Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Engine Parameters in Spark Ignition Operation Mode
2.2. Engine Parameters in HCCI Operation Mode
- −
- The initial air flow and fuel flow at the start of the engine in the spark ignition mode are those determined above: mair =12.9 m3/h, mfuel = 1.2 L/h;
- −
- The EGR temperature is 220 °C;
- −
- The temperature of the intake charge (air-EGR-fuel) is 180 °C;
- −
- The intake air flow of air = 6.6 m3/h;
- −
- The fuel consumption of fuel = 1.04 L/h.
2.3. Numerical Simulation of the HCCI Engine
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Air Pollution. WHO. Available online: http://www.who.int/airpollution/en/ (accessed on 25 May 2021).
- Burr, M.; Gregory, C. Vehicular exhaust. Encylopedia Environ. Health 2011, 49, 563–645. [Google Scholar]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. Rev. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef] [PubMed]
- Whichmann, H.E. Environmental pollutants: Diesel exhaust particles. Encyclopedia Respir. Med. 2006, 1, 96–100. [Google Scholar]
- Statescu, C.; Honceriu, C.; Jurcau, R.N.; Trus, C. An Original Study on the Correlations between Magnesium and Depression and their Cardiovascular Relevance. Rev. Chim. 2019, 70, 4102–4104. [Google Scholar] [CrossRef]
- Committee of Inquiry into Emission Measurements in the Automotive Sector. Car Emissions: Taking Tests Out of the Lab and onto the Road. 2016. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20160222STO15305/car-emissions-taking-tests-out-of-the-lab-and-onto-the-road (accessed on 25 May 2021).
- Peel, J.L.; Richard, H.; Valerie, G.; Armistead, G.R.; Lucas, N. Impact of Nitrogen and Climate Change Interactions on Ambient Air Pollution and Human Health. Biogeochemistry 2013, 114, 121–123. [Google Scholar] [CrossRef] [Green Version]
- World Bank Group. Pollution Prevention and Abatement Handboo; The International Bank for Reconstruction and Development: Washington, DC, USA; The World Bank: New York, NY, USA, 1998. [Google Scholar]
- Statescu, C.; Honceriu, C.; Trus, C. Does Magnesium Deficient Diet and its Associated Metabolic Dysfunctions Induces Anxiety-like Symptoms Further cardiovascular relevance. Rev. Chim. 2019, 70, 3579–3581. [Google Scholar] [CrossRef]
- Mavroudis, I.; Petrides, F.; Karantali, E.; Chatzikonstantinou, S.; McKenna, J.; Ciobica, A.; Iordache, A.-C.; Dobrin, R.; Trus, C.; Kazis, D. A voxel-wise meta-analysis on the cerebellum in essential tremor. Medicina (Lithuania) 2021, 57, 264. [Google Scholar]
- Carslaw, D.; Murrells, T.; Andersson, J.; Keenan, M. Have vehicle emissions of primary NO2 peaked? Faraday Discuss. 2016, 189, 439–454. [Google Scholar] [CrossRef]
- Degraeuwe, B.; Thunis, P.; Clappier, A.; Weiss, M.; Lefebvre, W.; Janssen, S.; Vranckx, S. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution–scenario analysis for the city of Antwerp. Belg. Atmos. Environ. 2016, 126, 218–224. [Google Scholar] [CrossRef]
- Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Gsella, A.; Amann, M. Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: Projections under current legislation. Atmos. Chem. Phys. 2014, 14, 813–829. [Google Scholar] [CrossRef] [Green Version]
- César, A.C.G.; Carvalho, J.A., Jr.; Nascimento, L.F.C. Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city. Braz. J. Med. Biol. Res. 2015, 48, 1130–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, M.; Zheng, Z.; Liu, H. Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines. Prog. Energy Combust. Sci. 2009, 35, 398–437. [Google Scholar] [CrossRef]
- Canakci, M. An Experimental Study for the Effects of Boost Pressure on the Performance and Exhaust Emissions of a DI-HCCI Gasoline Engine. Fuel 2008, 87, 1503–1514. [Google Scholar] [CrossRef]
- Ehleskog, R.; Ochoterena, R.; Andersson, S. Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine. SAE Tech. Pap. 2007, 2–5. [Google Scholar] [CrossRef]
- Baumgarten, C. Mixture Formation in Internal Combustion Engines; Springer: New York, NY, USA, 2006; pp. 211–223. [Google Scholar]
- Alshwawra, A.; Pasligh, H.; Hansen, H.; Dinkelacker, F. Increasing the roundness of deformed cylinder liner in internal combustion engines by using a non-circular liner profile. Int. J. Engine Res. 2021, 22, 1214–1221. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Q.; Yang, R.; Zhu, T.; Zhao, R.; Wang, Y. Investigation on the Effects of Pilot Injection on Low Temperature Combustion in High-Speed Diesel Engine Fueled with n-Butanol–Diesel Blends. Energy Convers. Manag. 2015, 106, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, B.M.; Davidson, D.F.; Hanson, R.K. Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures. Combust. Flame 2004, 139, 300–311. [Google Scholar] [CrossRef]
- Gan, S.; NG, H.K.; Pang, K.M. Homogeneous Charge Compression Ignition (HCCI) Combustion: Implementation and Effects on Pollutants in Direct Injection Diesel Engines. Appl. Energy 2011, 88, 559–567. [Google Scholar] [CrossRef]
- Kook, S.; Bae, C.; Miles, P.C.; Choi, D.; Pickett, L.M. The Influence of Charge Dilution and Injection Timing on Low-temperature Diesel Combustion and Emissions. SAE Tech. Pap. 2005, 114, 1575–1595. [Google Scholar]
- CHEMKIN-PRO, Version 15101; Reaction Design Inc.: San Diego, CA, USA, 2008; Available online: www.reactiondesign.com (accessed on 13 September 2020).
- Neely, G.D.; Sasaki, S.; Leet, J.A. Experimental Investigation of PCCI-di Combustion on Emissions in a Light-duty Diesel Engine. SAE Trans. 2004, 113, 197–207. [Google Scholar]
- Mobasheri, R.; Peng, Z.; Mirsalim, S.M. CFD Evaluation of Effects of Split Injection on Combustion and Emissions in a Diesel Engine. SAE Tech. Pap. 2011, 4–12. [Google Scholar] [CrossRef]
- Serrano, J.; Arnau, F.; Dolz, V.; Tiseira, A.; Cervelló, C. A Model of Turbocharger Radial Turbines Appropriate to be used in Zero-and one-Dimensional Gas Dynamics Codes for Internal Combustion Engines Modelling. Energy Convers. Manag. 2008, 49, 3729–3745. [Google Scholar] [CrossRef]
- Zhao, H. HCCI and CAI Engines for the Automotive Industry; Woodhead Publishing Limited: Abington, PA, USA, 2007; p. 544. [Google Scholar]
- García, M.T.; Aguilar, F.J.J.-E.; Lencero, T.S.; Villanueva, J.A.B. A new heat release rate (HRR) law for homogeneous charge compression ignition (HCCI) combustion mode. Appl. Therm. Eng. 2009, 29, 3654–3662. [Google Scholar] [CrossRef] [Green Version]
- Bodor, M.; Balta, S.; Pintilie, S.C.; Lazar, A.L.; Buruiana, D. Studies regarding the distribution and composition of particulate matters in the air of an industrialized city. Int. Multidiscip. Sci. GeoConf. SGEM 2016, 2, 587–592. [Google Scholar]
- Buruiana, D.L.; Lefter, D.; Tiron, G.L.; Balta, S.; Bordei, M. The influence on the environment factors of waste disposal in undeveloped areas. Ecol. Econ. Educt. Legis.-SGEM 2015, 2, 573–579. [Google Scholar]
- Helmantel, A.; Denbratt, I. HCCI Operation of a Passenger Car Common Rail Di Diesel Engine with Early Injection of Conventional Diesel Fuel. SAE Tech. Pap. 2004, 1–12. [Google Scholar] [CrossRef]
Type | Four Stroke, One Cylinder |
---|---|
Cylinder diameter | 85 mm |
Piston stroke | 115 mm |
Connecting rod length | 300 mm |
Cylinder displacement volume | 0.652 L |
Compression ratio | 10 |
Speed | Constant, 900 rpm |
Number of valves per cylinder | 2 |
Fuel | Gasoline (RON 95) |
Ignition | Spark ignition |
Air supply | Naturally aspirated |
Cooling | with water |
Start | With a 7 KW electric engine |
Intake Valve Opening Time | 10 CAD ATDC |
---|---|
Intake valve closing time | 215 CAD ATDC |
Exhaust valve opening time | 500 CAD ATDC |
Exhaust valve closing time | 10 CAD ATDC |
Parameter | Value | Measurement Unit | Observations | |
---|---|---|---|---|
Intake air | Temperature | 300 | K | |
Flow rate | 3.818 | g/s | Varies according to the EGR ratio. | |
Composition | O2 = 21 | % | ||
N2 = 79 | ||||
Fuel | Temperature | 300 | K | |
Flow rate | 0.211 | g/s | ||
Composition | C7H16 = 17 | % | ||
C6H5CH3 = 20 | ||||
C8H18 = 63 | ||||
Air + EGR Reactor | Residence time | 0.0055 | s | Varies according to the speed. |
Temperature | 460 | K | ||
Pressure | 1 | atm | ||
Air + EGR + Fuel Reactor | Residence time | 0.0083 | s | Varies according to the speed. |
Temperature | 450 | K | ||
Pressure | 1 | atm | ||
HCCI engine | Simulation time | 280 | CAD | |
Compression ratio | 10 | - | ||
Engine capacity | 0.652 | cm3 | ||
Connecting rod to crank radius ratio | 2.608 | - | ||
Speed | 900 | rpm | ||
Starting crank angle (ATDC) | −145 | CAD | ||
Coefficient a | 0.035 | - | ||
Coefficient b | 0.71 | - | ||
Coefficient c | 0 | - | ||
Chamber bore diameter | 8.5 | cm | ||
Prandtl Number | 0.7 | - | ||
Coefficient c2 | 3.24 | - | ||
Coefficient c11 | 2.28 | - | ||
Coefficient c12 | 0.308 | - | ||
Heat_Loss Reactor | Residence time | 0.0426 | s | Varies according to the speed. |
Temperature | 500 | K | ||
Pressure | 1 | atm | ||
Volume | 1013.41 | cm3 | ||
Internal surface area | 922.73 | cm2 | ||
Heat transfer coefficient | 0.00009 | cal/cm2·K·s | ||
Ambient temperature | 300 | K | ||
Exhaust gas flow rate | 4.544 | g/s | Varies according to the air and fuel flow and to the EGR ratio. | |
Splitter Reactor | The amount of EGR | 10 | % | The sum of these quantities must be equal with 1. |
The amount of exhaust gases | 90 | % |
EGR Ratio [%] | Intake Air Flow Mass [g/s] | Exhaust Gas Flow Mass [g/s] |
---|---|---|
10 | 3.818 | 4.476 |
30 | 2.9696 | 4.544 |
50 | 2.1211 | 4.762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buruiana, D.L.; Sachelarie, A.; Butnaru, C.; Ghisman, V. Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines. Int. J. Environ. Res. Public Health 2021, 18, 9075. https://doi.org/10.3390/ijerph18179075
Buruiana DL, Sachelarie A, Butnaru C, Ghisman V. Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines. International Journal of Environmental Research and Public Health. 2021; 18(17):9075. https://doi.org/10.3390/ijerph18179075
Chicago/Turabian StyleBuruiana, Daniela Laura, Adrian Sachelarie, Claudiu Butnaru, and Viorica Ghisman. 2021. "Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines" International Journal of Environmental Research and Public Health 18, no. 17: 9075. https://doi.org/10.3390/ijerph18179075
APA StyleBuruiana, D. L., Sachelarie, A., Butnaru, C., & Ghisman, V. (2021). Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines. International Journal of Environmental Research and Public Health, 18(17), 9075. https://doi.org/10.3390/ijerph18179075