Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate and River Basins Data
2.2. Satellite Water Marker
2.3. Statistical Methods
3. Results
3.1. Climate Precursors of Fall SWM in Northern Bay of Bengal
3.2. Climate Precursors of North India Summer Monsoon Rainfall
3.3. Mechanistic Link between Climate and Seasonal Cholera in Bay of Bengal Coastal Region
3.4. SWM Prediction Model Using Climate Precursors
3.5. Revisit of Decadal Changes in Monsoon–ENSO/DMI Relationship
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutreja, A.; Kim, D.W.; Niyogi, S.K.; Kim, E.J.; Ramamurthy, T.; Chun, J.; Wood, J.L.N.; Clemens, J.D.; Czerkinsky, C.; Nair, G.B.; et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011, 477, 462–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domman, D.; Quilici, M.-L.; Dorman, M.J.; Njamkepo, E.; Mutreja, A.; Mather, A.E.; Delgado, G.; Morales-Espinosa, R.; Grimont, P.A.D.; Lizárraga-Partida, M.L.; et al. Integrated view of Vibrio cholerae in the Americas. Science 2017, 358, 789–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jutla, A.; Akanda, A.S.; Huq, A.; Faruque, A.S.G.; Colwell, R.; Islam, S. A water marker monitored by satellites to predict seasonal endemic cholera. Remote Sens. Lett. 2013, 4, 822–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Nelson, A.; Lopez, A.L.; Sack, D.A. Updated Global Burden of Cholera in Endemic Countries. PLoS Negl. Trop. Dis. 2015, 9, e0003832. [Google Scholar] [CrossRef] [Green Version]
- Bindoff, N.L.; Cheung, W.W.L.; Kairo, J.G. Changing Ocean, Marine Ecosystems, and Dependent Communities. IPCC Spec. Rep. Ocean Cryosphere Chang. Clim. 2019, 5, 477–587. [Google Scholar]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Capstick, S.; et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet 2019, 394, 1836–1878. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, B.S.; Khan, A.I.; Luby, S.; Malek, M.A.; Calderwood, S.B.; Faruque, A.S.; Larocque, R.C.; Ryan, E.T.; Qadri, F.; Sack, D.A.; et al. Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, and 2004. Am. J. Trop. Med. Hyg. 2006, 74, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Lobitz, B.; Beck, L.; Huq, A.; Wood, B.; Fuchs, G.; Faruque, A.S.G.; Colwell, R. Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. USA 2000, 97, 1438–1443. [Google Scholar] [CrossRef] [Green Version]
- Huq, A.; Sack, R.B.; Nizam, A.; Longini, I.M.; Nair, G.B.; Ali, A.; Morris, J.G.; Khan, M.N.H.; Siddique, A.K.; Yunus, M.; et al. Critical Factors Influencing the Occurrence of Vibrio cholerae in the Environment of Bangladesh. Appl. Environ. Microbiol. 2005, 71, 4645–4654. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Mahmud, Z.H.; Cairncross, S.; Clemens, J.D.; Collins, A.E.; Islam, M.S. Role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 572–578. [Google Scholar] [CrossRef]
- Racault, M.-F.; Abdulaziz, A.; George, G.; Menon, N.; Punathil, M.; McConville, K.; Loveday, B.; Platt, T.; Sathyendranath, S.; Vijayan, V. Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. Remote Sens. 2019, 11, 2763. [Google Scholar] [CrossRef] [Green Version]
- Kopprio, G.A.; Neogi, S.B.; Rashid, H.; Alonso, C.; Yamasaki, S.; Koch, B.; Gärdes, A.; Lara, R.J. Vibrio and Bacterial Communities Across a Pollution Gradient in the Bay of Bengal: Unraveling Their Biogeochemical Drivers. Front. Microbiol. 2020, 11, 594. [Google Scholar] [CrossRef] [Green Version]
- Kunii, O.; Nakamura, S.; Abdur, R.; Wakai, S. The impact on health and risk factors of the diarrhoea epidemics in the 1998 Bangladesh floods. Public Health 2002, 116, 68–74. [Google Scholar] [CrossRef]
- Lipp, E.; Huq, A.; Colwell, R.R. Effects of Global Climate on Infectious Disease: The Cholera Model. Clin. Microbiol. Rev. 2002, 15, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Akanda, A.S.; Jutla, A.; Islam, S. Dual peak cholera transmission in Bengal Delta: A hydroclimatological explanation. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Cazelles, B.; Chavez, M.; De Magny, G.C.; Guégan, J.-F.; Hales, S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 2007, 4, 625–636. [Google Scholar] [CrossRef] [Green Version]
- de Magny, G.C.; Murtugudde, R.; Sapiano, M.R.P.; Nizam, A.; Brown, C.W.; Busalacchi, A.J.; Yunus, M.; Nair, G.B.; Gil, A.I.; Lanata, C.F.; et al. Environmental signatures associated with cholera epidemics. Proc. Natl. Acad. Sci. USA 2008, 105, 17676–17681. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.M.; Racault, M.-F.; Goult, S.; Laurenson, A. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. Int. J. Environ. Res. Public Health 2020, 17, 9378. [Google Scholar] [CrossRef]
- Nair, G.B.; Gupta, S.S.; Bharati, K.; Sur, D.; Khera, A.; Ganguly, N. Why is the oral cholera vaccine not considered an option for prevention of cholera in India? Analysis of possible reasons. Indian J. Med. Res. 2016, 143, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, J.N.; Rombo, L.; Fisch, A. The true burden and risk of cholera: Implications for prevention and control. Lancet Infect. Dis. 2007, 7, 521–530. [Google Scholar] [CrossRef]
- Kanungo, S.; Sah, B.K.; Lopez, A.L.; Sung, J.S.; Paisley, A.M.; Sur, D.; Clemens, J.D.; Nair, G.B. Cholera in India: An analysis of reports, 1997–2006. Bull. World Health Organ. 2010, 88, 185–191. [Google Scholar] [CrossRef]
- Colwell, R.R. Global Climate and Infectious Disease: The Cholera Paradigm. Science 1996, 274, 2025–2031. [Google Scholar] [CrossRef] [Green Version]
- Pascual, M.; Bouma, M.J.; Dobson, A. Cholera and climate: Revisiting the quantitative evidence. Microbes Infect. 2002, 4, 237–245. [Google Scholar] [CrossRef]
- Pascual, M.; Chaves, L.F.; Cash, B.; Rodó, X. Yunus Predicting endemic cholera: The role of climate variability and disease dynamics. Clim. Res. 2008, 36, 131–140. [Google Scholar] [CrossRef]
- Moore, J.K.; Fu, W.; Primeau, F.; Britten, G.L.; Lindsay, K.; Long, M.; Doney, S.C.; Mahowald, N.; Hoffman, F.; Randerson, J.T. Sustained climate warming drives declining marine biological productivity. Science 2018, 359, 1139–1143. [Google Scholar] [CrossRef] [Green Version]
- Martinez, P.P.; Reiner, R.C.; Cash, B.A.; Rodó, X.; Mondal, M.S.; Roy, M.; Yunus, M.; Faruque, A.S.G.; Huq, S.; King, A.; et al. Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: Lessons learned. PLoS ONE 2017, 12, e0172355. [Google Scholar] [CrossRef] [Green Version]
- Koelle, K. The impact of climate on the disease dynamics of cholera. Clin. Microbiol. Infect. 2009, 15, 29–31. [Google Scholar] [CrossRef] [Green Version]
- Cash, B.A.; Rodó, X.; Kinter, J.L. Links between Tropical Pacific SST and Cholera Incidence in Bangladesh: Role of the Eastern and Central Tropical Pacific. J. Clim. 2008, 21, 4647–4663. [Google Scholar] [CrossRef]
- Hashizume, M.; Armstrong, B.; Hajat, S.; Wagatsuma, Y.; Faruque, A.S.; Hayashi, T.; Sack, D.A. The Effect of Rainfall on the Incidence of Cholera in Bangladesh. Epidemiology 2008, 19, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Jutla, A.S.; Akanda, A.S.; Islam, S. Satellite remote sensing of space–time plankton variability in the Bay of Bengal: Connections to cholera outbreaks. Remote Sens. Environ. 2012, 123, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, I.; Tozuka, T.; Rao, S.A. Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. Int. J. Remote Sens. 2009, 30, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Mashita, M.; Lumban-Gaol, J. Variability of sea surface temperature (SST) and chlorophyll-a (Chl-a) Concentrations in the Eastern Indian Ocean during the Period 2002–2017. Int. J. Remote Sens. Earth Sci. 2019, 16, 55–62. [Google Scholar] [CrossRef]
- Takaya, Y.; Kosaka, Y.; Watanabe, M.; Maeda, S. Skilful predictions of the Asian summer monsoon one year ahead. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Pai, D.S.; Rajeevan, M.; Sreejith, O.P.; Mukhopadhyay, B.; Satbha, N.S. Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved in Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.; Rowell, D.P.; Kent, E.; Kaplan, A.L. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Space Phys. 2003, 108, 2670. [Google Scholar] [CrossRef]
- Oki, T.; Sud, Y.C. Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact. 1998, 2, 1–37. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.J.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.B.; Dingle, J.; Doerffer, R.; et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, J.C.H.; Vimont, D.J. Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Alexander, M.A.; Vimont, D.J.; Chang, P.; Scott, J.D. The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments. J. Clim. 2010, 23, 2885–2901. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.T. Correlation in seasonal variation of weather. Q. J. R. Meteorol. Soc. 1918, 44, 223–224. [Google Scholar]
- Rasmusson, E.M.; Carpenter, T.H. The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Weather Rev. 1983, 111, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 2001, 28, 4499–4502. [Google Scholar] [CrossRef] [Green Version]
- Darshana, P.; Chowdary, J.S.; Gnanaseelan, C.; Parekh, A.; Srinivas, G. Interdecadal modulation of the Indo-western Pacific Ocean Capacitor mode and its influence on Indian summer monsoon rainfall. Clim. Dyn. 2020, 54, 1761–1777. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nat. Cell Biol. 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Kayanne, H.; Iijima, H.; McClanahan, T.R.; Behera, S.K.; Yamagata, T. Mode shift in the Indian Ocean climate under global warming stress. Geophys. Res. Lett. 2009, 36, 40590. [Google Scholar] [CrossRef]
- Xie, S.-P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the Summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Webster, P.J.; Magaña, V.O.; Palmer, T.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Space Phys. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Chakraborty, A. Preceding winter La Niña reduces Indian summer monsoon rainfall. Environ. Res. Lett. 2018, 13, 54030. [Google Scholar] [CrossRef] [Green Version]
- Yasunari, T. Cloudiness Fluctuations Associated with the Northern Hemisphere Summer Monsoon. J. Meteorol. Soc. Jpn. 1979, 57, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.-M.; Waliser, D.E. Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cai, W.; Yang, K.; Wu, L.; Huang, G.; Santoso, A.; Ng, B.; Wang, G.; Yamagata, T. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Chang. 2021, 11, 27–32. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, T.; Racault, M.-F.; Nonaka, M.; Behera, S. Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions. Int. J. Environ. Res. Public Health 2021, 18, 10201. https://doi.org/10.3390/ijerph181910201
Ogata T, Racault M-F, Nonaka M, Behera S. Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions. International Journal of Environmental Research and Public Health. 2021; 18(19):10201. https://doi.org/10.3390/ijerph181910201
Chicago/Turabian StyleOgata, Tomomichi, Marie-Fanny Racault, Masami Nonaka, and Swadhin Behera. 2021. "Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions" International Journal of Environmental Research and Public Health 18, no. 19: 10201. https://doi.org/10.3390/ijerph181910201
APA StyleOgata, T., Racault, M. -F., Nonaka, M., & Behera, S. (2021). Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions. International Journal of Environmental Research and Public Health, 18(19), 10201. https://doi.org/10.3390/ijerph181910201