An 8-Week Program of Plyometrics and Sprints with Changes of Direction Improved Anaerobic Fitness in Young Male Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Details of Combined Plyometric and Short Sprints with Change-of-Direction Training
2.4. Testing Schedule
2.5. Statistical Analyses
3. Results
3.1. Normal Distribution and Homogeneity of Variance
3.2. Reliability
3.3. Effect of Training on Jump Performance
3.4. Effect of Training on Sprint Performance
3.5. Effect of Training on Change-of-Direction Ability
3.6. Effect of Training on Repeated Change-of-Direction Ability
3.7. Effect of Training on Balance Performance
4. Discussion
4.1. Effect of Training on Jump Performance
4.2. Effect of Training on Sprint Performance
4.3. Effect of Training on Change-of-Direction Ability
4.4. Effect of Training on Repeated Change-of-Direction Ability
4.5. Effect of Training on Balance Performance
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, N.; Stavrianeas, S. In-season high-intensity interval training improves conditioning in high school soccer players. Int. J. Exerc. Sci. 2017, 10, 713–720. [Google Scholar]
- Buchheit, M.; Mendez-Villanueva, A.; Simpson, B.M.; Bourdon, P.C. Match running performance and fitness in youth soccer. Int. J. Exerc. Sci. 2010, 31, 818–825. [Google Scholar] [CrossRef]
- Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring accelerations with GPS in football: Time to slow down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.J.; Monaghan, D. Using sprint velocity decrement to enhance acute sprint performance. J. Strength Cond. Res. 2021, 35, 442–448. [Google Scholar] [CrossRef]
- Mara, J.; Thompson, K.G.; Pumpa, K.L.; Morgan, S. The acceleration and deceleration profiles of elite female soccer players during competitive matches. J. Sci. Med. Sports 2017, 20, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Bravo, D.F.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Sæterbakken, A.; Haug, V.; Fransson, D.; Grendstad, H.N.; Gundersen, H.S.; Moe, V.F.; Ylvisaker, E.; Shaw, M.; Riiser, A.; Andersen, V. Match running performance on three different competitive standards in norwegian soccer. Sports Med. Int. Open 2019, 3, E82–E88. [Google Scholar] [CrossRef]
- Akenhead, R.; Hayes, P.; Thompson, K.; French, D. Diminutions of acceleration and deceleration output during professional football match play. J. Sci. Med. Sport 2013, 16, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, V.; Baron, R.; Tschan, H.; Montero, F.C.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Withers, R.; Maricic, Z.; Wasilewski, S.; Kelly, L. Match analysis of Australian professional soccer players. J. Hum. Mov. Stud. 1982, 8, 159–176. [Google Scholar]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Deceleration movements performed during FA premier league soccer matches. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Turning movements performed during FA premier league soccer matches. J. Sports Sci. Med. 2007, 6, 9–10. [Google Scholar]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Reilly, T.; Bangsbo, J.; Franks, A.L. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-Term Athletic Development- Part 1: A pathway for all youth. J. Strength Cond. Res. 2015, 29, 1439–1450. [Google Scholar] [CrossRef]
- Behm, D.G.; Faigenbaum, A.D.; Falk, B.; Klentrou, P. Canadian society for exercise physiology position paper: Resistance training in children and adolescents. Appl. Physiol. Nutr. Metab. 2008, 33, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.; Meyers, R.; Oliver, J. The natural development and trainability of plyometric ability during child-hood. Strength Cond. J. 2011, 33, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Bedoya, A.A.; Miltenberger, M.R.; Lopez, R. Plyometric training effects on athletic performance in youth soccer athletes: A systematic review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Aloui, G.; Hermassi, S.; Hayes, L.; Hayes, N.S.; Bouhafs, E.; Chelly, M.; Schwesig, R. Effects of plyometric and short sprint with change-of-direction training in male U17 soccer players. Appl. Sci. 2021, 11, 4767. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef]
- Makhlouf, I.; Chaouachi, A.; Chaouachi, M.; Ben Othman, A.; Granacher, U.; Behm, D.G. Combination of agility and plyometric training provides similar training benefits as combined balance and plyometric training in young soccer players. Front. Physiol. 2018, 9, 1611. [Google Scholar] [CrossRef] [Green Version]
- Michailidis, Y.; Tabouris, A.; Metaxas, T. Effects of plyometric and directional training on physical fitness parameters in youth soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 392–398. [Google Scholar] [CrossRef]
- Jlid, M.C.; Racil, G.; Coquart, J.; Paillard, T.; Bisciotti, G.N.; Chamari, K. Multidirectional plyometric training: Very efficient way to improve vertical jump performance, change of direction performance and dynamic postural control in young soccer players. Front. Physiol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Karahan, M. Effect of skill-based training vs. small-sided games on physical performance improvement in young soccer players. Biol. Sport 2020, 37, 305–312. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of combined plyometric and short sprint with change-of-direction training on athletic performance of male u15 handball players. J. Strength Cond. Res. 2019, 33, 662–675. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Prieske, O.; Moran, J.; Ramirez-Campillo, R.; Nejmaoui, A.; Granacher, U. The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players. Int. J. Sports Physiol. Perform. 2020, 15, 189–195. [Google Scholar] [CrossRef]
- Sporis, G.; Jukic, I.; Milanovic, L.; Vucetic, V. Reliability and factorial validity of agility tests for soccer players. J. Strength Cond. Res. 2010, 24, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Sitko, S.; Cirer-Sastre, R.; Corbi, F.; Laval, I.L. Effects of a low-carbohydrate diet on body composition and performance in road cycling: A randomized, controlled trial. Nutr. Hosp. 2020, 37, 1022–1027. [Google Scholar] [CrossRef]
- Fílter, A.; Jabalera, J.O.; Molina-Molina, A.; Suárez-Arrones, L.; Robles-Rodríguez, J.; Dos’Santos, T.; Loturco, I.; Requena, B.; Santalla, A. Effect of ball inclusion on jump performance in soccer players: A biomechanical approach. Sci. Med. Football 2021, 1–7. [Google Scholar] [CrossRef]
- Hammami, M.; Negra, Y.; Shephard, R.J.; Chelly, M.S. The effect of standard strength vs. contrast strength training on the development of sprint, agility, repeated change of direction, and jump in junior male soccer players. J. Strength Cond. Res. 2017, 31, 901–912. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric exercise: Physiological characteristics and acute responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Roth, R.; Di Giovine, D.; Zahner, L.; Donath, L. Combined strength and power training in high-level amateur football during the competitive season: A randomised-controlled trial. J. Sports Sci. 2013, 31, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Stage, A.A.; Stokes, J.J.; Orjalo, A.J.; Davis, D.L.; Giuliano, D.V.; Moreno, M.R.; Risso, F.G.; Lazar, A.; Birmingham-Babauta, S.A.; et al. Relationships and predictive capabilities of jump assessments to soccer-specific field test performance in division i collegiate players. Sports 2016, 4, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, I.T.; Dawes, J.J.; Elder, C.L.; Lockie, R.G. Relationship of two vertical jumping tests to sprint and change of direction speed among male and female collegiate soccer players. Sports 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A. Comparison of running speed and quickness between elite professional and young rugby league players. Strength Cond. Coach 1999, 7, 3–7. [Google Scholar]
- Sayers, M. Running techniques for field sport players. Sports Coach Autumn 2000, 23, 26–27. [Google Scholar]
- De Villarreal, E.S.-S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef]
- Göral, K. Examination of agility performances of soccer players according to their playing positions. Sport J. 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Muniroglou, S.; Subak, E. Acomparison of 5, 10, 30 Meters sprint, modified t-test, ar rowhead and illinois agility tests on football referees. J. Educ. Train. Stud. 2018, 6, 70–76. [Google Scholar] [CrossRef]
- Rædergård, H.G.; Falch, H.N.; Tillaar, R.V.D. Effects of strength vs. plyometric training on change of direction performance in experienced soccer players. Sports 2020, 8, 144. [Google Scholar] [CrossRef]
- Chaalali, A.; Rouissi, M.; Chtara, M.; Owen, A.; Bragazzi, N.L.; Moalla, W.; Chaouachi, A.; Amri, M.; Chamari, K. Agility training in young elite soccer players: Promising results compared to change of direction drills. Biol. Sport 2016, 33, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sariati, D.; Hammami, R.; Zouhal, H.; Clark, C.C.T.; Nebigh, A.; Chtara, M.; Chortane, S.G.; Hackney, A.C.; Souissi, N.; Granacher, U.; et al. Improvement of physical performance following a 6 week change-of-direction training program in elite youth soccer players of different maturity levels. Front. Physiol. 2021, 12, 668437. [Google Scholar] [CrossRef]
- Asadi, A. Plyometric type neuromuscular exercise is a treatment to postural control deficits of volleyball players: A case study. Rev. Andal. Med. Deport. 2016, 9, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Newton, R.U. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A. Changes in repeated-sprint performance in relation to change in locomotor profile in highly-trained young soccer players. J. Sports Sci. 2014, 32, 1309–1317. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Delhomel, G.; Brughelli, M.; Ahmaidi, S. Improving repeated sprint ability in young elite soccer players: Repeated shuttle sprints vs. explosive strength training. J. Strength Cond. Res. 2010, 24, 2715–2722. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Fernandez-Fernandez, J.; Sammoud, S.; Bouguezzi, R.; Prieske, O.; Granacher, U. Short-term plyometric jump training improves repeated-sprint ability in prepuberal male soccer players. J. Strength Cond. Res. 2020, 34, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.; Cronin, J.; Keogh, J. Contraction force specificity and its relationship to functional performance. J. Sports Sci. 2007, 25, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Azevedo, R.R.; da Rocha, E.; Franco, P.S.; Carpes, F.P. Plantar pressure asymmetry and risk of stress injuries in the foot of young soccer players. Phys. Ther. Sport 2017, 24, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulos, K.; Gissis, I.; Galazoulas, C.; Manolopoulos, E.; Patikas, D.; Gollhofer, A.; Kotzamanidis, C. Effect of combined sensorimotor-resistance training on strength, balance, and jumping performance of soccer players. J. Strength Cond. Res. 2016, 30, 53–59. [Google Scholar] [CrossRef]
- Young, W.; Metzl, J.D. Strength training for the young athlete. Pediatr. Ann. 2010, 39, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Ondra, L.; Nátěsta, P.; Bizovská, L.; Kuboňová, E.; Svoboda, Z. Effect of in-season neuromuscular and proprioceptive training on postural stability in male youth basketball players. Acta Gymnica 2017, 47, 144–149. [Google Scholar] [CrossRef] [Green Version]
Days | Objectives |
---|---|
Mondays | Rest |
Tuesdays | Aerobic capacity training and defensive tactics training |
Wednesdays | Aerobic power training and defensive tactics training |
Thursdays | Power anaerobic training and defensive and offensive tactics training |
Fridays | Agility training and technical training and offensive tactics training |
Saturdays | Vivacity training and technical training and offensive tactics training |
Sunday | Official matches |
Week | Drill 1 | Drill 2 | Drill 3 | Drill 4 | Total (Contact) |
---|---|---|---|---|---|
1 | 3 Repetitions | 3 Repetitions | 3 Repetitions | 3 Repetitions | 72 |
2 | 3 Repetitions | 3 Repetitions | 3 Repetitions | 3 Repetitions | 72 |
3 | 4 Repetitions | 4 Repetitions | 4 Repetitions | 4 Repetitions | 96 |
4 | 4 Repetitions | 4 Repetitions | 4 Repetitions | 4 Repetitions | 96 |
5 | 5 Repetitions | 5 Repetitions | 5 Repetitions | 5 Repetitions | 120 |
6 | 5 Repetitions | 5 Repetitions | 5 Repetitions | 5 Repetitions | 120 |
7 | 6 Repetitions | 6 Repetitions | 6 Repetitions | 6 Repetitions | 144 |
8 | 6 Repetitions | 6 Repetitions | 6 Repetitions | 6 Repetitions | 144 |
ICC (95% CI) | CV (95%CI) [%] | |
---|---|---|
Sprint times | ||
5 m (s) | 0.93 (0.90–0.97) | 2.0 (1.7–2.4) |
20 m (s) | 0.94 (0.91–0.97) | 1.9 (1.5–2.3) |
Change of direction | ||
Sprint 4 × 5 m (s) | 0.89 (0.84–0.93) | 2.2 (1.8–2.7) |
SBF (s) | 0.87 (0.83–0.91) | 2.1 (1.7–2.5) |
Vertical jump | ||
SJ (cm) | 0.95 (0.90–0.98) | 2.4 (1.9–2.8) |
CMJ (cm) | 0.94 (0.89–0.98) | 2.8 (2.4–3.2) |
Horizontal jump | ||
SLJ (m) | 0.91 (0.87–0.95) | 3.8 (3.4–4.3) |
Stork balance test | ||
Right leg (s) | 0.82 (0.72–0.88) | 4.7 (4.3–5.4) |
Left leg (s) | 0.80 (0.70–0.87) | 4.9 (4.4–5.5) |
Experimental (n = 17) | Paired t-Test | Control (n = 16) | Paired t-Test | ANOVA (Group × Time) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | % Δ | p | ES | Pre | Post | % Δ | p | ES | p | ES | |
Vertical jump | ||||||||||||
SJ (cm) | 25.1 ± 4.00 | 30.1 ± 4.75 | 20.2 ± 1.22 | <0.001 | 1.15 | 24.5 ± 2.06 | 25.4 ± 2.16 | 3.70 ± 1.21 | <0.001 | 0.43 | 0.018 | 0.61 (small) |
CMJ (cm) | 27.7 ± 3.66 | 33.2 ± 3.90 | 20.1 ± 2.26 | <0.001 | 1.46 | 27.5 ± 2.50 | 28.6 ± 2.55 | 3.94 ± 1.42 | <0.001 | 0.43 | 0.007 | 0.71 (small) |
Horizontal jump | ||||||||||||
SLJ (m) | 1.81 ± 0.13 | 2.08 ± 0.11 | 14.8 ± 2.78 | <0.001 | 2.28 | 1.78 ± 0.18 | 1.85 ± 0.17 | 4.31 ± 1.68 | <0.001 | 0.43 | 0.012 | 0.66 (small) |
Sprint | ||||||||||||
5 m (s) | 1.28 ± 0.10 | 1.12 ± 0.06 | −11.3 ± 2.35 | <0.001 | 1.81 | 1.24 ± 0.09 | 1.21 ± 0.09 | −2.82 ± 0.71 | <0.001 | 0.39 | 0.013 | 0.65 (small) |
20 m (s) | 3.61 ± 0.26 | 3.26 ± 0.19 | −9.52 ± 1.30 | <0.001 | 1.51 | 3.59 ± 0.21 | 3.49 ± 0.21 | −2.81 ± 0.61 | <0.001 | 0.48 | 0.027 | 0.58 (small) |
Change of direction Performance | ||||||||||||
Sprint 4 × 5 m (s) | 6.60 ± 0.32 | 5.97 ± 0.27 | −9.39 ± 0.83 | <0.001 | 2.12 | 6.60 ± 0.26 | 6.42 ± 0.27 | −2.71 ± 0.72 | <0.001 | 0.68 | 0.002 | 0.82 (moderate) |
SBF (s) | 9.09 ± 0.46 | 8.34 ± 0.44 | −8.19 ± 0.78 | <0.001 | 1.65 | 9.09 ± 0.42 | 8.83 ± 0.41 | −2.68 ± 0.68 | <0.001 | 0.62 | 0.026 | 0.58 (small) |
Experimental (n = 17) | Paired t-Test | Control (n = 16) | Paired t-Test | ANOVA (Group × Time) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | % Δ | p | ES | Pre | Post | % Δ | p | ES | p | ES | |
Repeated Change of Direction Ability parameters | ||||||||||||
Fastest time (s) | 7.14 ± 0.29 | 6.57 ± 0.40 | −7.85 ± 0.67 | <0.001 | 2.01 | 7.15 ± 0.31 | 7.01 ± 0.33 | −1.93 ± 0.56 | <0.001 | 0.42 | 0.006 | 0.72 (small) |
Mean time (s) | 7.28 ± 0.31 | 6.69 ± 0.41 | −7.85 ± 0.65 | <0.001 | 2.02 | 7.26 ± 0.32 | 7.12 ± 0.34 | −1.94 ± 0.58 | <0.001 | 0.43 | 0.006 | 0.71 (small) |
Fatigue index (%) | 1.97 ± 0.79 | 1.93 ± 0.40 | 1.96 ± 13.8 | 0.408 | 0.10 | 1.51 ± 0.32 | 1.49 ± 0.24 | 0.47 ± 9.91 | 0.844 | 0.04 | 0.844 | 0.06 (trivial) |
Stork balance test | ||||||||||||
Right leg (s) | 11.9 ± 4.39 | 19.6 ± 6.12 | 67.6 ± 10.8 | <0.001 | 1.45 | 12.9 ± 4.04 | 14.6 ± 4.06 | 14.4 ± 7.07 | <0.001 | 0.42 | 0.012 | 0.66 (small) |
Left leg (s) | 10.4 ± 4.28 | 18.2 ± 6.00 | 78.6 ± 14.3 | <0.001 | 1.50 | 10.5 ± 3.03 | 12.3 ± 3.17 | 18.0 ± 8.11 | <0.001 | 0.58 | 0.006 | 0.72 (small) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloui, G.; Hermassi, S.; Khemiri, A.; Bartels, T.; Hayes, L.D.; Bouhafs, E.G.; Souhaiel Chelly, M.; Schwesig, R. An 8-Week Program of Plyometrics and Sprints with Changes of Direction Improved Anaerobic Fitness in Young Male Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 10446. https://doi.org/10.3390/ijerph181910446
Aloui G, Hermassi S, Khemiri A, Bartels T, Hayes LD, Bouhafs EG, Souhaiel Chelly M, Schwesig R. An 8-Week Program of Plyometrics and Sprints with Changes of Direction Improved Anaerobic Fitness in Young Male Soccer Players. International Journal of Environmental Research and Public Health. 2021; 18(19):10446. https://doi.org/10.3390/ijerph181910446
Chicago/Turabian StyleAloui, Ghaith, Souhail Hermassi, Aymen Khemiri, Thomas Bartels, Lawrence D. Hayes, El Ghali Bouhafs, Mohamed Souhaiel Chelly, and René Schwesig. 2021. "An 8-Week Program of Plyometrics and Sprints with Changes of Direction Improved Anaerobic Fitness in Young Male Soccer Players" International Journal of Environmental Research and Public Health 18, no. 19: 10446. https://doi.org/10.3390/ijerph181910446
APA StyleAloui, G., Hermassi, S., Khemiri, A., Bartels, T., Hayes, L. D., Bouhafs, E. G., Souhaiel Chelly, M., & Schwesig, R. (2021). An 8-Week Program of Plyometrics and Sprints with Changes of Direction Improved Anaerobic Fitness in Young Male Soccer Players. International Journal of Environmental Research and Public Health, 18(19), 10446. https://doi.org/10.3390/ijerph181910446