Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports
Abstract
:1. Introduction
2. International Trade in Spanish Wine
3. Materials and Methods
3.1. Multi-Regional Input-Output (MRIO) Model
3.2. Database
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Sánchez, J.L. El valor social y territorial del vino en España. In La Economía del Vino en España y en el Mundo; Compés, R., Castillo, J.S., Eds.; Cajamar Caja Rural: Almería, Spain, 2014. [Google Scholar]
- Dascalau, I.; Manescu, C.; Mateo Sirb, N. The impact of the wine sector on economy. J. Biotechnol. 2019, 305, S86. [Google Scholar] [CrossRef]
- Menrad, K. Innovations in the food industry in Germany. Res. Policy 2004, 33, 845–878. [Google Scholar] [CrossRef]
- Hanin, H.; Couderc, J.P.; d’Hauteville, F.; Montaigne, É. (Eds.) La Vigne et le Vin. Mutations Économiques en France et Dans le Monde; La Documentation Française: Paris, France, 2010. [Google Scholar]
- Climent, E.; Escalona, A.I.; Loscertales, B.; Molina, T. Gobernanza en red y cultura técnico-empresarial en los sistemas productivos locales de Aragón. In Redes Socioinstitucionales, Estrategias de Innovación y Desarrollo Territorial en España; Salom, J., Albertos, J.M., Eds.; Publicaciones de la Universidad de Valencia; Instituto Interuniversitario de Desarrollo Local: Valencia, Spain, 2009. [Google Scholar]
- Brunori, G.; Rossi, A. Differentiating countryside: Social representations and governance patterns in rural areas with high social density: The case of Chianti, Italy. J. Rural. Stud. 2007, 23, 183–205. [Google Scholar] [CrossRef]
- Albertos, J.M.; Caravaca, I.; Méndez, R.; Sánchez, J.L. Desarrollo territorial y procesos de innovación socioeconómica en sistemas productivos locales. In Recursos Territoriales y Geografía de la Innovación Industrial en España; Alonso, J.L., Aparicio, J., Sánchez, J.L., Eds.; Ediciones Universidad de Salamanca: Salamanca, Spain, 2004. [Google Scholar]
- Anderson, K.; Nelgen, S.; Pinilla, V. Global Wine Markets, 1860 to 2016: A Statistical Compendium; University of Adelaide Press: Adelaide, Australia, 2017. [Google Scholar]
- Organización Internacional de la Viña y el Vino. Actualidad de la Coyuntura del Sector Vitivinícola Mundial. Available online: http://www.oiv.int/public/medias/7304/es-actualidad-de-la-coyuntura-del-sector-vitivin-cola-mundia.pdf (accessed on 12 February 2021).
- Cervera, F.J.; Compés, R. El comportamiento de las exportaciones españolas de vino en los mercados internacionales. Econ. Agrar. Recur. Nat. 2018, 18, 23–48. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.; Battaglene, T. Trends in Environmental Assurance in Key Australian Wine Export Markets; Winemakers’ Federation of Australia: Adelaide, Australia, 2007. [Google Scholar]
- Barber, N.; Taylor, C.; Strick, S. Wine consumers’ environmental knowledge and attitudes: Influence on willingness to purchase. Int. J. Wine Res. 2009, 1, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Gabzdylova, B.; Raffensperger, J.F.; Castka, P. Sustainability in the New Zealand wine industry: Drivers, stakeholders and practices. J. Clean. Prod. 2009, 17, 992–998. [Google Scholar] [CrossRef]
- Ene, S.A.; Teodosiu, C.; Robu, B.; Volf, I. Water footprint assessment in the wine making industry: A case study for a Romanian medium size production plant. J. Clean. Prod. 2014, 43, 122–135. [Google Scholar] [CrossRef]
- Marshall, R.S.; Cordano, M.; Silverman, M. Exploring individual and institutional drivers of proactive environmentalism in the US wine industry. Bus. Strategy Environ. 2005, 14, 92–109. [Google Scholar] [CrossRef]
- Navarro, A.; Puig, R.; Kiliç, E.; Penavayre, S.; Fullana-i-Palmer, P. Eco-innovation and benchmarking of carbon footprint data for vineyards and wineries in Spain and France. J. Clean. Prod. 2017, 142, 1661–1671. [Google Scholar] [CrossRef]
- Dede, D.; Didaskalou, E.; Bersimis, S.; Georgakellos, D. A Statistical Framework for Assessing Environmental Performance of Quality Wine Production. Sustainability 2020, 12, 10246. [Google Scholar] [CrossRef]
- Christ, K.; Burrit, R. Critical environmental concerns in wine production: An integrative review. J. Clean. Prod. 2013, 53, 232–242. [Google Scholar] [CrossRef]
- Oliveira, M.; Duarte, E. Integrated approach to winery waste: Waste generation and data consolidation. Frente. Entorno. Sci. Índ. 2016, 10, 168–176. [Google Scholar] [CrossRef]
- Ellison, K. The science of sustainable wine. Front. Ecol. Environ. 2008, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Mariani, A.; Vastola, A. Sustainable winegrowing: Current perspectives. Int. J. Wine Res. 2015, 7, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Point, E.; Tyedmers, P.; Naugler, C. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J. Clean. Prod. 2012, 27, 11–20. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Small amounts of pesticides reaching target insects. Environ. Dev. Sustain. 2012, 14, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Botías, C.; David, A.; Hill, E.M.; Goulson, D. Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci. Total Environ. 2016, 566–567, 269–278. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J.J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Li, M.; Mi, Z.; Coffman, D.M.; Wei, Y.M. Assessing the policy impacts on non-ferrous metals industry’s CO2 reduction: Evidence from China. J. Clean. Prod. 2018, 192, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Álvarez, I.; Segura, L.; Martínez-Ferrero, J. Carbon emission reduction: The impact on the financial and operational performance of international companies. J. Clean. Prod. 2015, 103, 149–159. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Sun, M.; Ma, L.; Li, X.; Shi, L. Estimating carbon emissions from the pulp and paper industry: A case study. Appl. Energy 2016, 184, 779–789. [Google Scholar] [CrossRef]
- Zeng, S.; Nan, X.; Liu, C.; Chen, J. The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices. Energy Policy 2017, 106, 111–121. [Google Scholar] [CrossRef]
- Calel, R.; Dechezleprêtre, A. Environmental policy and directed technological change: Evidence from the European carbon market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Cucchiella, F.; Gastaldi, M.; Trosini, M. Investments and cleaner energy production: A portfolio analysis in the Italian electricity market. J. Clean. Prod. 2017, 142, 121–132. [Google Scholar] [CrossRef]
- Kopidou, D.; Diakoulaki, D. Decomposing industrial CO2 emissions of Southern European countries into production-and consumption-based driving factors. J. Clean. Prod. 2017, 167, 1325–1334. [Google Scholar] [CrossRef]
- IPCC Climate Change. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge; University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Shakun, J.D.; Clark, P.U.; He, F.; Marcott, S.A.; Mix, A.C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012, 484, 49–54. [Google Scholar] [CrossRef]
- Wen, X.; Tang, G.; Wang, S.; Huang, J. Comparison of global mean temperature series. Adv. Clim. Chang. Res. 2011, 2, 187–192. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Shahbaz, M.; Hye, Q.M.A. The environmental Kuznets curve and the role of coal consumption in India: Cointegration and causality analysis in an open economy. Renew. Sustain. Energy Rev. 2013, 18, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Odjugo, P.A.O. Climate change and global warming: The Nigerian perspective. J. Sustain. Dev. Environ. Prot. 2011, 1, 6–17. [Google Scholar]
- Marron, D.; Todd, E.; Austin, L. Taxing Carbon: What, Why, and How; Tax Policy Center, Urban Institute & Brooking Institution: Washington, DC, USA, 2015. [Google Scholar]
- Zeng, S.; Liu, Y.; Liu, C.; Nan, X. A review of renewable energy investment in the BRICS countries: History, models, problems and solutions. Renew. Sustain. Energy Rev. 2017, 74, 860–872. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Apergis, N.; Gupta, R.; Lau, C.K.M.; Mukherjee, Z. Us state-level carbon dioxide emissions: Does it affect health care expenditure? Renew. Sustain. Energy Rev. 2018, 91, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Koh, S.C.; Santibanez-Gonzalez, E.D. Assessment of CHG emissions in Europe: Future estimates and policy implications. Environ. Eng. Manag. J. (EEMJ) 2020, 19, 131–142. [Google Scholar]
- Guo, M.; Meng, J. Exploring the driving factors of carbon dioxide emission from transport sector in Beijing–Tianjin–Hebei region. J. Clean. Prod. 2019, 226, 692–705. [Google Scholar] [CrossRef]
- Ozcan, B. The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis. Energy Policy 2013, 62, 1138–1147. [Google Scholar] [CrossRef]
- Meng, F.; Su, B.; Thomson, E.; Zhou, D.; Zhou, P. Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey. Appl. Energy 2016, 183, 1–21. [Google Scholar] [CrossRef]
- Baek, J.; Kim, H. Trade liberalization, economic growth, energy consumption and the environment: Time series evidence from G-20 economies. J. East Asian Econ. Integr. 2011, 15, 3–33. [Google Scholar]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Uddin, G.S.; Rehman, I.U.; Imran, K. Industrialization, electricity consumption and CO2 emissions in Bangladesh. Renew. Sustain. Energy Rev. 2014, 31, 575–586. [Google Scholar] [CrossRef]
- Cetin, M.; Ecevit, E.; Yucel, A.G. The impact of economic growth, energy consumption, trade openness, and financial development on carbon emissions: Empirical evidence from Turkey. Environ. Sci. Pollut. Res. 2018, 25, 36589–36603. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yin, F.; Zhang, Y.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China. Appl. Energy 2012, 100, 277–284. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2012, 70, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.S.; Law, S.H.; Zannah, T.I. Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO2 emissions in Nigeria. Environ. Sci. Pollut. Res. 2016, 23, 12435–12443. [Google Scholar] [CrossRef]
- Destek, M.A.; Balli, E.; Manga, M. The relationship between CO2 emission, energy consumption, urbanization and trade openness for selected CEECs. Res. World Econ. 2016, 7, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulali, U.; Ozturk, I.; Lean, H.H. The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe. Nat. Hazards 2015, 79, 621–644. [Google Scholar] [CrossRef]
- Zhang, Y.J. The impact of financial development on carbon emissions: An empirical analysis in China. Energy Policy 2011, 39, 2197–2203. [Google Scholar] [CrossRef]
- Lu, W.C. The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 1351–1365. [Google Scholar] [CrossRef]
- Khan, A.Q.; Saleem, N.; Fatima, S.T. Financial development, income inequality, and CO2 emissions in Asian countries using STIRPAT model. Environ. Sci. Pollut. Res. 2018, 25, 6308–6319. [Google Scholar] [CrossRef]
- Marcantonini, C.; Valero, V. Renewable energy and CO2 abatement in Italy. Energy Policy 2017, 106, 600–613. [Google Scholar] [CrossRef]
- Huisingh, D.; Zhang, Z.; Moore, J.C.; Qiao, Q.; Li, Q. Recent advances in carbon emissions reduction: Policies, technologies, monitoring, assessment and modeling. J. Clean. Prod. 2015, 103, 1–12. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, C.; Su, B.; Zeng, S. Research on a single policy or policy mix in carbon emissions reduction. J. Clean. Prod. 2020, 267, 122030. [Google Scholar] [CrossRef]
- Fischer, C.; Springborn, M. Emissions targets and the real business cycle: Intensity targets versus caps or taxes. J. Environ. Econ. Manag. 2011, 62, 352–366. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, Y.; Guo, X. Dynamic interactive effect and co-design of SO2 emission tax and CO2 emission trading scheme. Energy Policy 2021, 152, 112212. [Google Scholar] [CrossRef]
- Gilinsky, A., Jr.; Newton, S.K.; Atkin, T.S.; Santini, C.; Cavicchi, A.; Casas, A.R.; Huertas, R. Perceived efficacy of sustainability strategies in the US, Italian, and Spanish wine industries: A comparative study. Int. J. Wine Bus. Res. 2015, 27, 164–181. [Google Scholar] [CrossRef]
- Szolnoki, G. A cross-cultural comparison of sustainability in the wine industry. J. Clean. Prod. 2013, 53, 243–251. [Google Scholar] [CrossRef]
- Pomarici, E.; Vecchio, R.; Mariani, A. Wineries’ Perception of Sustainability Costs and Benefits: An Exploratory Study in California. Sustainability 2015, 7, 16164–16174. [Google Scholar] [CrossRef] [Green Version]
- Stranieri, S.; Cavaliere, A.; Banterle, A. Voluntary traceability standards and the role of economic incentives. Br. Food J. 2016, 118, 1025–1040. [Google Scholar] [CrossRef]
- Galbreath, J.; Charles, D.; Oczkowski, E. The Drivers of Climate Change Innovations: Evidence from the Australian Wine Industry. J. Bus. Ethics 2016, 135, 217–231. [Google Scholar] [CrossRef]
- Soosay, C.; Fearne, A.; Dent, B. Sustainable value chain: A case study of Oxford Landing. Supply Chain Manag. 2012, 17, 68–77. [Google Scholar] [CrossRef]
- Corbo, C.; Lamastra, L.; Capri, E. From environmental to sustainability programs: A review of sustainability initiatives in the Italian wine sector. Sustainability 2014, 6, 2133–2159. [Google Scholar] [CrossRef] [Green Version]
- Signori, P.; Flint, D.J.; Golicic, S.L. Constrained innovation on sustainability in the global wine industry. J. Wine Res. 2017, 28, 71–90. [Google Scholar] [CrossRef]
- Sogari, G.; Mora, C.; Menozzi, D. Factors driving sustainable choice: The case of wine. Br. Food J. 2016, 118, 632–646. [Google Scholar] [CrossRef]
- Forbes, S.L.; Cohen, D.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef] [Green Version]
- Zucca, G.; Smith, D.; Mitry, D. Sustainable viticulture and winery practices in California: What is it and do customers care? Int. J. Wine Res. 2009, 2, 189–194. [Google Scholar]
- Pomarici, E.; Vecchio, R. Will sustainability shape the future wine market? Wine Econ. Policy 2019, 8, 1–4. [Google Scholar] [CrossRef]
- Gracia, A.; De Magistris, T. The demand for organic foods in the South of Italy: A discrete choice model. Food Policy 2008, 33, 386–396. [Google Scholar] [CrossRef]
- Sellers-Rubio, R.; Nicolau-Gonzalbez, J.L. Estimating the willingness to pay for a sustainable wine using a Heckit model. Wine Econ. Policy 2016, 5, 96–104. [Google Scholar] [CrossRef]
- Mueller, S.; Remaud, H. Impact of corporate social responsibility claims on consumer food choice. Br. Food J. 2013, 115, 142–166. [Google Scholar] [CrossRef]
- Baird, T.; Hall, C.M.; Castka, P. New Zealand Winegrowers Attitudes and Behaviours towards Wine Tourism and Sustainable Winegrowing. Sustainability 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, M.; Di Vita, G.; Monaco, L. Exploring environmental consciousness and consumer preferences for organic wines without sulfites. J. Clean. Prod. 2016, 120, 64–71. [Google Scholar] [CrossRef]
- Schäufele, I.; Hamm, U. Consumers’ perceptions, preferences and willingness-to-pay for wine with sustainability characteristics: A review. J. Clean. Prod. 2017, 147, 379–394. [Google Scholar] [CrossRef]
- McLaughlin, L. Virtuous vino. Time Magazine, 22 February 2007. [Google Scholar]
- Vecchio, R. Determinants of willingness-to-pay for sustainable wine: Evidence from experimental auctions. Wine Econ. Policy 2013, 2, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Pomarici, E.; Vecchio, R. Millennial generation attitudes to sustainable wine: An exploratory study on Italian consumers. J. Clean. Prod. 2014, 66, 537–545. [Google Scholar] [CrossRef]
- Szolnoki, G.; Hauck, K. Analysis of German wine consumers’ preferences for organic and non-organic wines. Br. Food J. 2020, 122, 2077–2087. [Google Scholar] [CrossRef]
- Annunziata, E.; Pucci, T.; Frey, M.; Zanni, L. The role of organizational capabilities in attaining corporate sustainability practices and economic performance: Evidence from Italian wine industry. J. Clean. Prod. 2018, 171, 1300–1311. [Google Scholar] [CrossRef]
- Richter, B.; Hanf, J. Cooperatives in the Wine Industry: Sustainable Management Practices and Digitalisation. Sustainability 2021, 13, 5543. [Google Scholar] [CrossRef]
- Flores, S.S. What is sustainability in the wine world? A cross-country analysis of wine sustainability frameworks. J. Clean. Prod. 2018, 172, 2301–2312. [Google Scholar] [CrossRef]
- Galletto, L.; Barisan, L. Carbon Footprint as a Lever for Sustained Competitive Strategy in Developing a Smart Oenology: Evidence from an Exploratory Study in Italy. Sustainability 2019, 11, 1483. [Google Scholar] [CrossRef] [Green Version]
- Barisan, L.; Lucchetta, M.; Bolzonella, C.; Boatto, V. How Does Carbon Footprint Create Shared Values in the Wine Industry? Empirical Evidence from Prosecco Superiore PDO’s Wine District. Sustainability 2019, 11, 3037. [Google Scholar] [CrossRef] [Green Version]
- Chiusano, L.; Cerutti, A.K.; Cravero, M.C.; Bruun, S.; Gerbi, V. An Industrial Ecology approach to solve wine surpluses problem: The case study of an Italian winery. J. Clean. Prod. 2015, 91, 56–63. [Google Scholar] [CrossRef]
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability assessment in wine-grape growing in the new world: Economic, environmental, and social indicators for agricultural businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef] [Green Version]
- Remaud, H.; Mueller, S.; Chvyl, P.; Lockshin, L. Do Australian wine consumers value organic wine? In Proceedings of the 4th International Conference of the Academy of Wine Business Research, Siena, Italy, 17–19 July 2008; AWBR Academy of Wine Business Research: Siena, Italy, 2008. [Google Scholar]
- De Steur, H.; Temmerman, H.; Gellynck, X.; Canavari, M. Drivers, adoption, and evaluation of sustainability practices in Italian wine SMEs. Bus. Strategy Environ. 2020, 29, 744–762. [Google Scholar] [CrossRef]
- Pullman, M.E.; Maloni, M.J.; Dillard, J. Sustainability practices in food supply chains: How is wine different? J. Clean. Prod. 2010, 21, 35–56. [Google Scholar] [CrossRef]
- Giacomarra, M.; Galati, A.; Crescimanno, M.; Tinervia, S. The integration of quality and safety concerns in the wine industry: The role of third-party voluntary certifications. J. Clean. Prod. 2016, 112, 267–274. [Google Scholar] [CrossRef]
- Bolea, L.; Duarte, R.; Sánchez-Chóliz, J. Exploring carbon emissions and international inequality in a globalized world: A multiregional-multisectoral perspective. Resour. Conserv. Recycl. 2020, 152, 104516. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 2018, 11, 314–321. [Google Scholar] [CrossRef]
- López, L.A.; Cadarso, M.A.; Ortiz, M. La huella de carbono del comercio internacional español. ICE Rev. Econ. 2020, 913, 141–165. [Google Scholar] [CrossRef]
- Avetisyan, M. Impacts of global carbon pricing on international trade, modal choice and emissions from international transport. Energy Econ. 2018, 76, 532–548. [Google Scholar] [CrossRef]
- Colman, T.; Päster, P. Red, white, and ‘green’: The cost of greenhouse gas emissions in the global wine trade. J. Wine Res. 2009, 20, 15–26. [Google Scholar] [CrossRef]
- Frohmann, A.; Herreros, S.; Mulder, N.; Olmos, X. Carbon Footprint and Food exports: Guidelines; Latam Economic Comission of the United Nations: New York, NY, USA, 2012. [Google Scholar]
- Xu, Y.; Dietzenbacher, E. A structural decomposition analysis of the emissions embodied in trade. Ecol. Econ. 2014, 101, 10–20. [Google Scholar] [CrossRef]
- Kastner, T.; Erb, K.; Haberl, H. Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environ. Res. Lett. 2014, 9, 034015. [Google Scholar] [CrossRef]
- Wiedmann, T. A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol. Econ. 2009, 69, 211–222. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J. A Definition of Carbon Footprint; Nova Science Publishers, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, S.; Bonamente, E.; Scrucca, F.; Merico, M.C.; Asdrubali, F.; Cotana, F. Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study. Sustainability 2016, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Scrucca, F.; Bonamente, E.; Rinaldi, S. Chapter 7—Carbon Footprint in the Wine Industry. In Environmental Carbon Footprints; Muthu, S.S., Ed.; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Bosco, S.; Di Bene, C.; Galli, M.; Remorini, D.; Massai, R.; Bonari, E. Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district in Tuscany, Italy. Ital. J. Agron. 2011, 6, 93–100. [Google Scholar] [CrossRef]
- Gazulla, C.; Raugei, M.; Fullana-i-Palmer, P. Taking a life cycle look at crianza wine production in Spain: Where are the bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Neto, B.; Dias, A.C.; Machado, M. Life cycle assessment of the supply chain of a Portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Pattara, C.; Raggi, A.; Cichelli, A. Life cycle assessment and carbon footprint in the wine supply-chain. Environ. Manag. 2012, 49, 1247–1258. [Google Scholar] [CrossRef]
- Schlich, E.H. From vineyard to point of sale: Allocation of energy use and CO2-emission to entire supply chains of wine. In Proceedings of the 4th Annual Conference of American Association of Wine Economists, Davis, CA, USA, 25–28 June 2010. [Google Scholar]
- Soja, G.; Zehetner, F.; Rampazzo-Todorovic, G.; Schildberger, B.; Hackl, K.; Hofmann, R.; Burger, E.; Omann, I. Wine production under climate change conditions: Mitigation and adaptation options from the vineyard to the sales booth. In Proceedings of the 9th European IFSA Symposium, Vienna, Austria, 4–7 July 2010. [Google Scholar]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Rugani, B.; Benetto, E. Tapping carbon footprint variations in the European wine sector. J. Clean. Prod. 2013, 43, 146–155. [Google Scholar] [CrossRef]
- Miller, R.; Blair, P. Input-Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Wiedmann, T.; Lenzen, M.; Turner, K.; Barrett, J. Examining the global environmental impact of regional consumption activities: Review of input–output models for the assessment of environmental impacts embodied in trade. Ecol. Econ. 2007, 61, 15–26. [Google Scholar] [CrossRef]
- Wiedmann., T.; Barrett, J. Policy-relevant applications of Environmentally extended MRIO databases—Experiences from the UK. Econ. Syst. Res. 2013, 25, 143–156. [Google Scholar] [CrossRef]
- Timmer, M.P.; Dietzenbacher, E.; Los, B.; Stehrer, R.; De Vries, G.J. An illustrated user guide to the world input–output database: The case of global automotive production. Rev. Int. Econ. 2015, 23, 575–605. [Google Scholar] [CrossRef]
- Observatorio Español del Mercado del Vino. Exportaciones Españolas de Vino y Productos Vitivinícolas. Available online: https://www.oemv.es/exportaciones-y-existencias-de-vino-en-espana (accessed on 15 February 2021).
- Rugani, B.; Vázquez-Rowe, I.; Benedetto, G.; Benetto, E. A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J. Clean. Prod. 2013, 54, 61–77. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, I.; Castillo-Valero, J.S.; Córcoles, C.; Carchano, M. Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports. Int. J. Environ. Res. Public Health 2021, 18, 9035. https://doi.org/10.3390/ijerph18179035
Carrasco I, Castillo-Valero JS, Córcoles C, Carchano M. Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports. International Journal of Environmental Research and Public Health. 2021; 18(17):9035. https://doi.org/10.3390/ijerph18179035
Chicago/Turabian StyleCarrasco, Inmaculada, Juan Sebastián Castillo-Valero, Carmen Córcoles, and Marcos Carchano. 2021. "Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports" International Journal of Environmental Research and Public Health 18, no. 17: 9035. https://doi.org/10.3390/ijerph18179035
APA StyleCarrasco, I., Castillo-Valero, J. S., Córcoles, C., & Carchano, M. (2021). Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports. International Journal of Environmental Research and Public Health, 18(17), 9035. https://doi.org/10.3390/ijerph18179035