The Legacy of the Idrija Mine Twenty-Five Years after Closing: Is Mercury in the Water Column of the Gulf of Trieste Still an Environmental Issue?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Setting
2.2. Sampling Strategy
2.3. Surface Sediments: Grain Size Analysis and Total Hg Content
2.4. Analytical Determination of Particulate and Dissolved Hg
2.5. Exploratory Multivariate Data Analysis
3. Results and Discussion
3.1. Physico-Chemical Parameters of the Water Column
3.2. Surface Sediments: Grain-Size and Hg Content
3.3. Suspended Particulate Matter: Distribution and Hg Concentration
3.4. Dissolved Hg
3.5. Mercury Partitioning between the Suspended Particulate Matter and the Dissolved Fraction: Distribution Coefficients (KD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raj, D.; Maiti, S.K. Sources, Toxicity, and Remediation of Mercury: An Essence Review. Environ. Monit. Assess. 2019, 191, 566. [Google Scholar] [CrossRef]
- Baumann, Z.; Jonsson, S.; Mason, R.P. Geochemistry of mercury in the marine environment. In Encyclopedia of Ocean Sciences, 3rd ed.; Cochran, J.K., Bokuniewicz, H.J., Yager, P.L., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 301–308. [Google Scholar]
- Hatje, V.; Andrade, R.L.B.; Jesus, R.M.; Masqué, P.; Albergaria-Barbosa, A.C.R.; de Andrade, J.B.; Santos, A.C.S.S. Historical Records of Mercury Deposition in Dated Sediment Cores Reveal the Impacts of the Legacy and Present-Day Human Activities in Todos Os Santos Bay, Northeast Brazil. Mar. Pollut. Bull. 2019, 145, 396–406. [Google Scholar] [CrossRef]
- Acquavita, A.; Floreani, F.; Covelli, S. Occurrence and Speciation of Arsenic and Mercury in Alluvial and Coastal Sediments. Curr. Opin. Environ. Sci. Health 2021, 22, 100272. [Google Scholar] [CrossRef]
- Caplat, C.; Texier, H.; Barillier, D.; Lelievre, C. Heavy Metals Mobility in Harbour Contaminated Sediments: The Case of Port-En-Bessin. Mar. Pollut. Bull. 2005, 50, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Warnken, K.W.; Gill, G.A.; Griffin, L.L.; Santschi, P.H. Sediment-Water Exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Mar. Chem. 2001, 73, 215–231. [Google Scholar] [CrossRef]
- Balcom, P.H.; Hammerschmidt, C.R.; Fitzgerald, W.F.; Lamborg, C.H.; O’Connor, J.S. Seasonal Distributions and Cycling of Mercury and Methylmercury in the Waters of New York/New Jersey Harbor Estuary. Mar. Chem. 2008, 109, 1–17. [Google Scholar] [CrossRef]
- Cesário, R.; Monteiro, C.E.; Nogueira, M.; O’Driscoll, N.J.; Caetano, M.; Hintelmann, H.; Mota, A.M.; Canário, J. Mercury and Methylmercury Dynamics in Sediments on a Protected Area of Tagus Estuary (Portugal). Water Air Soil Pollut. 2016, 227, 475. [Google Scholar] [CrossRef]
- Schäfer, J.; Castelle, S.; Blanc, G.; Dabrin, A.; Masson, M.; Lanceleur, L.; Bossy, C. Mercury Methylation in the Sediments of a Macrotidal Estuary (Gironde Estuary, South-West France). Estuar. Coast. Shelf Sci. 2010, 90, 80–92. [Google Scholar] [CrossRef]
- Mason, R.P.; Benoit, J.M. Organomercury compounds in the environment. In Organometallics in the Environment; Craig, P., Ed.; John Wiley & Sons: New York, NY, USA, 2003; pp. 57–99. [Google Scholar]
- Mao, L.; Liu, X.; Wang, B.; Lin, C.; Xin, M.; Zhang, B.-T.; Wu, T.; He, M.; Ouyang, W. Occurrence and Risk Assessment of Total Mercury and Methylmercury in Surface Seawater and Sediments from the Jiaozhou Bay, Yellow Sea. Sci. Total Environ. 2020, 714, 136539. [Google Scholar] [CrossRef]
- Choi, M.H.; Cech, J.J.; Lagunas-Solar, M.C. Bioavailability of Methylmercury to Sacramento Blackfish (Orthodon Microlepidotus): Dissolved Organic Carbon Effects. Environ. Toxicol. Chem. 1998, 17, 695–701. [Google Scholar] [CrossRef]
- Hsu-Kim, H.; Kucharzyk, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environ. Sci. Technol. 2013, 47, 2441–2456. [Google Scholar] [CrossRef]
- Baldi, F.; Bargagli, R.; Focardi, S.; Fossi, C. Mercury and Chlorinated Hydrocarbons in Sediments from the Bay of Naples and Adjacent Marine Areas. Mar. Pollut. Bull. 1983, 14, 108–111. [Google Scholar] [CrossRef]
- Nelson, C.H.; Pierce, D.E.; Leong, K.W.; Wang, F.F.H. Mercury Distribution in Ancient and Modern Sediment of Northeastern Bering Sea. Mar. Geol. 1975, 18, 91–104. [Google Scholar] [CrossRef]
- Guédron, S.; Huguet, L.; Vignati, D.A.L.; Liu, B.; Gimbert, F.; Ferrari, B.J.D.; Zonta, R.; Dominik, J. Tidal Cycling of Mercury and Methylmercury between Sediments and Water Column in the Venice Lagoon (Italy). Mar. Chem. 2012, 130–131, 1–11. [Google Scholar] [CrossRef]
- Acquavita, A.; Covelli, S.; Emili, A.; Berto, D.; Faganeli, J.; Giani, M.; Horvat, M. Mercury in the Sediments of the Marano and Grado Lagoon (Northern Adriatic Sea): Sources, Distribution and Speciation. Estuar. Coast. Shelf Sci. 2012, 113, 20–31. [Google Scholar] [CrossRef]
- Horvat, M.; Covelli, S.; Faganeli, J.; Logar, M.; Mandic, V.; Rajar, R. Mercury in Contaminated Coastal Environments; a Case Study: The Gulf of Trieste. Sci. Total Environ. 1999, 237–238, 43–56. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury Contamination of Coastal Sediments as the Result of Long-Term Cinnabar Mining Activity (Gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar. Coast. Shelf Sci. 1999, 48, 415–428. [Google Scholar] [CrossRef]
- Ferrara, R.; Maserti, B.E. Mercury Concentration in the Water, Particulate Matter, Plankton and Sediment of the Adriatic Sea. Mar. Chem. 1992, 38, 237–249. [Google Scholar] [CrossRef]
- Covelli, S.; Piani, R.; Kotnik, J.; Horvat, M.; Faganeli, J.; Brambati, A. Behaviour of Hg Species in a Microtidal Deltaic System: The Isonzo River Mouth (Northern Adriatic Sea). Sci. Total Environ. 2006, 368, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Covelli, S.; Piani, R.; Acquavita, A.; Predonzani, S.; Faganeli, J. Transport and Dispersion of Particulate Hg Associated with a River Plume in Coastal Northern Adriatic Environments. Mar. Pollut. Bull. 2007, 55, 436–450. [Google Scholar] [CrossRef]
- Gosar, M.; Žibret, G. Mercury Contents in the Vertical Profiles through Alluvial Sediments as a Reflection of Mining in Idrija (Slovenia). J. Geochem. Explor. 2011, 110, 81–91. [Google Scholar] [CrossRef]
- Kocman, D.; Kanduč, T.; Ogrinc, N.; Horvat, M. Distribution and Partitioning of Mercury in a River Catchment Impacted by Former Mercury Mining Activity. Biogeochemistry 2011, 104, 183–201. [Google Scholar] [CrossRef]
- Gosar, M.; Teršič, T. Environmental Geochemistry Studies in the Area of Idrija Mercury Mine, Slovenia. Environ. Geochem. Health 2012, 34, 27–41. [Google Scholar] [CrossRef]
- Baptista-Salazar, C.; Richard, J.-H.; Horf, M.; Rejc, M.; Gosar, M.; Biester, H. Grain-Size Dependence of Mercury Speciation in River Suspended Matter, Sediments and Soils in a Mercury Mining Area at Varying Hydrological Conditions. Appl. Geochem. 2017, 81, 132–142. [Google Scholar] [CrossRef]
- Kotnik, J.; Horvat, M.; Dizdarevic, T. Current and Past Mercury Distribution in Air over the Idrija Hg Mine Region, Slovenia. Atmos. Environ. 2005, 39, 7570–7579. [Google Scholar] [CrossRef]
- Horvat, M.; Jereb, V.; Fajon, V.; Logar, M.; Faganeli, J.; Hines, M.E.; Bonzongo, J.C. Mercury Distribution in Water, Sediment and Soil in the Idrijca and Soca River Systems. Geochem. Explor. Environ. Anal. 2002, 2, 287–296. [Google Scholar] [CrossRef]
- Covelli, S.; Petranich, E.; Pavoni, E.; Signore, S. Can Sediments Contaminated by Mining Be a Source of Mercury in the Coastal Environment Due to Dredging? Evidence from Thermo-Desorption and Chemical Speciation. Bull. Environ. Contam. Toxicol. 2021, 106, 942–948. [Google Scholar] [CrossRef]
- Emili, A.; Koron, N.; Covelli, S.; Faganeli, J.; Acquavita, A.; Predonzani, S.; Vittor, C.D. Does Anoxia Affect Mercury Cycling at the Sediment–Water Interface in the Gulf of Trieste (Northern Adriatic Sea)? Incubation Experiments Using Benthic Flux Chambers. Appl. Geochem. 2011, 26, 194–204. [Google Scholar] [CrossRef]
- Emili, A.; Carrasco, L.; Acquavita, A.; Covelli, S. A Laboratory-Incubated Redox Oscillation Experiment to Investigate Hg Fluxes from Highly Contaminated Coastal Marine Sediments (Gulf of Trieste, Northern Adriatic Sea). Environ. Sci. Pollut. Res. 2014, 21, 4124–4133. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, S.; Falconi, C.; Comici, C.; Čermelj, B.; Kovac, N.; Turk, V.; Giani, M. Recent Evolution of River Discharges in the Gulf of Trieste and Their Potential Response to Climate Changes and Anthropogenic Pressure. Estuar. Coast. Shelf Sci. 2012, 115, 14–24. [Google Scholar] [CrossRef]
- Olivotti, R.; Faganeli, J.; Malej, A. Impact of “Organic” Pollutants on Coastal Waters, Gulf of Trieste. Water Sci. Technol. 1986, 18, 57–68. [Google Scholar] [CrossRef]
- Malačič, V.; Petelin, B. Climatic Circulation in the Gulf of Trieste (Northern Adriatic). J. Geophys. Res. 2009, 114, C07002. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Adami, G.; Faganeli, J.; Covelli, S. Partitioning and Mixing Behaviour of Trace Elements at the Isonzo/Soča River Mouth (Gulf of Trieste, Northern Adriatic Sea). Mar. Chem. 2020, 223, 103800. [Google Scholar] [CrossRef]
- Biester, H.; Gosar, M.; Covelli, S. Mercury Speciation in Sediments Affected by Dumped Mining Residues in the Drainage Area of the Idrija Mercury Mine, Slovenia. Environ. Sci. Technol. 2000, 34, 3330–3336. [Google Scholar] [CrossRef]
- Vidovic, J.; Nawrot, R.; Gallmetzer, I.; Haselmair, A.; Tomašových, A.; Stachowitsch, M. Anthropogenically Induced Environmental Changes in the Northeastern Adriatic Sea in the Last 500 Years (Panzano Bay, Gulf of Trieste). Biogeosciences 2016, 13, 5965–5981. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Turner, A. Trace Metals in Antifouling Paint Particles and Their Heterogeneous Contamination of Coastal Sediments. Mar. Pollut. Bull. 2009, 58, 559–564. [Google Scholar] [CrossRef]
- EPA. Method 1631, Revison e. Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry; EPA: Washington, DC, USA, 2002.
- EPA. Method 7473 (SW-846) Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry; EPA: Washington, DC, USA, 1998.
- EPA. EPA Method 3052. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; EPA: Washington, DC, USA, 1996.
- Oliveri, P.; Malegori, C.; Casale, M. Chemometrics: Multivariate Analysis of Chemical Data. In Chemical Analysis of Food, 2nd ed.; Pico, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-813266-1. [Google Scholar]
- Oliveri, P.; Malegori, C.; Casale, M. The Impact of Signal Pre-Processing on the Final Interpretation of Analytical Outcomes—A Tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://Gruppochemiometria.It/Index.Php/Software (accessed on 3 August 2021).
- Turner, A.; Millward, G.E. Particle Dynamics and Trace Metal Reactivity in Estuarine Plumes. Estuar. Coast. Shelf Sci. 2000, 50, 761–774. [Google Scholar] [CrossRef]
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine Biogeochemical Cycling of Mercury. Chem. Rev. 2007, 107, 641–662. [Google Scholar] [CrossRef]
- Giani, M.; Djakovac, T.; Degobbis, D.; Cozzi, S.; Solidoro, C.; Umani, S.F. Recent Changes in the Marine Ecosystems of the Northern Adriatic Sea. Estuar. Coast. Shelf Sci. 2012, 115, 1–13. [Google Scholar] [CrossRef]
- Gabel, F.; Lorenz, S.; Stoll, S. Effects of Ship-Induced Waves on Aquatic Ecosystems. Sci. Total Environ. 2017, 601–602, 926–939. [Google Scholar] [CrossRef]
- Shepard, F.P. Nomenclature Based on Sand–Silt–Clay Ratios. J. Sediment. Petrol. 1954, 24, 151–158. [Google Scholar]
- Acquavita, A.; Predonzani, S.; Mattassi, G.; Rossin, P.; Tamberlich, F.; Falomo, J.; Valic, I. Heavy Metal Contents and Distribution in Coastal Sediments of the Gulf of Trieste (Northern Adriatic Sea, Italy). Water Air Soil Pollut. 2010, 211, 95–111. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Faganeli, J.; Klun, K.; Oliveri, P.; Covelli, S.; Adami, G. Distribution, Mobility and Fate of Trace Elements in an Estuarine System Under Anthropogenic Pressure: The Case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuar. Coast. 2021, 44, 1831–1847. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; De Vittor, C.; Predonzani, S.; Acquavita, A.; Horvat, M. Benthic Fluxes of Mercury Species in a Lagoon Environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl. Geochem. 2008, 23, 529–546. [Google Scholar] [CrossRef]
- Covelli, S.; Acquavita, A.; Piani, R.; Predonzani, S.; De Vittor, C. Recent Contamination of Mercury in an Estuarine Environment (Marano Lagoon, Northern Adriatic, Italy). Estuar. Coast. Shelf Sci. 2009, 82, 273–284. [Google Scholar] [CrossRef]
- Bloom, N.S.; Moretto, L.M.; Scopece, P.; Ugo, P. Seasonal Cycling of Mercury and Monomethyl Mercury in the Venice Lagoon (Italy). Mar. Chem. 2004, 91, 85–99. [Google Scholar] [CrossRef]
- Faganeli, J.; Planinc, R.; Pezdič, J.; Smodiš, B.; Stegnar, P.; Ogorelec, B. Marine Geology of the Gulf of Trieste (Northern Adriatic): Geochemical Aspects. Mar. Geol. 1991, 99, 93–108. [Google Scholar] [CrossRef]
- Scanu, S.; Piazzolla, D.; Frattarelli, F.M.; Mancini, E.; Tiralongo, F.; Brundo, M.V.; Tibullo, D.; Pecoraro, R.; Copat, C.; Ferrante, M.; et al. Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy. Bull. Environ. Contam. Toxicol. 2016, 96, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Muresan, B.; Cossa, D.; Jézéquel, D.; Prévot, F.; Kerbellec, S. The Biogeochemistry of Mercury at the Sediment–Water Interface in the Thau Lagoon. 1. Partition and Speciation. Estuar. Coast. Shelf Sci. 2007, 72, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Casado-Martınez, M.C.; Buceta, J.L.; Belzunce, M.J.; DelValls, T.A. Using Sediment Quality Guidelines for Dredged Material Management in Commercial Ports from Spain. Environ. Int. 2006, 32, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Cossa, D.; Elbaz-Poulichet, F.; Nieto, J.M. Mercury in the Tinto-Odiel Estuarine System (Gulf of Cádiz, Spain): Sources and Dispersion. Aquat. Geochem. 2001, 7, 1–12. [Google Scholar] [CrossRef]
- Garcia-Ordiales, E.; Covelli, S.; Rico, J.M.; Roqueñí, N.; Fontolan, G.; Flor-Blanco, G.; Cienfuegos, P.; Loredo, J. Occurrence and Speciation of Arsenic and Mercury in Estuarine Sediments Affected by Mining Activities (Asturias, Northern Spain). Chemosphere 2018, 198, 281–289. [Google Scholar] [CrossRef]
- Taylor, V.F.; Buckman, K.L.; Seelen, E.A.; Mazrui, N.M.; Balcom, P.H.; Mason, R.P.; Chen, C.Y. Organic Carbon Content Drives Methylmercury Levels in the Water Column and in Estuarine Food Webs across Latitudes in the Northeast United States. Environ. Pollut. 2019, 246, 639–649. [Google Scholar] [CrossRef]
- Whalin, L.; Kim, E.-H.; Mason, R. Factors Influencing the Oxidation, Reduction, Methylation and Demethylation of Mercury Species in Coastal Waters. Mar. Chem. 2007, 107, 278–294. [Google Scholar] [CrossRef]
- Rajar, R.; Zagar, D.; Sirca, A.; Horvat, M. Three-Dimensional Modelling of Mercury Cycling in the Gulf of Trieste. Sci. Total Environ. 2000, 260, 109–123. [Google Scholar] [CrossRef]
- Zonta, R.; Collavini, F.; Zaggia, L.; Zuliani, A. The Effect of Floods on the Transport of Suspended Sediments and Contaminants: A Case Study from the Estuary of the Dese River (Venice Lagoon, Italy). Environ. Int. 2005, 31, 948–958. [Google Scholar] [CrossRef]
- Turner, J.N.; Brewer, P.A.; Macklin, M.G. Fluvial-Controlled Metal and As Mobilisation, Dispersal and Storage in the Río Guadiamar, SW Spain and Its Implications for Long-Term Contaminant Fluxes to the Doñana Wetlands. Sci. Total Environ. 2008, 394, 144–161. [Google Scholar] [CrossRef]
- Piani, R.; Covelli, S.; Biester, H. Mercury Contamination in Marano Lagoon (Northern Adriatic Sea, Italy): Source Identification by Analyses of Hg Phases. Appl. Geochem. 2005, 20, 1546–1559. [Google Scholar] [CrossRef]
- Faganeli, J.; Horvat, M.; Covelli, S.; Fajon, V.; Logar, M.; Lipej, L.; Cermelj, B. Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Sci. Total Environ. 2003, 304, 315–326. [Google Scholar] [CrossRef]
- Turritto, A.; Acquavita, A.; Bezzi, A.; Covelli, S.; Fontolan, G.; Petranich, E.; Piani, R.; Pillon, S. Suspended Particulate Mercury Associated with Tidal Fluxes in a Lagoon Environment Impacted by Cinnabar Mining Activity (Northern Adriatic Sea). J. Environ. Sci. 2018, 68, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Cesário, R.; Mota, A.M.; Caetano, M.; Nogueira, M.; Canário, J. Mercury and Methylmercury Transport and Fate in the Water Column of Tagus Estuary (Portugal). Mar. Pollut. Bull. 2018, 127, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Santos-Echeandía, J.; Caetano, M.; Brito, P.; Canario, J.; Vale, C. The Relevance of Defining Trace Metal Baselines in Coastal Waters at a Regional Scale: The Case of the Portuguese Coast (SW Europe). Mar. Environ. Res. 2012, 79, 86–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavoni, E.; García-Ordiales, E.; Covelli, S.; Cienfuegos, P.; Roqueñí, N. Legacy of Past Mining Activity Affecting the Present Distribution of Dissolved and Particulate Mercury and Methylmercury in an Estuarine Environment (Nalón River, Northern Spain). Appl. Sci. 2021, 11, 4396. [Google Scholar] [CrossRef]
- Kuss, J.; Schneider, B. Variability of the Gaseous Elemental Mercury Sea–Air Flux of the Baltic Sea. Environ. Sci. Technol. 2007, 41, 8018–8023. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, A.L.; Mason, R.P.; Balcom, P.H.; Sunderland, E.M. Drivers of Surface Ocean Mercury Concentrations and Air–Sea Exchange in the West Atlantic Ocean. Environ. Sci. Technol. 2013, 47, 7757–7765. [Google Scholar] [CrossRef] [PubMed]
- Floreani, F.; Acquavita, A.; Petranich, E.; Covelli, S. Diurnal Fluxes of Gaseous Elemental Mercury from the Water-Air Interface in Coastal Environments of the Northern Adriatic Sea. Sci. Total Environ. 2019, 668, 925–935. [Google Scholar] [CrossRef]
- Turner, A. Trace-Metal Partitioning in Estuaries: Importance of Salinity and Particle Concentration. Mar. Chem. 1996, 54, 27–39. [Google Scholar] [CrossRef]
- EPA. Understanding Variation in Partition Coefficient, Kd, Values; EPA: Washington, DC, USA, 1999.
- Gagnon, C.; Saulnier, I. Distribution and Fate of Metals in the Dispersion Plume of a Major Municipal Effluent. Environ. Pollut. 2003, 124, 47–55. [Google Scholar] [CrossRef]
- Žibret, G.; Gosar, M. Calculation of the Mercury Accumulation in the Idrijca River Alluvial Plain Sediments. Sci. Total Environ. 2006, 368, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Žagar, D.; Knap, A.; Warwick, J.J.; Rajar, R.; Horvat, M.; Četina, M. Modelling of Mercury Transport and Transformation Processes in the Idrijca and Soča River System. Sci. Total Environ. 2006, 368, 149–163. [Google Scholar] [CrossRef] [PubMed]
Sampling Campaign | Environmental Conditions | Isonzo River Daily Discharge (m3 s−1) | Sampling Sites | |
---|---|---|---|---|
1 | 1 February 2016 | unperturbed | 4.45 | P1–P6 |
2 | 2 March 2016 | Isonzo River high discharge | 328 | P1–P6 |
3 | 31 March 2016 | windy sea | 45.8 | P1–P6 |
4 | 21 April 2016 | unperturbed | 39.0 | P1–P6 |
5 | 4 May 2016 | Isonzo River moderate discharge | 87.3 | P1–P6 |
6 | 15 April 2016 | after a ship with large draught | 72.0 | A–E and P3 |
Location | Hg (µg g−1) |
---|---|
Bay of Panzano (Italy)–this study | 0.77–6.39 |
Bay of Panzano (Italy)–[30] | 0.30–13.5 |
Bay of Panzano (Italy)–stations D0, D2, E3–[52] | 1.40–5.54 |
Timavo estuary (Italy)–[53] | 0.08–2.40 |
Isonzo River mouth (Italy)–[23] | 2.76–10.2 |
Isonzo River mouth (Italy)–stations A4, IS1, IS2–[52] | 4.92–6.18 |
Marano and Grado Lagoon (Italy)–[17] * | 0.68–9.95 |
Grado Lagoon (Italy)–[54] ** | 9.50–14.4 |
Marano Lagoon (Italy)–[17] | 1.22–4.49 |
Aussa River, Marano Lagoon (Italy)–[55] | 0.82–5.69 |
Gulf of Trieste (Italy)–stations A0, A2, A3–[52] | 0.54–1.24 |
Gulf of Trieste (Italy)–[19] | 0.10–23.3 |
Venice Lagoon (Italy)–[56] | 0.50–2.51 |
Gulf of Trieste (Slovenia)–[57] | 0.06–0.88 |
northern Adriatic Sea–[21] | 0.05–8.63 |
central Adriatic Sea–[21] | 0.02–0.13 |
southern Adriatic Sea–[21] | 0.03–0.07 |
Northern Tyrrhenian Sea coastal area (NE Latium, Italy)–[58] | 0.03–2.20 |
Thau Lagoon (France)–[59] | 0.30–0.46 |
Port of Cartagena (Spain)–[60] | 21.6–136 |
Port of Barcelona (Spain)–[60] | 0.94–4.12 |
Port of Coruña (Spain)–[60] | 0.54–6.41 |
Bay of Cádiz (Spain)–[61] | 0.77–1.18 |
Gulf of Cádiz (Spain)–[61] | 0.24–0.30 |
Nalón estuary (Spain)–[62] | 0.10–1.33 |
Jiaozhou Bay (China)–[11] | 0.02–0.15 |
Jinzhou Bay (China)–[11] | 0.80–25.0 |
Chesapeake Bay (USA)–[63] | 0.08–0.18 |
Location | Water Layer | DHg (ng L−1) | PHg (ng L−1) | PHg (µg g−1) |
---|---|---|---|---|
Bay of Panzano (Italy)–this study | surface | <LOD–46.8 | 0.39–12.5 | 0.10–1.55 |
bottom | <LOD–149 | 2.42–3.73 | 0.11–1.87 | |
Isonzo River mouth (Italy)–[22] | surface | 0.46–17.0 | <LOD–97.6 | 0.09–37.3 |
bottom | 1.38–81.3 | <LOD–92.7 | n.s. | |
Isonzo River mouth (Italy)–[23] | surface | n.d. | n.s.–112 | 1.20–2.70 |
bottom | n.d. | <1.00–84.0 | 0.20–2.40 | |
Isonzo River mouth (Italy)–[36] | surface | 6.25 | 105 | 12.1 |
bottom | <LOD–4.16 | 10.2–57.3 | 1.45–1.59 | |
Timavo estuary (Italy)–[53] | surface | <LOD–2.27 | 2.91–4.30 | 1.96–4.28 |
bottom | <LOD–5.10 | 8.80–23.1 | 1.78–2.57 | |
Gulf of Trieste (Italy)–[69] | surface | <LOD–4.90 | n.d. | 0.05–0.56 |
bottom | 0.18–2.69 | n.d. | ||
Grado Lagoon inlet (Italy)–[70] | water column | 5.30–8.10 | 5.80–160 | n.s. |
Aussa River, Marano Lagoon (Italy)–[55] | surface | 4.10–52.4 | 3.40–131 | 1.30–20.3 |
bottom | 9.10–48.0 | 4.80–32.1 | 1.10–2.20 | |
Tagus Estuary (Portugal)–[71] | water column | 3.61–65.4 | n.d. | 0.36–8.63 |
Portuguese coast (Portugal)–[72] | surface | 1.00–28.1 | n.d. | 0.80–15.3 |
Tinto estuary (Spain)–[61] | surface | 1.66–19.8 | n.d. | 0.06–1.12 |
Odiel estuary (Spain)–[61] | surface | 3.29–40.0 | n.d. | 0.14–6.52 |
Gulf of Cádiz (Spain)– [61] | surface | 0.42–0.76 | n.d. | 0.08–0.42 |
Nalón estuary (Spain)–[73] | surface | 2.13-5.09 | 2.59–9.10 | 0.25–2.35 |
bottom | 0.74–7.73 | 3.05–14.4 | 0.43–2.69 | |
Jiaozhou Bay (China)–[11] | surface | 2.47–9.87 | n.d. | 0.06–0.47 |
New York/New Jersey Harbor–[7] | surface | 0.34–1.00 | 2.91–64.6 | 0.08–1.78 |
New York/New Jersey Harbor–[7] | bottom | <LOD–3.01 | 4.47–295 | 0.19–2.43 |
Sampling Campaign | Water Layer | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|---|
1—1 February | surface | 4.45 | 4.41 | 4.64 | 4.65 | 4.34 | 4.41 |
bottom | 4.70 | 4.69 | 4.38 | 4.52 | 3.69 | 4.29 | |
2—2 March | surface | 3.92 | 4.64 | 4.96 | 6.07 | 5.02 | 5.77 |
bottom | 4.33 | 3.88 | 4.96 | 5.93 | 6.68 | 6.58 | |
3—31 March | surface | 4.97 | 5.74 | 5.99 | 6.42 | 6.01 | 5.86 |
bottom | 6.22 | 5.68 | 6.61 | 6.28 | 5.70 | 5.60 | |
4—21 April | surface | 4.88 | 5.14 | 4.60 | 5.52 | 4.88 | 5.16 |
bottom | 5.10 | 5.60 | 5.18 | 5.88 | 4.11 | 5.96 | |
5—4 May | surface | 5.12 | 5.06 | 5.83 | 4.48 | 4.72 | 4.32 |
bottom | 4.86 | 5.03 | 5.22 | 4.97 | 4.93 | 5.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavoni, E.; Petranich, E.; Signore, S.; Fontolan, G.; Covelli, S. The Legacy of the Idrija Mine Twenty-Five Years after Closing: Is Mercury in the Water Column of the Gulf of Trieste Still an Environmental Issue? Int. J. Environ. Res. Public Health 2021, 18, 10192. https://doi.org/10.3390/ijerph181910192
Pavoni E, Petranich E, Signore S, Fontolan G, Covelli S. The Legacy of the Idrija Mine Twenty-Five Years after Closing: Is Mercury in the Water Column of the Gulf of Trieste Still an Environmental Issue? International Journal of Environmental Research and Public Health. 2021; 18(19):10192. https://doi.org/10.3390/ijerph181910192
Chicago/Turabian StylePavoni, Elena, Elisa Petranich, Sergio Signore, Giorgio Fontolan, and Stefano Covelli. 2021. "The Legacy of the Idrija Mine Twenty-Five Years after Closing: Is Mercury in the Water Column of the Gulf of Trieste Still an Environmental Issue?" International Journal of Environmental Research and Public Health 18, no. 19: 10192. https://doi.org/10.3390/ijerph181910192
APA StylePavoni, E., Petranich, E., Signore, S., Fontolan, G., & Covelli, S. (2021). The Legacy of the Idrija Mine Twenty-Five Years after Closing: Is Mercury in the Water Column of the Gulf of Trieste Still an Environmental Issue? International Journal of Environmental Research and Public Health, 18(19), 10192. https://doi.org/10.3390/ijerph181910192