Incidence and Prevalence Analysis of Non-Small-Cell and Small-Cell Lung Cancer Using Administrative Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
3. Results
3.1. Latent Class Analysis
3.2. External Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AIOM. AIRTUM Working Group the Numbers of Cancer in Italy; Intermedia Editore: Brescia, Italy, 2019. [Google Scholar]
- Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.R.; Yatabe, Y.; Beer, D.G.; Powell, C.; Riely, G.J.; Van Schil, P.E.; et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J. Thorac. Oncol. 2011, 6, 244–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol. 2017, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M. Classification and pathology of lung cancer. Surg. Oncol. Clin. N. Am. 2016, 25, 447–468. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raso, M.; Bota-Rabassedas, N.; Wistuba, I. Pathology and Classification of SCLC. Cancers 2021, 13, 820. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Foster, P.J.; Saag, K.G. Tools and methods for real-world evidence generation. Rheum. Dis. Clin. N. Am. 2019, 45, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Abraha, I.; Serraino, D.; Giovannini, G.; Stracci, F.; Casucci, P.; Alessandrini, G.; Bidoli, E.; Chiari, R.; Cirocchi, R.; De Giorgi, M.; et al. Validity of ICD-9-CM codes for breast, lung and colorectal cancers in three Italian administrative healthcare databases: A diagnostic accuracy study protocol: Table 1. BMJ Open 2016, 6, e010547. [Google Scholar] [CrossRef] [PubMed]
- McGuire, A.; Martin, M.; Lenz, C.; Sollano, J.A. Treatment cost of non-small cell lung cancer in three European countries: Comparisons across France, Germany, and England using administrative databases. J. Med. Econ. 2015, 18, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.D.; Scoggins, J.F.; Blough, D.K.; McDermott, C.L.; Reyes, C.M. Sensitivity of administrative claims to identify incident cases of lung cancer: A comparison of 3 health plans. J. Manag. Care Pharm. 2009, 15, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duh, M.S.; Weiner, J.R.; Lefebvre, P.; Neary, M.; Skarin, A.T. Costs associated with intravenous chemotherapy administration in patients with small cell lung cancer: A retrospective claims database analysis. Curr. Med. Res. Opin. 2008, 24, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.M.; Chen, Y.-W.; Fernandes, A.W. Validation of a case-finding algorithm for identifying patients with non-small cell lung cancer (NSCLC) in administrative claims databases. Front. Pharmacol. 2017, 8, 883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luise, C.; Sugiyama, N.; Morishima, T.; Higuchi, T.; Katayama, K.; Nakamura, S.; Chen, H.; Nonnenmacher, E.; Hase, R.; Jinno, S.; et al. Validity of claims-based algorithms for selected cancers in Japan: Results from the VALIDATE-J study. Pharmacoepidemiol. Drug Saf. 2021. [Google Scholar] [CrossRef]
- ISTAT. Demography in Figures. Available online: http://www.demo.istat.it/ (accessed on 31 May 2021).
- AIOM. AIRTUM Working Group the Numbers of Cancer in Italy—The Regional Data; Intermedia Editore: Brescia, Italy, 2018. [Google Scholar]
- Italian Association of Medical Oncology (AIOM). Linee Guida Neoplasie Del Polmone (Guidelines on Lung Neplasms). 2020. Available online: https://www.aiom.it/wp-content/uploads/2020/10/2020_LG_AIOM_Polmone.pdf, (accessed on 30 April 2021).
- Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-0-470-46363-5. [Google Scholar]
- Lin, T.H.; Dayton, C.M. Model selection information criteria for non-nested latent class models. J. Educ. Behav. Stat. 1997, 22, 249–264. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Krishnan, T. The EM Algorithm and Extensions, 2nd ed.; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 978-0-470-19161-3. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Mazzanti, N.A.; Scauri, C.; Domini, B.; Vassallo, C.; Cusato, S.; De Fino, C.; De Marinis, F. Advanced-metastatic non-small-cell lung cancer EGFR-mutated in Italy: Patient management costs and potential productivity losses. Glob. Reg. Health Technol. Assess. Ital. N. Eur. Span. 2019, 2019, 228424031987789. [Google Scholar] [CrossRef]
- Carrato, A.; Vergnenègre, A.; Thomas, M.; McBride, K.; Medina, J.; Cruciani, G. Clinical management patterns and treatment outcomes in patients with non-small cell lung cancer (NSCLC) across Europe: EPICLIN-Lung study. Curr. Med. Res. Opin. 2013, 30, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung Cancer. N. Engl. J. Med. 2008, 359, 1367–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AIOM. AIRTUM Working Group the Numbers of Cancer in Italy; Intermedia Editore: Brescia, Italy, 2016. [Google Scholar]
NSCLC | SCLC | ||
---|---|---|---|
Drug | ATC Code | Drug | ATC Code |
Crizotinib | L01XE16 | Etoposide | L01CB01 |
Aletinib | L01XE36 | Topotecan | L01XX17 |
Ceritinib | L01XE44 | Carboplatin | L01XA02 |
Osimertinib | L01XE35 | Cisplatin | L01XA01 |
Gefitinib | L01XE02 | ||
Erlotinib | L01XE03 | ||
Afatinib | L01XE13 | ||
Nivolumab | L01XC17 | ||
Pembrolizumab | L01XC18 | ||
Bevacizumab | L01XC07 | ||
Irinotecan | L01XX19 | ||
Atezolizumab | L01XC32 | ||
Durvalumab | L01XC28 | ||
Platinum-based chemotherapy | L01XA |
Procedure Description | Radiotherapy Treatment | Chemotherapy Treatment |
---|---|---|
Head CT with and without contrast | ||
Thoracic CT | ||
Thoracic CT with and without contrast | ||
Upper abdomen CT | ||
Upper abdomen CT with and without contrast | ||
Complete abdominal CT | ||
Complete abdominal CT with and without contrast | ||
MRI Brain and encephalic trunk | ||
MRI brain and encephalic trunk with and without contrast | ||
PET (quantitative) | ||
Total body PET | ||
Telecobalt therapy multiple fields, moving | X | |
Teletherapy with linear accelerator with multiple fields or movement for 3D technique | X | |
Teletherapy with linear accelerator with multiple fields or movement with modulation of intensity | X | |
Teletherapy with linear accelerator fixed field | X | |
Teletherapy with linear accelerator with multiple fields, moving | X | |
Teletherapy with linear accelerator flash technique | X | |
Radiotherapy with linear accelerator with MLC for IMRT static or dynamic multiple fields or moving | X | |
Electron beam teletherapy with one or more fixed fields | X | |
Total skin electron irradiation (TSEI/TSEBI) | X | |
Injection or infusion of chemotherapy for tumor | X | |
Antitumoral therapy with infusion of drug | X | |
Antitumoral therapy with oral drugs or IM or subcutaneous injection | X |
Procedure Code | Procedure Description | Procedure on Respiratory System | Radiotherapy Treatment |
---|---|---|---|
32 32.0–32.9 | Excision of lung and bronchus | X | |
33 33.0–33.9 | Other operations on lung and bronchus | X | |
34 34.0–34.9 | Operations on the chest wall, pleura, mediastinum, and diaphragm | X | |
92.21 | Superficial radiation | X | |
92.22 | Orthovoltage radiation | X | |
92.23 | Radioisotopic teleradiotherapy | X | |
92.24 | Teleradiotherapy using photons | X | |
92.25 | Teleradiotherapy using electrons | X | |
92.26 | Teleradiotherapy of other particulate radiation | X | |
92.27 | Implantation or insertion of radioactive elements | X | |
92.28 | Injection or instillation of radioisotopes | X | |
92.29 | Other radiotherapeutic procedure | X | |
92.30 | Stereotactic radiosurgery, not otherwise specified | X | |
92.31 | Single source photon radiosurgery | X | |
92.32 | Multi-source photon radiosurgery | X | |
92.33 | Particulate radiosurgery | X | |
92.39 | Stereotactic radiosurgery, not elsewhere classified | X |
Variable | Alive at 31/12/2017 | Dead at 31/12/2017 | Total |
---|---|---|---|
N = 8721 | N = 22,706 | N = 31,427 | |
Sex, N (%) | |||
Females | 2894 (33.2%) | 6202 (27.3%) | 9096 (.28.9%) |
Males | 5827 (66.8%) | 16,504 (72.7%) | 22,331 (71.1%) |
Age, average (SD) | 68.4 (10.4) | 70.3 (10.5) | 69.7 (10.5) |
Latent Class Model | NSCLC, % (SE) | SCLC, % (SE) | AIC |
---|---|---|---|
Incident cases | |||
Model without information on radiotherapy treatment | 84.8% (1.1%) | 15.2% (1.1%) | 12,292.81 |
Model with information on radiotherapy treatment | 82.9% (1.4%) | 17.1% (1.4%) | 14,381.76 |
Prevalent cases | |||
Model without information on radiotherapy treatment | 89.1% (1%) | 10.9% (1%) | 18,211.88 |
Model with information on radiotherapy treatment | 80.2% (1.2%) | 19.7% (1.2%) | 21,131.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricotti, A.; Sciannameo, V.; Balzi, W.; Roncadori, A.; Canavese, P.; Avitabile, A.; Massa, I.; Berchialla, P. Incidence and Prevalence Analysis of Non-Small-Cell and Small-Cell Lung Cancer Using Administrative Data. Int. J. Environ. Res. Public Health 2021, 18, 9076. https://doi.org/10.3390/ijerph18179076
Ricotti A, Sciannameo V, Balzi W, Roncadori A, Canavese P, Avitabile A, Massa I, Berchialla P. Incidence and Prevalence Analysis of Non-Small-Cell and Small-Cell Lung Cancer Using Administrative Data. International Journal of Environmental Research and Public Health. 2021; 18(17):9076. https://doi.org/10.3390/ijerph18179076
Chicago/Turabian StyleRicotti, Andrea, Veronica Sciannameo, William Balzi, Andrea Roncadori, Paola Canavese, Arianna Avitabile, Ilaria Massa, and Paola Berchialla. 2021. "Incidence and Prevalence Analysis of Non-Small-Cell and Small-Cell Lung Cancer Using Administrative Data" International Journal of Environmental Research and Public Health 18, no. 17: 9076. https://doi.org/10.3390/ijerph18179076
APA StyleRicotti, A., Sciannameo, V., Balzi, W., Roncadori, A., Canavese, P., Avitabile, A., Massa, I., & Berchialla, P. (2021). Incidence and Prevalence Analysis of Non-Small-Cell and Small-Cell Lung Cancer Using Administrative Data. International Journal of Environmental Research and Public Health, 18(17), 9076. https://doi.org/10.3390/ijerph18179076