kishi, R.; Covaci, A. Biomonitoring and Temporal Trends of Bisphenols Exposure in Japanese School Children. Environ. Res. 2020, 191, 110172. [Google Scholar] [CrossRef]
- Jacobson, M.H.; Woodward, M.; Bao, W.; Liu, B.; Trasande, L. Urinary Bisphenols and Obesity Prevalence among U.S. Children and Adolescents. J. Endocr. Soc. 2019, 3, 1715–1726. [Google Scholar] [CrossRef]
- Jo, M.J.; Park, J.; An, K.; Choi, H.; Kang, Y.; Hwang, M. Quantification of Bisphenols in Korean Urine using Online Solid-Phase Extraction-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Environ. Toxicol. Pharmacol. 2020, 80, 103491. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Kuang, H.; Fan, R.; Cha, C.; Li, G.; Luo, Z.; Pang, Q. Relationship between Bisphenol a Exposure and Attention-deficit/hyperactivity Disorder: A Case-Control Study for Primary School Children in Guangzhou, China. Environ. Pollut. 2018, 235, 141–149. [Google Scholar] [CrossRef]
- Lim, S. The Associations between Personal Care Products use and Urinary Concentrations of Phthalates, Parabens, and Triclosan in various Age Groups: The Korean National Environmental Health Survey Cycle 3 2015–2017. Sci. Total. Environ. 2020, 742, 140640. [Google Scholar] [CrossRef]
- Murawski, A.; Tschersich, C.; Rucic, E.; Schwedler, G.; Moos, R.K.; Kasper-Sonnenberg, M.; Bruning, T.; Koch, H.M.; Kolossa-Gehring, M. Parabens in Urine of Children and Adolescents in Germany–Human Biomonitoring Results of the German Environmental Survey 2014–2017 (GerES V). Environ. Res. 2021, 194, 110502. [Google Scholar] [CrossRef]
- Amin, M.M.; Ebrahimpour, K.; Parastar, S.; Shoshtari-Yeganeh, B.; Hashemi, M.; Mansourian, M.; Poursafa, P.; Fallah, Z.; Rafiei, N.; Kelishadi, R. Association of Urinary Concentrations of Phthalate Metabolites with Cardiometabolic Risk Factors and Obesity in Children and Adolescents. Chemosphere 2018, 211, 547–556. [Google Scholar] [CrossRef]
- Haug, L.S.; Sakhi, A.K.; Cequier, E.; Casas, M.; Maitre, L.; Basagana, X.; Andrusaityte, S.; Chalkiadaki, G.; Chatzi, L.; Coen, M.; et al. In-Utero and Childhood Chemical Exposome in Six European Mother-Child Cohorts. Environ. Int. 2018, 121, 751–763. [Google Scholar] [CrossRef] [PubMed]
- NHANES, 2019. Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, January 2019, Volume One. Available online: https://www.cdc.gov/exposurereport/index.html (accessed on 15 June 2021).
- Puklova, V.; Janos, T.; Sochorova, L.; Vavrous, A.; Vrbik, K.; Fialova, A.; Hanzlikova, L.; Cerna, M. Exposure to Mixed Phthalates in Czech Preschool and School Children. Arch. Environ. Contam. Toxicol. 2019, 77, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, G.; Rucic, E.; Lange, R.; Conrad, A.; Koch, H.M.; Paelmke, C.; Bruening, T.; Schulz, C.; Schmied-Tobies, M.I.H.; Daniels, A.; et al. Phthalate Metabolites in Urine of Children and Adolescents in Germany. Human Biomonitoring Results of the German Environmental Survey GerES V, 2014–2017. Int. J. Hyg. Environ. Health 2020, 225, 113444. [Google Scholar] [CrossRef]
- Tait, S.; Carli, F.; Busani, L.; Buzzigoli, E.; Della Latta, V.; Deodati, A.; Fabbrizi, E.; Gaggini, M.; Maranghi, F.; Tassinari, R.; et al. Biomonitoring of Bis(2-Ethylhexyl)Phthalate (DEHP) in Italian Children and Adolescents: Data from LIFE PERSUADED Project. Environ. Res. 2020, 185, 109428. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, D.; Wu, Y.; Zhou, L.; Cheng, J.; Ma, Y.; Lu, S.; Yuan, G.; Liu, G. Urinary Phthalate Metabolites in Primary School Starters in Pearl River Delta, China: Occurrences, Risks and Possible Sources. Environ. Res. 2019, 179, 108853. [Google Scholar] [CrossRef] [PubMed]
- Sedtasiriphokin, N.; Supornsilchai, V.; Jantarat, C.; Nosoongnoen, W. Phthalate Exposure in Thai Children and Adolescents. Asian Biomed. 2017, 11, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Casas, M.; Valvi, D.; Luque, N.; Ballesteros-Gomez, A.; Carsin, A.; Fernandez, M.F.; Koch, H.M.; Mendez, M.A.; Sunyer, J.; Rubio, S.; et al. Dietary and Sociodemographic Determinants of Bisphenol A Urine Concentrations in Pregnant Women and Children. Environ. Int. 2013, 56, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; Ocon-Hernandez, O.; Minguez-Alarcon, L.; Davila-Arias, C.; Perez-Lobato, R.; Calvente, I.; Arrebola, J.P.; Vela-Soria, F.; Rubio, S.; Hauser, R.; et al. Bisphenol A and Reproductive Hormones and Cortisol in Peripubertal Boys: The INMA-Granada Cohort. Sci. Total. Environ. 2018, 618, 1046–1053. [Google Scholar] [CrossRef]
- Cutanda, F.; Koch, H.M.; Esteban, M.; Sanchez, J.; Angerer, J.; Castano, A. Urinary Levels of Eight Phthalate Metabolites and Bisphenol A in Mother-Child Pairs from Two Spanish Locations. Int. J. Hyg. Environ. Health 2015, 218, 47–57. [Google Scholar] [CrossRef]
- Casas, L.; Fernandez, M.F.; Llop, S.; Guxens, M.; Ballester, F.; Olea, N.; Basterrechea Irurzun, M.; Santa Marina Rodriguez, L.; Riano, I.; Tardon, A.; et al. Urinary Concentrations of Phthalates and Phenols in a Population of Spanish Pregnant Women and Children. Environ. Int. 2011, 37, 858–866. [Google Scholar] [CrossRef]
- Gys, C.; Bastiaensen, M.; Bruckers, L.; Colles, A.; Govarts, E.; Martin, L.R.; Verheyen, V.; Koppen, G.; Morrens, B.; Den Hond, E.; et al. Determinants of Exposure Levels of Bisphenols in Flemish Adolescents. Environ. Res. 2021, 193, 110567. [Google Scholar] [CrossRef]
- Martinez, M.A.; Gonzalez, N.; Marti, A.; Marques, M.; Rovira, J.; Kumar, V.; Nadal, M. Human Biomonitoring of Bisphenol a Along Pregnancy: An Exposure Reconstruction of the EXHES-Spain Cohort. Environ. Res. 2021, 196, 110941. [Google Scholar] [CrossRef] [PubMed]
- Ax, E.; Lampa, E.; Lind, L.; Salihovic, S.; van Bavel, B.; Cederholm, T.; Sjogren, P.; Lind, P.M. Circulating Levels of Environmental Contaminants are Associated with Dietary Patterns in Older Adults. Environ. Int. 2015, 75, 93–102. [Google Scholar] [CrossRef]
- Sanchez-Avila, J.; Vicente, J.; Echavarri-Erasun, B.; Porte, C.; Tauler, R.; Lacorte, S. Sources, Fluxes and Risk of Organic Micropollutants to the Cantabrian Sea (Spain). Mar. Pollut. Bull. 2013, 72, 119–132. [Google Scholar] [CrossRef]
- Castro-Jimenez, J.; Ratola, N. An Innovative Approach for the Simultaneous Quantitative Screening of Organic Plastic Additives in Complex Matrices in Marine Coastal Areas. Environ. Sci. Pollut. Res. 2020, 27, 11450–11457. [Google Scholar] [CrossRef]
- Mustieles, V.; Fernández, M.F. Bisphenol A shapes children’s brain and behavior: Towards an integrated neurotoxicity assessment including human data. Environ. Health 2020, 19, 66. [Google Scholar] [CrossRef]
- Hays, S.M.; Aylward, L.L.; Kirman, C.R.; Krishnan, K.; Nong, A. Biomonitoring Equivalents for Di-Isononyl Phthalate (DINP). Regul. Toxicol. Pharmacol. 2011, 60, 181–188. [Google Scholar] [CrossRef]
n (%) (n = 562) | |
---|---|
Province | |
Alicante | 203 (36.12%) |
Castellón | 122 (21.71%) |
Valencia | 237 (42.17%) |
Sex | |
Male | 282 (50.18%) |
Female | 280 (49.82%) |
Size (cm) | 135 (100–170) a |
Missing data | 17 (3.02%) |
Weight (Kg) | 32 (16–72) a |
Missing data | 11 (1.96%) |
BMI | 17.11 (11.65–45.45) a |
Missing data | 18 (3.20%) |
Age | 8 (5–12) a |
Child’s country of birth | |
Spain | 552 (98.75%) |
Foreign | 7 (1.25%) |
Missing data | 3 (0.53%) |
Parents country of birth | |
Both Spain | 488 (89.38%) |
Some foreign | 58 (10.62%) |
Missing data | 16 (2.85%) |
Years of child’s residence in the Valencia Region | 8 (1–12) a |
Missing data | 11 (1.96%) |
Maximum level of education of one of the parents | |
Without studies or primary | 56 (9.96%) |
Secondary | 169 (30.07%) |
Superior | 337 (59.96%) |
Employment situation | |
Neither parents work | 33 (5.87%) |
Some of the parents work | 529 (94.13%) |
Primary sector work | |
None | 536 (95.37%) |
Someone | 26 (4.63%) |
Secondary sector work | |
None | 341 (60.68%) |
Someone | 221 (39.32%) |
Tertiary sector work | |
None | 100 (17.79%) |
Someone | 462 (82.21%) |
Index MED-DQI | 4 (0–10) a |
Good (score ≤ 4) | 340 (60.5%) |
Medium-good (5 ≤ score ≤ 7) | 196 (34.88%) |
Medium-poor (8 ≤ score ≤ 10) | 26 (4.63%) |
Analyte | n | DF (%) | LOQ ng/mL | Minimum ng/mL (µg/g Creat) | P25 ng/mL (µg/g Creat) | GM ng/mL (µg/g Creat) | Median ng/mL (µg/g Creat) | P75 ng/mL (µg/g Creat) | P95 ng/mL (µg/g Creat) | Maximum ng/mL (µg/g Creat) | Std dev ng/mL (µg/g Creat) |
---|---|---|---|---|---|---|---|---|---|---|---|
BPA | 562 | 63.3 | 0.2 | <LOQ | <LOQ | 0.90 (0.92) | 1.6 (1.8) | 10.4 (9.9) | 85.2 (95.2) | 6246.2 (6277.6) | 294.4 (299.3) |
BPF | 562 | 11.6 | 0.2 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 3.2 (2.6) | 2571.5 (4056.0) | 155.5 (218.5) |
BPS | 562 | 28.6 | 0.2 | <LOQ | <LOQ | <LOQ | <LOQ | 0.30 (0.31) | 6.8 (6.1) | 153.5 (96.5) | 10.0 (7.8) |
∑Bisphenols | 562 | 75.6 | - | - | - | 2.3 (2.3) | 3.3 (3.6) | 13.4 (13.7) | 154.2 (154.0) | 6246.2 (6277.6) | 337.7 (377.6) |
MP | 562 | 62.3 | 0.2 | <LOQ | <LOQ | 1.4 (1.4) | 2.4 (2.5) | 61.7 (60.6) | 541.4 (574.4) | 23210.0 (27598.1) | 1100.0 (1253.5) |
EP | 562 | 48.4 | 0.2 | <LOQ | <LOQ | <LOQ | <LOQ | 2.0 (2.2) | 18.0 (21.0) | 910.7 (1081.6) | 51.6 (58.6) |
PP | 562 | 59.6 | 0.2 | <LOQ | <LOQ | 0.39 (0.40) | 0.40 (0.41) | 2.3 (2.4) | 61.3 (61.3) | 378.7 (527.0) | 43.7 (44.5) |
BP | 562 | 21.5 | 0.2 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 7.3 (9.1) | 475.2 (568.5) | 56.6 (70.2) |
∑Parabens | 562 | 88.1 | - | - | - | 9.4 (9.5) | 8.7 (8.5) | 80.5 (80.5) | 833.7 (881.6) | 23498.0 (27940.6) | 1124.4 (1282.3) |
MEP | 557 | 99.8 | 2 | <LOQ | 26.9 (26.7) | 55.0 (55.9) | 51.1 (53.2) | 100.6 (105.1) | 498.0 (405.4) | 8273.0 (13,343.5) | 438.5 (612.0) |
MiBP | 557 | 98.6 | 2 | <LOQ | 9.7 (10.7) | 18.4 (18.7) | 18.4 (17.6) | 31.6 (32.0) | 83.2 (85.4) | 1039.2 (659.8) | 56.0 (44.2) |
MnBP | 557 | 99.6 | 0.5 | <LOQ | 8.2 (8.7) | 14.0 (14.2) | 13.8 (13.6) | 23.7 (21.6) | 51.5 (58.6) | 309.4 (325.1) | 30.9 (31.8) |
MBzP | 557 | 88.2 | 1 | <LOQ | 1.5 (1.5) | 3.0 (3.0) | 2.8 (2.9) | 5.6 (5.4) | 17.8 (19.5) | 110.7 (89.4) | 11.0 (9.6) |
2cxMMHP | 557 | 77.9 | 2 | <LOQ | 2.2 (2.4) | 4.0 (4.1) | 4.0 (4.1) | 7.1 (6.8) | 18.5 (19.5) | 93.3 (171.7) | 9.0 (11.1) |
MEOHP | 555 | 100 | 0.5 | 0.7 (1.1) | 5.2 (5.4) | 9.1 (9.2) | 9.3 (9.2) | 15.9 (15.0) | 37.9 (34.2) | 267.2 (352.4) | 17.3 (23.0) |
MEHHP | 557 | 98.7 | 2 | <LOQ | 7.0 (7.4) | 11.9 (12.1) | 11.9 (11.4) | 18.5 (18.2) | 53.1 (48.3) | 292.7 (628.1) | 23.0 (33.5) |
MECPP | 557 | 100 | 1 | 1.8 (2.1) | 15.5 (15.6) | 27.0 (27.5) | 27.9 (29.1) | 50.6 (45.9) | 101.0 (90.5) | 480.7 (890.3) | 39.2 (50.7) |
MEHP | 557 | 84.6 | 1 | <LOQ | 1.8 (1.7) | 3.6 (3.6) | 3.7 (3.8) | 7.7 (7.5) | 24.0 (25.2) | 99.7 (117.2) | 9.4 (11.3) |
DEHP(∑MEHHP + MEOHP) | 555 | 100 | - | - | 12.9 (13.7) | 21.6 (21.9) | 22.4 (29.1) | 34.6 (33.1) | 86.9 (78.6) | 459.3 (980.5) | 37.6 (54.2) |
DEHP (∑5metabolites) a | 555 | 100 | - | - | 35.1 (37.5) | 60.6 (61.6) | 62.1 (61.8) | 101.8 (97.6) | 214.5 (198.8) | 1044.8 (2159.7) | 84.6 (117.3) |
∑Phthalates | 555 | 100 | - | - | 113.9 (115.4) | 185.9 (188.9) | 176.2 (176.8) | 289.0 (285.7) | 703.2 (673.4) | 8356.8 (13,478.7) | 463.8 (635.7) |
Variable | Standardized Coefficients (95% CI) | Standard Error | p-Value | Odd Ratio (95% CI) |
---|---|---|---|---|
BPA | ||||
Intercept | 0.5621 (0.3819–0.7457) | 0.0927 | <0.0001 * | - |
Canned fish | −0.611 (−1.0895–−0.1863) | 0.2332 | 0.0088 * | 0.5428 (0.3364–0.83) |
Processed fish | −0.3781 (−0.7703–−0.0167) | 0.1897 | 0.0463 * | 0.6851 (0.4629–0.9835) |
White fish | 0.3996 (0.0228–0.7886) | 0.1949 | 0.0404 * | 1.4912 (1.023–2.2002) |
MED-DQI index | −0.2953 (−0.6718–0.0778) | 0.1909 | 0.1219 | 0.7443 (0.5108–1.0809) |
Drinks | 0.4916 (0.054–1.0248) | 0.2462 | 0.0459 * | 1.6349 (1.0555–2.7865) |
Eggs | −0.2042 (−0.3918–−0.0203) | 0.0944 | 0.0306 * | 0.8153 (0.6758–0.9799) |
MP | ||||
Intercept | 1.0693 (0.4807–1.7133) | 0.3121 | 0.0006 * | - |
Eggs | 0.2288 (−0.1292–0.5917) | 0.1834 | 0.2122 | 1.2571 (0.8788–1.807) |
Drinks | −0.1802 (−0.5406–0.1711) | 0.1784 | 0.3125 | 0.8351 (0.5824–1.1866) |
Maximum level of education of one of the parents: secondary | −0.3742 (−1.0886–0.2996) | 0.3522 | 0.2880 | 0.6879 (0.3367–1.3493) |
Maximum level of education of one of the parents: superior | −0.6319 (−1.3087–−0.0036) | 0.3308 | 0.0561 | 0.5316 (0.2702–0.9964) |
Parents country of birth: some foreign | −0.5752 (−1.1375–−0.0133) | 0.2856 | 0.0440 * | 0.5626 (0.3206–0.9868) |
EP | ||||
Intercept | −0.7776 (−1.5772–−0.0472) | 0.3857 | 0.0438 * | - |
Fishing products | 0.1886 (−0.2073–0.5905) | 0.2027 | 0.3522 | 1.2076 (0.8128–1.805) |
Bivalve molluscs | −0.1624 (−0.6232–0.2355) | 0.2142 | 0.4485 | 0.8501 (0.5362–1.2655) |
Employment situation: some of the parents work | 0.7389 (−0.0129–1.5565) | 0.396 | 0.0620 | 2.0936 (0.9871–4.742) |
MED-DQI index | 0.4045 (0.0521–0.7627) | 0.181 | 0.0254 * | 1.4986 (1.0535–2.1442) |
PP | ||||
Intercept | 0.2386 (−0.011–0.4905) | 0.1278 | 0.0619 | - |
Sex: female | 0.4281 (0.079–0.7796) | 0.1786 | 0.0165 * | 1.5343 (1.0822–2.1805) |
Parents country of birth: some foreign | −0.746 (−1.325–−0.1781) | 0.2913 | 0.0104 * | 0.4742 (0.2658–0.8368) |
Nuts | −0.2255 (−0.5896–0.1213) | 0.1787 | 0.2069 | 0.7981 (0.5545–1.1289) |
White fish | 0.2829 (−0.0703–0.6443) | 0.1819 | 0.1198 | 1.327 (0.9321–1.9047) |
Creatinine | 0.2978 (−0.059–0.6639) | 0.184 | 0.1055 | 1.3469 (0.9427–1.9423) |
Variable | Standardized Coefficients (95% CI) | Standard Error | p-Value | |
---|---|---|---|---|
MnBP | ||||
Intercept | 2.7426 (2.4768–3.0084) | 0.1356 | <0.0001 * | |
Employment situation: some of the parents work | −0.1904 (−0.4626–0.0818) | 0.1389 | 0.1709 | |
Fishing products | −0.0825 (−0.2316–0.0666) | 0.0761 | 0.2786 | |
Nuts | −0.056 (−0.1902–0.0782) | 0.0685 | 0.4142 | |
Legumes, potatoes and cereals | 0.1008 (−0.0323–0.2339) | 0.0679 | 0.1386 | |
Miscellany | −0.147 (−0.2761–−0.0179) | 0.0659 | 0.0261 * | |
Molluscs | 0.1121 (−0.032–0.2562) | 0.0735 | 0.1278 | |
Creatinine | 0.5694 (0.4399–0.6989) | 0.0660 | <0.0001 * | |
Parents country of birth: foreign | 0.2621 (0.0499–0.4743) | 0.1083 | 0.0158 * | |
MEP | ||||
Intercept | 4.3685 (4.0006–4.7364) | 0.1877 | <0.0001 * | |
Employment situation: some of the parents work | −0.4829 (−0.8617–−0.1041) | 0.1933 | 0.0128 * | |
Vegetables and fruits | −0.1712 (−0.355–0.0126) | 0.0938 | 0.0685 | |
Drinks | 0.2734 (0.0893–0.4575) | 0.0939 | 0.0038 * | |
White fish | −0.1469 (−0.3335–0.0397) | 0.0952 | 0.1234 | |
Small blue fish | 0.2173 (0.0325–0.4021) | 0.0943 | 0.0215 * | |
Creatinine | 0.2868 (0.1104–0.4632) | 0.0900 | 0.0015 * | |
Index MED-DQI | 0.1944 (0.0116–0.3772) | 0.0932 | 0.0376 * | |
MBzP | ||||
Intercept | 0.6615 (0.2973–1.0257) | 0.1858 | 0.0004 * | |
Sex: female | −0.1634 (−0.328–0.0012) | 0.084 | 0.0521 | |
Employment situation: some of the parents work | 0.4865 (0.1252–0.8478) | 0.1843 | 0.0086 * | |
Drinks | −0.1339 (−0.3112–0.0434) | 0.0905 | 0.1393 | |
Molluscs | 0.1739 (0.0106–0.3372) | 0.0833 | 0.0374 * | |
Creatinine | 0.5207 (0.3569–0.6845) | 0.0836 | <0.0001 * | |
2-cx-MMHP | ||||
Intercept | 1.3302 (1.2469–1.4135) | 0.0425 | <0.0001 * | |
Small blue fish | −0.1193 (−0.2777–0.0391) | 0.0808 | 0.1404 | |
Molluscs | 0.2479 (0.0815–0.4143) | 0.0849 | 0.0037 * | |
Creatinine | 0.6442 (0.4878–0.8006) | 0.0798 | <0.0001 * | |
Parents country of birth: foreign | 0.2467 (−0.0081–0.5015) | 0.1300 | 0.0583 | |
MEOHP | ||||
Intercept | 2.167 (2.0976–2.2364) | 0.0354 | <0.0001 * | |
Small blue fish | −0.1423 (−0.2841–−5e−04) | 0.0724 | 0.0498 * | |
Creatinine | 0.6157 (0.4763–0.7551) | 0.0711 | <0.0001 * | |
MEHHP | ||||
Intercept | 2.3829 (2.3098–2.456) | 0.0373 | <0.0001 * | |
Small blue fish | −0.106 (−0.2453–0.0333) | 0.0711 | 0.1365 | |
Creatinine | 0.6033 (0.464–0.7426) | 0.071 | <0.0001 * | |
Parents country of birth: foreign | 0.1711 (−0.0516–0.3938) | 0.1136 | 0.1326 | |
MECPP | ||||
Intercept | 3.2709 (3.1991–3.3427) | 0.0366 | <0.0001 * | |
Canned molluscs | −0.142 (−0.3147–0.0307) | 0.0881 | 0.1078 | |
Canned fish | 0.0925 (−0.1038–0.2888) | 0.1001 | 0.3562 | |
Creatinine | 0.6402 (0.4964–0.784) | 0.0734 | <0.0001 * | |
MEHP | ||||
Intercept | 1.7405 (1.2842–2.1968) | 0.2328 | <0.0001 * | |
Sex: female | −0.2312 (−0.4412–−0.0212) | 0.1072 | 0.0314 * | |
Employment situation: some of the parents work | −0.3765 (−0.8282–0.0752) | 0.2304 | 0.1029 | |
Fish | −0.2053 (−0.4223–0.0117) | 0.1107 | 0.0643 | |
Molluscs | 0.2233 (0.0086–0.438) | 0.1095 | 0.0420 * | |
Canned fish | 0.191 (−0.0181–0.4001) | 0.1067 | 0.0740 | |
Creatinine | 0.6193 (0.4045–0.8341) | 0.1096 | <0.0001 * | |
MiBP | ||||
Intercept | 3.22 (2.8943–3.5457) | 0.1662 | <0.0001 * | |
Employment situation: some of the parents work | −0.3651 (−0.6971–−0.0331) | 0.1694 | 0.0316 * | |
Eggs | −0.1845 (−0.3372–−0.0318) | 0.0779 | 0.0182 * | |
Water | −0.1395 (−0.2913–0.0123) | 0.0774 | 0.0722 | |
Creatinine | 0.5634 (0.4112–0.7156) | 0.0776 | <0.0001 * | |
Parents country of birth: foreign | 0.211 (−0.0282–0.4502) | 0.122 | 0.0845 |
Analyte | Country (City or Region) | Year SAMPLING | Age (Years) | Sample Size | LOQ (ng/mL) | DF% | GM ng/mL | Median ng/mL | P95 ng/mL | Reference |
---|---|---|---|---|---|---|---|---|---|---|
(μg/g Creat) | (μg/g Creat) | (μg/g Creat) | ||||||||
BPA | Canada | 2016–2017 | 6–11 | 516 | 0.32 * | 88.6 | 0.97 | 0.94 | 5.5 | [42] |
China (Jiangsu) | 2016–2017 (approx) ** | 7 | 412 | 0.01 * | 99.3 | 4.66 | 2.41 | 287 | [43] | |
Japan (Hokkaido) | 2012–2017 | 7 | 396 | 0.3 | 89 | - | 0.89 | - | [44] | |
USA | 2013–2016 | 6–11 | 965 | 0.2 | - | 1.28 | - | - | [45] | |
South Korea | 2017–2018 | 7–12 | 286 | 0.24 *** | 85 | 0.7 | 0.53 | 4.9 | [46] | |
China (Guangzhou) | 2014–2017 | 6–12 | 250 | 0.25 *** | 87.2 | 1.7 | 2.24 | 14.4 | [47] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 63.3 | 0.90 (0.92) | 1.6 (1.8) | 85.2 (95.2) | Present study | |
BPF | Japan (Hokkaido) | 2012–2017 | 7 | 396 | 0.02 | 83 | - | 0.07 | - | [44] |
South Korea | 2017–2018 | 7–12 | 286 | 0.19 *** | 9.4 | - | <0.19 | 0.54 | [46] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 11.6 | <0.2 | <0.2 | 3.2 (2.6) | Present study | |
BPS | Japan (Hokkaido) | 2012–2017 | 7 | 396 | 0.04 | 78 | - | 0.11 | - | [44] |
USA | 2013–2016 | 6–11 | 965 | 0.1 | - | 0.36 | - | - | [45] | |
South Korea | 2017–2018 | 7–12 | 286 | 0.13 *** | 75.2 | 0.23 | 0.21 | 1.1 | [46] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 28.6 | <0.2 | <0.2 | 6.8 (6.1) | Present study | |
MP | Canada | 2016–2017 | 6–11 | 540 | 1.3 * | 88.4 | 7.5 | 4.9 | - | [42] |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 18.1 | - | [48] | |
Germany | 2014–2017 | 3–17 | 490 | 0.5 | 97 | 7.724 | 5.13 | 517 | [49] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 62.3 | 1.4 (1.4) | 2.4 (2.5) | 541.4 (574.4) | Present study | |
EP | Canada | 2016–2017 | 6–11 | 540 | 0.9 * | 26.3 | - | <0.9 | - | [42] |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 10.4 | - | [48] | |
Germany | 2014–2017 | 3–17 | 516 | 0.5 | 69 | 0.943 | 0.73 | 12.0 | [49] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 48.4 | <0.2 | <0.2 | 18.0 (21.0) | Present study | |
PP | Canada | 2016–2017 | 6–11 | 540 | 0.3 * | 70.3 | 0.96 | 0.69 | - | [42] |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 1.3 | - | [48] | |
Germany | 2014–2017 | 3–17 | 516 | 0.5 | 31 | 0.563 | <0.5 | 18.5 | [49] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 59.6 | 0.39 (0.40) | 0.40 (0.41) | 61.3 (61.3) | Present study | |
BP | Canada | 2016–2017 | 6–11 | 540 | 0.3 * | 7.2 | - | <0.3 | <0.3 | [42] |
Germany | 2014–2017 | 3–17 | 516 | 0.5 | 2 | <0.5 | <0.5 | <0.5 | [49] | |
Spain (Valencia Region) | 2016 | 6–11 | 562 | 0.2 | 21.5 | <0.2 | <0.2 | 7.3 (9.1) | Present study | |
MEHP | Iran (Isfahan) | 2016 | 6–18 | 242 | - | 99.6 | 59.09 | 61.27 | - | [50] |
Canada | 2016–2017 | 6–11 | 534 | 0.11 * | 99.9 | 1.4 | 1.4 | 5.8 | [42] | |
Europe **** | 2013–2016 | 6–12 | 1260 | 0.15–1 * | 96.8 | - | (2.88) | - | [51] | |
USA | 2015–2016 | 6–11 | 415 | 0.8 | - | 1.42 | 1.30 | 5.9 | [52] | |
Czech Republic | 2016 | 5 and 9 | 370 | 2 | 62.4 | 2.3 | - | 7.3 | [53] | |
Germany | 2015–2017 | 6–10 | 736 | 0.5 | 86 | 1.4 | 1.5 | 6.8 | [54] | |
Italy | 2015–2017 | 4–14 | 900 | 0.58 | 99.3 | 9.26 | 8.90 | 23.48 | [55] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.2 | 97 | (6.69) | (7.30) | (33.3) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 1 | 84.6 | 3.6 (3.6) | 3.7 (3.8) | 24.0 (25.2) | Present study | |
MEOHP | Iran (Isfahan) | 2016 | 6–18 | 242 | - | 95.9 | 178.72 | 270.92 | - | [50] |
Canada | 2016–2017 | 6–11 | 537 | 0.17 * | 100 | 7.0 | 7.5 | 31 | [42] | |
Europe **** | 2013–2016 | 6–12 | 1300 | 0.12–0.5 * | 99.9 | - | (12.5) | - | [51] | |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 19.7 | - | [48] | |
USA | 2015–2016 | 6–11 | 415 | 0.2 | - | 5.97 | 6.1 | 24.5 | [52] | |
Czech Republic | 2016 | 5 and 9 | 370 | 2 | 98.6 | 12.9 | - | 41.3 | [53] | |
Germany | 2015–2017 | 6–10 | 736 | 0.2 | 100 | 9 | 9 | 32.1 | [54] | |
Italy | 2015–2017 | 4–14 | 900 | 0.48 | 99.8 | 11.58 | 10.94 | 50.14 | [55] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.2 | 80 | (6.54) | (12.8) | (53.2) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 555 | 0.5 | 100.0 | 9.1 (9.2) | 9.3 (9.2) | 37.9 (34.2) | Present study | |
2cxMMHP | Canada | 2016–2017 | 6–11 | 537 | 0.27 * | 98.8 | 3.1 | 3.1 | 13 | [42] |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.2 | 100 | (7.96) | (7.59) | (36.5) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 2 | 77.9 | 4.0 (4.1) | 4.0 (4.1) | 18.5 (19.5) | Present study | |
MECPP | Canada | 2016–2017 | 6–11 | 535 | 0.28 * | 100 | 13 | 13 | 52 | [42] |
Europe **** | 2013–2016 | 6–12 | 1300 | - | 99.9 | - | (35.1) | - | [51] | |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 44.9 | - | [48] | |
USA | 2015–2016 | 6–11 | 415 | 0.4 | - | 14.6 | 14.9 | 60.3 | [52] | |
Germany | 2015–2017 | 6–10 | 736 | 0.2 | 100 | 14.1 | 13.8 | 47.7 | [54] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.1 | 100 | (19.8) | (20.3) | (78.0) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 1 | 100.0 | 27.0 (27.5) | 27.9 (29.1) | 101.0 (90.5) | Present study | |
MEHHP | Iran (Isfahan) | 2016 | 6–18 | 242 | - | 96.3 | 114.20 | 177.56 | - | [50] |
Canada | 2016–2017 | 6–11 | 537 | 0.22 * | 100 | 9.7 | 9.9 | 44 | [42] | |
Europe **** | 2013–2016 | 6–12 | 1298 | 0.12–0.5 * | 99.8 | - | (20.1) | - | [51] | |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 30.2 | - | [48] | |
USA | 2015–2016 | 6–11 | 415 | 0.4 | - | 8.81 | 9.0 | 39.0 | [52] | |
Czech Republic | 2016 | 5 and 9 | 370 | 1.5 | 100 | 20.6 | - | 66.3 | [53] | |
Germany | 2015–2017 | 6–10 | 736 | 0.2 | 100 | 12.7 | 12.9 | 43.6 | [54] | |
Italy | 2015–2017 | 4–14 | 900 | 0.24 | 99.2 | 24.40 | 23.55 | 102.38 | [55] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.3 | 100 | (23.1) | (22.2) | (85.7) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 2 | 98.7 | 11.9 (12.1) | 11.9 (11.4) | 53.1 (48.3) | Present study | |
MEP | Canada | 2016–2017 | 6–11 | 536 | 0.98 * | 99.5 | 18 | 15 | - | [42] |
Europe **** | 2013–2016 | 6–12 | 1301 | 0.15–1 * | 100 | - | (33.5) | - | [51] | |
USA | 2015–2016 | 6–11 | 415 | 1.2 | - | 24.5 | 22.1 | 211 | [52] | |
Germany | 2015–2017 | 6–10 | 736 | 0.5 | 100 | 21.7 | 19.8 | 165 | [54] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.3 | 98 | (14.3) | (13.8) | (142) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 2 | 99.8 | 55.0 (55.9) | 51.1 (53.2) | 498.0 (405.4) | Present study | |
MnBP | Iran (Isfahan) | 2016 | 6–18 | 242 | - | 100 | 165.26 | 260.72 | - | [50] |
Canada | 2016–2017 | 6–11 | 536 | 0.6 * | 100 | 20 | 19 | 84 | [42] | |
Europe **** | 2013–2016 | 6–12 | 1301 | 0.15–1 * | 100 | - | (23.9) | - | [51] | |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 45.0 | - | [48] | |
USA | 2015–2016 | 6–11 | 415 | 0.4 | - | 14.4 | 15.4 | 47.2 | [52] | |
Czech Republic | 2016 | 5 and 9 | 370 | 1.6 | 100 | 63.0 | - | 233.0 | [53] | |
Germany | 2015–2017 | 6–10 | 736 | 1 | 100 | 22.9 | 22.5 | 80.2 | [54] | |
Thailand (Bangkok) | 2016 | 2–18 | 221 | - | 88.6 | (214.4) | (252) | - | [57] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.1 | 99 | (185) | (212) | (832) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 0.5 | 99.6 | 14.0 (14.2) | 13.8 (13.6) | 51.5 (58.6) | Present study | |
MiBP | Canada | 2016–2017 | 6–11 | 536 | 0.57 * | 99.9 | 15 | 14 | 74 | [42] |
Europe **** | 2013–2016 | 6–12 | 1301 | 0.15–0.5 * | 100 | - | (41.8) | - | [51] | |
USA | 2015–2016 | 6–11 | 415 | 0.8 | - | 11.2 | 11.6 | 59.7 | [52] | |
Czech Republic | 2016 | 5 and 9 | 370 | 2.7 | 100 | 44.1 | - | 233.6 | [53] | |
Germany | 2015–2017 | 6–10 | 736 | 1 | - | (27.1) | (24.7) | (97.9) | [54] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 1.5 | 94 | (32.1) | (36.8) | (176) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 2 | 98.6 | 18.4 (18.7) | 18.4 (17.6) | 83.2 (85.4) | Present study | |
MBzP | Iran (Isfahan) | 2016 | 6–18 | 242 | - | 100 | 173.17 | 240.77 | - | [50] |
Canada | 2016–2017 | 6–11 | 537 | 0.37 * | 99.4 | 10 | 9.6 | 58 | [42] | |
Europe **** | 2013–2016 | 6–12 | 1300 | 0.06–0.5 * | 99.9 | - | (5.0) | - | [51] | |
South Korea | 2015–2017 | 6–11 | 839 | - | - | - | 3.3 | - | [48] | |
USA | 2015–2016 | 6–11 | 415 | 0.3 | - | 10.7 | 10.9 | 81.1 | [52] | |
Czech Republic | 2016 | 5 and 9 | 370 | 1.9 | 71.6 | 3.7 | - | 32.9 | [53] | |
Germany | 2015–2017 | 6–10 | 736 | 0.2 | 100 | 3.4 | 3.2 | 19 | [54] | |
China (Shenzhen) | 2016–2017 | 6–8 | 1490 | 0.3 | 25 | (0.44) | - | (2.75) | [56] | |
Spain (Valencia Region) | 2016 | 5–12 | 557 | 1 | 88.2 | 3.0 (3.0) | 2.8 (2.9) | 17.8 (19.5) | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dualde, P.; León, N.; Sanchis, Y.; Corpas-Burgos, F.; Fernández, S.F.; Hernández, C.S.; Saez, G.; Pérez-Zafra, E.; Mora-Herranz, A.; Pardo, O.; et al. Biomonitoring of Phthalates, Bisphenols and Parabens in Children: Exposure, Predictors and Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 8909. https://doi.org/10.3390/ijerph18178909
Dualde P, León N, Sanchis Y, Corpas-Burgos F, Fernández SF, Hernández CS, Saez G, Pérez-Zafra E, Mora-Herranz A, Pardo O, et al. Biomonitoring of Phthalates, Bisphenols and Parabens in Children: Exposure, Predictors and Risk Assessment. International Journal of Environmental Research and Public Health. 2021; 18(17):8909. https://doi.org/10.3390/ijerph18178909
Chicago/Turabian StyleDualde, Pablo, Nuria León, Yovana Sanchis, Francisca Corpas-Burgos, Sandra F. Fernández, Cristina S. Hernández, Guillermo Saez, Erika Pérez-Zafra, Antonio Mora-Herranz, Olga Pardo, and et al. 2021. "Biomonitoring of Phthalates, Bisphenols and Parabens in Children: Exposure, Predictors and Risk Assessment" International Journal of Environmental Research and Public Health 18, no. 17: 8909. https://doi.org/10.3390/ijerph18178909
APA StyleDualde, P., León, N., Sanchis, Y., Corpas-Burgos, F., Fernández, S. F., Hernández, C. S., Saez, G., Pérez-Zafra, E., Mora-Herranz, A., Pardo, O., Coscollà, C., López, A., Yusà, V., & on behalf of the BIOVAL Task Force. (2021). Biomonitoring of Phthalates, Bisphenols and Parabens in Children: Exposure, Predictors and Risk Assessment. International Journal of Environmental Research and Public Health, 18(17), 8909. https://doi.org/10.3390/ijerph18178909