Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation
2.3. Analytical Procedures
2.4. Assessment of Bottom Sediments Pollution Degree
2.5. Statistical Analysis
3. Results and Discussion
3.1. PTEs Content in Bottom Sediments
3.2. Assessment of Contamination with PTEs (Igeo, PLI, CF)
3.3. PTEs Content in Glyceria Maxima
3.4. BF and TF Coefficient
3.5. Spatial Distribution of PTEs Content
3.6. PTEs Content Results in Rivers around the World
3.7. Identification of Pollution Sources Using Statistical Analyzes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Harguinteguy, C.A.; Fernández Cirelli, A.; Luisa Pignata, M. Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina). Microchem. J. 2014, 114, 111–118. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Shinn, C.; Dauba, F.; Grenouillet, G.; Guenard, G.; Lek, S. Temporal variation of heavy metal contamination in fish of the river lot in southern France, Ecotoxicol. Environ. Saf. 2009, 72, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Hu, X.; Tao, X.; Yu, H.; Zhang, X. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere 2013, 93, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Global Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Quinton, J.N.; Govers, G.; Van Oost, K.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010, 3, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, B.H. Humans as geologic agents: A deep-time perspective. Geology 2005, 33, 161. [Google Scholar] [CrossRef]
- Chen, F.; Lin, J.; Qian, B.; Wu, Z.; Huang, P.; Chen, K.; Li, T.; Cai, M. Geochemical Assessment and Spatial Analysis of Heavy Metals in the Surface Sediments in the Eastern Beibu Gulf: A Reflection on the Industrial Development of the South China Coast. Int. J. Environ. Res. Public Health 2018, 15, 496. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Bao, J.; Zheng, J.; Xua, F.; Wang, L. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. Int. J. Phytoremediat. 2018, 20, 1–7. [Google Scholar] [CrossRef]
- Chopra, A.K.; Pathak, C.; Prasad, G. Scenario of heavy metal contamination in agricultural soil and its management. J. Appl. Nat. Sci. 2009, 1, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, T.V.; Sudarshan, P.B.; Mahesh, M.K.; Vinay, S. Spatial patterns of heavy metal accomulation in sediments and macrophytes of Bellandur wetland, Bangalore. J. Environ. Manag. 2018, 206, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Weber, D.J. (Eds.) Ecophysiology of high salinity tolerant plants. In Tasks for Vegetation Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 40. [Google Scholar]
- Li, J.; Huang, Z.Y.; Hu, Y.; Yang, H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China Environ. Sci. Pollut. Res. 2013, 20, 2937–2947. [Google Scholar] [CrossRef]
- Fang, Y.; Nie, Z.; Liu, F.; Die, Q.; He, J.; Huang, Q. Concentration and health risk evaluation of heavy metals in market sold vegetables and fishes based on questionaries in Beijing, China. Environ. Sci. Pollut. Res. 2014, 21, 11401–11408. [Google Scholar] [CrossRef]
- Bortey-Sam, N.; Nakayama, S.M.; Ikenaka, Y.; Akoto, O.; Baidoo, E.; Mizukawa, H.; Ishizuka, M. Health risk assessment of heavy metals and metalloids in drinking water from communities near gold mines in Tarkwa, Ghana. Environ. Monit. Assess. 2015, 187, 397. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.K.; Pathak, C. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environ. Monit. Assess. 2015, 187, 445. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xiao, W.; Zhang, Y.; Zhao, S.; Wang, G.; Zhang, Q.; Wang, Q. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environ. Monit. Assess. 2015, 187, 378. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cui, S.; Zhang, F.; Hough, R.; Fu, Q.; Zhang, Z.; Gao, S.; An, L. Concentrations, Possible Sources and Health Risk of Heavy Metals in Multi-Media Environment of the Songhua River, China. Int. J. Environ. Res. Public Health 2020, 17, 1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rungwa, S.; Arpa, G.; Sakulas, H.; Harakuwe, A.; Tim, D. Phytoremediation—An eco-friendly and sustainable method of heavy metal removal from closed mine environments in Papua New Guinea. Proced. Earth Planet. Sci. 2013, 6, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Vardanyan, L.; Schmieder, K.; Sayadyan, H.; Heege, T.; Heblinski, A.T. Heavy metal accumulation by certain aquatic macrophytes from Lake Sevan (Armenia). In Proceedings of the 12th World Lake Conference, Jaipur, India, 28 October–2 November 2007; Ministry of Environment and Forests, Government of India: New Delhi, India, 2007; p. 6. [Google Scholar]
- Davydova, O.A.; Klimov, E.S.; Vaganova, E.S.; Vaganov, A.S. Liyanie Fiziko-Khimicheskikh Faktorov na Soderzhanie Tyazhelykh Metallov v Vodnykh Ekosistemakh (Influence of Physicochemical Factors on the Content of Heavy Metals in Aquatic Eсosystems). 2014. Available online: http://dx.doi.org/10.14529/chem170104 (accessed on 10 August 2021).
- Milačič, R.; Zulian, T.; Vidmar, J.; Oprčkal, P.; Ščančar, J. Potentially toxic elements in water and sediments of the Sava River under extreme flow events. Sci. Total Environ. 2017, 605–606, 894–905. [Google Scholar] [CrossRef]
- Li, H.; Chai, L.; Yang, Z.; Yang, W.; Liao, Q.; Cao, Z.; Peng, Y. Systematic Assessment of Health Risk from Metals in Surface Sediment of the Xiangjiang River, China. Int. J. Environ. Res. Public Health 2020, 17, 1677. [Google Scholar] [CrossRef] [Green Version]
- Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Risk Assessment of Heavy Metals in Surface Sediments from the Yanghe River, China. Int. J. Environ. Res. Public Health 2014, 11, 12441–12453. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xiao, M.; Zhang, J.; Liu, C.; Qiu, Z.; Cai, Y. Spatial Distribution, Chemical Fraction and Fuzzy Comprehensive Risk Assessment of Heavy Metals in Surface Sediments from the Honghu Lake, China. Int. J. Environ. Res. Public Health 2018, 15, 207. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.J.; Battams, Z.M.; Pearl, S.H.; Hiscock, K.M. Mitigating river sediment enrichment through the construction of roadside wetlands. J. Environ. Manag. 2019, 231, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharipova, M.Y. Algological assessment of ecotonal communities in zones of industrial pollution. Russ. J. Ecol. 2007, 38, 135–139. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Li, B.; Xiao-Long, L.; Jian, H.; Jun, L.; Zhong-Liang, W.; Guilin, H.; Si-Liang, L.; Cong-Qiang, L. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. Int. J. Environ. Res. Public Health 2018, 15, 2857. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Wang, B.; Zhang, C.; Li, S.; Wen, J.; Lua, G.; Zhu, C.; Zhou, Y. Heavy metals contamination and accumulation in submerged macrophytes in an urban river in China. Int. J. Phytoremediat. 2018, 20, 839–846. [Google Scholar] [CrossRef]
- Jackson, L.J. Paradigms of metal accumulation in rooted aquatic vascular plants. Sci. Total Environ. 1998, 219, 223–231. [Google Scholar] [CrossRef]
- Fritioff, A.; Greger, M. Uptake and distribution of Zn, Cu, Cd and Pb in an aquatic plant Potamogeton natans. Chemosphere 2006, 63, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, A.J.; Hawker, D.W.; Greenway, M. Metal accumulation in aquatic macrophytes from southest Queensland, Australia. Chemosphere 2002, 48, 653–663. [Google Scholar] [CrossRef]
- Szymanowska, A.; Samecka-Cymerman, A.; Kempers, A. Heavy metals in three lakes in West Poland, Ecotoxicol. Environ. Saf. 1999, 43, 21–29. [Google Scholar] [CrossRef]
- Sawidis, T.; Marnasidis, A.; Zachariadis, G.; Stratis, J. A study of air pollution with heavy metals in Thessaloniki city (Greece) using trees as biological indicators. Arch. Environ. Contam. Toxicol. 1995, 28, 118–124. [Google Scholar] [CrossRef]
- Peng, K.; Luo Ch Lou, L.; Shen, Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci. Total Environ. 2008, 392, 22–29. [Google Scholar] [CrossRef]
- Esmaeilzadeh, M.; Karbassi, A.; Moattar, F. Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran. Chin. J. Oceanol. Limnol. 2016, 34, 810–820. [Google Scholar] [CrossRef]
- Ji, S.; Liu, E.F.; Zhu, Y.X.; Hu, S.Y.; Qu, W.C. Distribution and chemical fractionation of heavy metals in recent sediments from Lake Taihu, China. Hydrobiologia 2007, 581, 141–150. [Google Scholar]
- Yang, H.; Shen, Z.; Zhu, S.; Wang, W. Heavy metals in wetland plants and soil of Lake Taihu, China. Environ. Toxicol. Chem. 2008, 27, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Schmieder, K.; Bocker, R. Spatial patterns of submerged macrophytes and heavy metals in the hypertrophic, contaminated, shallow reservoir Lake Qattieneh/Syria. Limnologica 2010, 40, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Chetia, M.; Singh, L.; Chattopadhyay, B.; Datta, D.; Mukhopadhyay, S.K. A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environ. Monit. Assess. 2011, 178, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.A.; Badr, N.E.; Khatib, A.; Kassem, A.A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ. Monit. Assess. 2012, 184, 1753–1771. [Google Scholar] [CrossRef] [PubMed]
- Galal, T.M.; Farahat, E.A. The invasive macrophyte Pistia stratiotes as a bioindicator for water pollution in Lake Mariut, Egypt. Environ. Monit. Assess. 2015, 187, 701. [Google Scholar] [CrossRef]
- Meitei, M.D.; Prasad, M.N.V. Bioaccumulation of nutrients and metals in sediment, water, and phoomdi from Loktak Lake (Ramsar site), northeast India: Phytoremediation options and risk assessment. Environ. Monit. Assess. 2016, 188, 329. [Google Scholar] [CrossRef]
- Shukla, R.; Sharma, Y.K. Heavy Metal Toxicity in Environment; Trivedi, A., Jaiswal, K., Pandey, B.N., Trivedi, S.P., Eds.; Environmental Monitoring and Management, Alfa Publications: New Delhi, India, 2009; pp. 137–162. [Google Scholar]
- Chiudionia, F.; Trabace, T.; Di Gennaro, S.; Palma, A.; Manesc, F.; Mancinia, L. Phytoremediation applications in natural condition and in mesocosm: The uptake of cadmium by Lemna minuta Kunth, a non-native species in Italian watercourses. Int. J. Phytoremediat. 2017, 19, 371–376. [Google Scholar] [CrossRef]
- WIOŚ Białystok. 2012: Projekt Budowlany i Projekt Wykonawczy Zabudowy Przeciwerozyjnej i Udrożnienia Koryta Rzeki Pisy od Ujścia do Narwi do Miejscowości Jeże. Zał. do Decyzji PBŚ.6220.5.2012 z dn. 30.11.2012. Available online: https://studylibpl.com/doc/1027033/decyzja-o-%C5%9Brodowiskowych-uwarunkowaniach--zgodnie-z-art (accessed on 10 August 2021).
- WIOŚ Białystok. 2014: Informacja Podlaskiego Wojewódzkiego Inspektora OŚ w Białymstoku o Stanie Środowiska na Terenie Powiatu Kolneńskiego za rok 2013 Łomża. Available online: http://www.wios.bialystok.pl/pdf/powiat_kol_2014.pdf (accessed on 10 August 2021).
- Sawicka, J.; Tomaszewska, A. Program Ochrony Środowiska dla Miast i Gminy Pisz na Lata 2012–2015 z Perspektywą do Roku 2018; Hydros Jacek Sawicki i Joanna Sawicka Spolka cywilna, Firma konsultingowo-projektowa: Pisz, Poland, 2012. [Google Scholar]
- Lis, J.I.; Pasieczna, A. Geochemical Atlas of Polond 1:2 500 000; Państwowy Instytut Geologiczny: Warszawa, Poland, 1995. [Google Scholar]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006; ISBN 83-01-14439-4. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Islam, M.; SAhmed, M.K.; Habibullah-Al-Mamun, M.; Hoque, M.F. Preliminary assessment of heavy metal contamination in surface sedimentsfrom a river in Bangladesh. Environ. Earth Sci. 2015, 73, 1837–1848. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G. Geochemiczne klasy czystości osadów wodnych. Prz. Geol. 1988, 46, 49–54. [Google Scholar]
- Müller, G. Schwermetalle in den sedimenten des Rheins, Veranderungen Seit 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomilson, D.L.; Wilson, J.; Harris, C.R.; Jeffrey, D.W. Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeresunlter 1980, 33, 566–575. [Google Scholar]
- Gopal, V.; Kalpana, G.; Nethaji, S.; Jayaprakash, M. Geochemical study of core sediments from Ennore Creek, North of Chennai, Tamil Nadu, India. Arab J.Geosci. 2016, 9, 141. [Google Scholar] [CrossRef]
- Lee, C.S.; Li, X.D.; Shi, W.Z.; Cheung, S.C.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Fay, D.; McGrath, D.; Grennan, E.; Carton, O.T. Statistical analysesof geochemical variables in soils of Ireland. Geoderma 2008, 146, 378–390. [Google Scholar] [CrossRef]
- Díaz-de Alba, M.; Galindo-Rianom, M.D.; Casanueva-Marenco, M.J.; García-Vargas, M.; Kosore, C.M. Assessment of the metal pollution, potential toxicity andspeciation of sediment from Algeciras Bay (South of Spain) using chemometrictools. J. Hazard. Mater. 2011, 190, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Marmolejo-Rodrıguez, A.J.; Prego, R.; Meyer-Willerer, A.; Shumilin, E.; Cobelo-Garci, A. Total and labile metals in surface sediments of thetropical river-estuary system of Marabasco (Pacific coast of Mexico): Influenceof an iron mine. Mar. Pollut. Bull. 2007, 55, 459–468. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Nogawa, K.; Nordberg, M.; Cadmium, W. Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Elsevier: Oxford, UK, 2014. [Google Scholar]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. Apr. 2017, 138, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Steinnes, E.; Friedland, A.J. Metal contamination of natural surface soils from long-range atmospheric transport: Existing and missing knowledge. Environ. Rev. 2006, 14, 169–186. [Google Scholar] [CrossRef]
- Pinot, F.; Kreps, S.E.; Bachelet, M.; Hainaut, P.; Bakonyi, M.; Polla, B.S. Cadmium in the environment: Sources, mechanisms of biotoxicity, and biomarkers. Rev. Environ. Health 2000, 15, 299–323. [Google Scholar] [CrossRef]
- Cui, W.; Meng, Q.; Feng, Q.; Zhou, L.; Cui, Y.; Li, W. Occurrence and release of cadmium, chromium, and lead from stone coal combustion. Int. J. Coal Sci. Technol. 2019, 6, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Hutton, M. Sources of cadmium in the environment. Ecotoxicol. Environ. Saf. 1983, 7, 9–24. [Google Scholar] [CrossRef]
- Niassy, S.; Diarra, K. Effects of organic inputs in Urban agriculture and their optimization for poverty alleviation in Senegal, West-Africa. In Organic Fertilizers: Types, Production and Environmental Impact; Singh, R.P., Ed.; Nova Science Publishers, Hauppauge: New York, NY, USA, 2012. [Google Scholar]
- Mohiuddin, K.M.; Otomo, K.; Ogawa, Y.; Shikazono, N. Seasonal and spatialdistribution of trace elements in the water and sediments of the Tsurumi riverin Japan. Environ. Monit. Assess. 2012, 184, 265–279. [Google Scholar] [CrossRef]
- McLean, J.E.; Bledsoe, B.E. EPA Ground Water Issue. In Behavior of Metals in Soils; Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response: Washington, DC, USA, 1992. [Google Scholar]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Fujita, K.; Tatsumi, M.; Ogita, A.; Kubo, I.; Tanaka, T. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J. 2014, 281, 1304–1313. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.I.; Ayoko, G.A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Baldantoni, D.; Alfani, A.; Di Tommasi, P.; Bartoli, G.; De Santo, A.V. Assessment of macro and microelement accumulation capability of two aquatic plants. Environ. Pollut. 2004, 130, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Lo Giudice, R. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 2010, 10, 639–645. [Google Scholar] [CrossRef]
- Zayed, A.; Lytle, C.M.; Qian, J.H.; Terry, N. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 1998, 206, 293–299. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf. 2011, 74, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Palit, S.; Sharma, A.; Talukder, G. Effects of cobalt on plants. Bot. Rev. 1994, 60, 149–181. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Jockwer, F. Accumulation of heavy metals in plants grow on mineralized soils in the Austrian Alps. Environ. Pollut. 1999, 104, 145–155. [Google Scholar] [CrossRef]
- Kushwaha, A.; Rani, R.; Kumar, S.; Gautam, A. Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environ.Rev. 2016, 24, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; He, Z.-L.; Graetz, D.A.; Stoella, P.J.; Yang, X. Uptake, and distribution of metals by water lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res. 2011, 18, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hanna, M.; Li, J.; Butcher, S.; Dai, H.; Xiao, W. Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes. Toxicol. Sci. 2010, 113, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, U.S.; Gupta, S. Impact of industrial waste effluents on River Damodar adjacent to Durgapur industrial complex, West Bengal, India. Environ. Monit. Assess. 2013, 185, 2083–2094. [Google Scholar] [CrossRef] [PubMed]
- Samecka-Cymerman, A.; Kempers, A.J. Heavy Metals in Aquatic Macrophytes from Two Small Rivers Polluted by Urban, Agricultural and Textile Industry Sewages SW Poland. Arch. Environ. Contam. Toxicol. 2007, 53, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Skorbiłowicz, E. Assessment of heavy metals contents in bottom sediments of Bug river. J. Ecol. Eng. 2014, 15, 82–89. [Google Scholar]
- Liu, W.; Liu, H.; Ken, P. Investigating the contaminant transport of heavy metals in estuarine waters. Environ. Monit. Assess 2020, 192, 31. [Google Scholar] [CrossRef]
- Ipeaiyeda, A.R.; Onianwa, P.C. Monitoring and assessment of sediment contamination with toxic heavy metals: Case study of industrial effluent dispersion in Alaro River, Nigeria. Appl. Water Sci. 2018, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-32714-1. [Google Scholar] [CrossRef]
River | Place Measuring Points | No | Sources of Pollution |
---|---|---|---|
Pisa (82 km) | Pisz | 1 | urbanized area–the city of Pisz, wastewater from sprinkling–plywood factory |
Szparki/Niedźwiedzie | 2 | sewage treatment plant–municipal sewage treatment plant in Pisz | |
Dziadowo | 3 | agro–forest area | |
Jeże | 4 | agro–forest area | |
Kozioł | 5 | agro–forest area | |
Waszki | 6 | village of 167 inhabitants, arable land | |
Pudełko | 7 | agro–forest area, the voivodeship road No. 647 | |
Cieciory | 8 | agro–forest area | |
Dobry Las | 9 | agro–forest area | |
Serwatki | 10 | agro–forest area | |
Morgowniki | 11 | agro–forest area, the provincial road No. 648 | |
The tributaries of the Pisa River | |||
Pisza Woda (12.8 km) | Borki | 12 | agro–forest area |
Wincenta (25 km) | Wincenta | 13 | agro–forest area |
canal Turośl | Turośl | 14 | agro–forest area, treated sewage–municipal sewage treatment plant in Turośl |
Skroda (right) (50 km) | Ruda Skroda | 15 | agro–forest area, treated sewage–municipal sewage treatment plant in Kolno, KURPIANKA dairy production plant in Kolno, municipal sewage treatment plants in Grabów and Stawiaki |
Element mg·kg−1 DM | Cd | Cr | Co |
---|---|---|---|
Root | |||
±min–max | 0.16–0.46 | 5.68–13.90 | 2.36–4.10 |
mean ± SD | 0.35 ± 0.08 | 9.40 ± 3.12 | 3.46 ± 0.57 |
coefficient of variation [%] | 24.30 | 33.23 | 16.98 |
Shapiro Wilk test (W) | 0.87 | 0.87 | 0.94 |
Stem | |||
min–max | 0.21–0.52 | 3.18–12.80 | 1.76–3.70 |
mean ± SD | 0.37 ± 0.07 | 7.73 ± 3.02 | 2.85 ± 0.59 |
coefficient of variation [%] | 20.86 | 38.99 | 20.71 |
Shapiro Wilk test (W) | 0.93 | 0.94 | 0.94 |
Leaf | |||
min–max | 0.23–0.48 | 1.77–11.10 | 0.95–3.70 |
mean ± SD | 0.34 ± 0.06 | 7.17 ± 2.94 | 2.48 ± 0.81 |
coefficient of variation [%] | 18.94 | 41.02 | 32.58 |
Shapiro Wilk test (W) | 0.92 | 0.94 | 0.94 |
Bottom sediments | |||
min–max | 0.26–0.48 | 3.10–20.96 | 2.53–4.51 |
mean ± SD | 0.37 ± 0.06 | 10.87 ± 4.77 | 3.36 ± 0.52 |
coefficient of variation [%] | 16.22 | 43.83 | 15.42 |
Shapiro Wilk test (W) | 0.96 | 0.94 | 0.86 |
pH min–max | 6.13–8.00 | ||
MO [%] min–max | 0.18–3.68 | ||
Natural levels in plants | 0.05–0.2 A | 0.02–0.5 A | 0.01–0.8 A |
Geochemical background | 0.3 B, 0.5 C | 90 B, 5 C | 19 B, 2 C |
Element | Root/Sediment | Stem/Root | Leaf/Root |
---|---|---|---|
Cd | 0.94 | 1.07 | 0.97 |
Cr | 0.86 | 0.82 | 0.76 |
Co | 1.00 | 0.85 | 0.74 |
Research Object | Avarage Content ± Standard Deviation (mg·kg−1) | Literature | ||
---|---|---|---|---|
Cd | Cr | Co | ||
Pisa River, Poland | 0.37 ± 0.06 | 10.87 ± 4.60 | 3.36 ± 0.50 | This study |
Rivers in Poland | 2.80 | 18.00 | ND | Lis and Pasieczna (1995) [51] |
Oława River, Poland | 0.35 ± 0.12 | 19.40 ± 8.20 | ND | Samecka-Cymerman, Kempers, (2007) [89] |
Piława River, Poland | 0.85 ± 0.44 | 48.60 ± 20.00 | ND | |
Bug River, Poland | 0.50 ± 0.24 | 10.50 ± 6.35 | 4.40 ± 1.04 | Skorbiłowicz 2014 [90] |
Meridionale River, Italy | 0.66 ± 0.04 | 40.10 ± 2.33 | ND | Bonanno, Guidice 2010 [79] |
Xixiang River, China | ND | 89.58 ± 43.99 | ND | Liu et al. 2019 [91] |
Alaro River, Nigeria | 0.47 ± 0.03 | 5.78 ± 0.47 | 9.60 ± 1.60 | Ipeaiyeda, Onianwa 2017 [92] |
Research Object | Plant Species | Avarage Content ± Standard Deviation (mg·kg−1) | Literature | |||
---|---|---|---|---|---|---|
Cd | Cr | Co | ||||
Pisa River, Poland | Glyceria maxima | Root | 0.35 ± 0.08 | 9.40 ± 3.02 | 3.36 ± 0.55 | This study |
Stem | 0.37 ± 0.07 | 7.73 ± 2.91 | 2.85 ± 0.57 | |||
Leaf | 0.34 ± 0.06 | 7.17 ± 2.84 | 2.48 ± 0.78 | |||
Ołobok River, Poland | Elodea canadensis | 1.50 ± 0.90 | 23.00 ± 15.00 | 4.00 ± 2.20 | Samecka-Cymerman, Kempers 2007 [89] | |
Piława River, Poland | 1.50 ± 0.40 | 55.00 ± 21.00 | 23.40 ± 3.50 | |||
Meridionale River, Italy | Phragmites australis | Root | 1.13 ± 0.08 | 6.97 ± 0.19 | ND | Bonanno, Giudice 2010 [79] |
Stem | 0.68 ± 0.06 | 0.40 ± 0.04 | ND | |||
Leaf | 1.05 ± 0.10 | 0.69 ± 0.04 | ND |
Cd Sediment | Cd Root | Cd Stem | Cd Leaf | Cr Sediment | Cr Root | Cr Stem | Cr Leaf | Co Sediment | Co Root | Co Stem | Co Leaf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd Sediment | 1.00 | |||||||||||
Cd Root | 0.48 | 1.00 | ||||||||||
Cd Stem | 0.68 | 0.58 | 1.00 | |||||||||
Cd Leaf | 0.75 | 0.52 | 0.87 | 1.00 | ||||||||
Cr Sediment | 0.41 | 0.44 | 0.65 | 0.68 | 1.00 | |||||||
Cr Root | 0.22 | 0.31 | 0.30 | 0.24 | 0.77 | 1.00 | ||||||
Cr Stem | 0.03 | 0.30 | 0.16 | 0.04 | 0.63 | 0.93 | 1.00 | |||||
Cr Leaf | 0.12 | 0.33 | 0.18 | 0.08 | 0.63 | 0.90 | 0.91 | 1.00 | ||||
Co Sediment | 0.70 | 0.53 | 0.79 | 0.81 | 0.70 | 0.34 | 0.18 | 0.21 | 1.00 | |||
Co Root | 0.38 | 0.03 | 0.44 | 0.29 | 0.39 | 0.52 | 0.44 | 0.54 | 0.28 | 1.00 | ||
Co Stem | 0.50 | 0.33 | 0.54 | 0.39 | 0.36 | 0.52 | 0.48 | 0.53 | 0.35 | 0.89 | 1.00 | |
Co Leaf | 0.23 | 0.14 | 0.31 | 0.11 | 0.20 | 0.44 | 0.51 | 0.52 | 0.24 | 0.76 | 0.86 | 1.00 |
Factor 1 | Factor 2 | |
---|---|---|
Cd sediment | 0.10 | 0.83 |
Cd root | 0.19 | 0.63 |
Cd stem | 0.20 | 0.91 |
Cd leaf | 0.04 | 0.95 |
Cr sediment | 0.54 | 0.62 |
Cr root | 0.88 | 0.19 |
Cr stem | 0.91 | 0.00 |
Cr leaf | 0.92 | 0.05 |
Co sediment | 0.16 | 0.89 |
Co root | 0.73 | 0.26 |
Co stem | 0.72 | 0.39 |
Co leaf | 0.74 | 0.13 |
%VAR. | 50.00 | 22.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorbiłowicz, E.; Skorbiłowicz, M.; Tarasiuk, U.; Korzińska, M. Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland). Int. J. Environ. Res. Public Health 2021, 18, 10193. https://doi.org/10.3390/ijerph181910193
Skorbiłowicz E, Skorbiłowicz M, Tarasiuk U, Korzińska M. Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland). International Journal of Environmental Research and Public Health. 2021; 18(19):10193. https://doi.org/10.3390/ijerph181910193
Chicago/Turabian StyleSkorbiłowicz, Elżbieta, Mirosław Skorbiłowicz, Urszula Tarasiuk, and Magdalena Korzińska. 2021. "Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland)" International Journal of Environmental Research and Public Health 18, no. 19: 10193. https://doi.org/10.3390/ijerph181910193
APA StyleSkorbiłowicz, E., Skorbiłowicz, M., Tarasiuk, U., & Korzińska, M. (2021). Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland). International Journal of Environmental Research and Public Health, 18(19), 10193. https://doi.org/10.3390/ijerph181910193