Heterogeneity of COVID-19 Risk Perception: A Socio-Mathematical Model
Abstract
:1. Introduction
- Contextual variables: age, sex, civil status (partner/no partner), level of education and institutional position within the university (student/level, academic/administrative staff);
- Knowledge and beliefs;
- The assessment of risk perception included: perception of severity, the probability of infection and the environment;
- Preventive practices;
- Sources of information and degree of trust in each of them.
2. Materials and Methods
2.1. Construction of the Model
2.1.1. Risk Model
2.1.2. Definition of the Theoretical Model
2.1.3. Construction of the Risk Vector and Initial Grouping
2.1.4. Information Modeling
2.1.5. Network Method
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dryhurst, S.; Schneider, C.R.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; Spiegelhalter, D.; van der Linden, S. Risk Perceptions of COVID-19 around the World. J. Risk Res. 2020, 23, 994–1006. [Google Scholar] [CrossRef]
- Alsoghair, M.; Almazyad, M.; Alburaykan, T.; Alsultan, A.; Alnughaymishi, A.; Almazyad, S.; Alharbi, M.; Alkassas, W.; Almadud, A.; Alsuhaibani, M. Medical Students and COVID-19: Knowledge, Preventive Behaviors, and Risk Perception. Int. J. Environ. Res. Public Health 2021, 18, 842. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M. La Aceptabilidad del Riesgo según las Ciencias Sociales; Grupo Planeta: Madrid, Spain, 1996. [Google Scholar]
- Gabe, J. Health, Medicine and Risk: The Need for a Sociological Approach. Med. Sociol. Online 2013, 7, 16–23. [Google Scholar]
- Castañeda-Infante, C.; Ballestas-Peláez, I.; Rodríguez-Giraldo, L. COVID-19 y Género: Efectos Diferenciales de La Pandemia En Universitarios. Rev. Mex. De Sociol. A 2021, 81, 169–196. [Google Scholar] [CrossRef]
- Khasawneh, A.I.; Humeidan, A.A.; Alsulaiman, J.W.; Bloukh, S.; Ramadan, M.; Al-Shatanawi, T.N.; Awad, H.H.; Hijazi, W.Y.; Al-Kammash, K.R.; Obeidat, N.; et al. Medical Students and COVID-19: Knowledge, Attitudes, and Precautionary Measures. A Descriptive Study from Jordan. Front Public Health 2020, 8, 253. [Google Scholar] [CrossRef] [PubMed]
- Odriozola-González, P.; Planchuelo-Gómez, Á.; Irurtia, M.J.; de Luis-García, R. Psychological Effects of the COVID-19 Outbreak and Lockdown among Students and Workers of a Spanish University. Psychiatry Res. 2020, 290, 113108. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Mustafa, Z.U.; Asif, N.; Zaidi, H.A.; Hussain, K.; Shehzadi, N.; Khan, T.M.; Saleem, Z. Knowledge, Attitude and Preventive Practices Related to COVID-19: A Cross-Sectional Study in Two Pakistani University Populations. Drugs Perspect. 2020, 36, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Wise, T.; Zbozinek, T.D.; Michelini, G.; Hagan, C.C.; Mobbs, D. Changes in Risk Perception and Self-Reported Protective Behaviour during the First Week of the COVID-19 Pandemic in the United States. R. Soc. Open Sci. 2020, 7, 200742. [Google Scholar] [CrossRef] [PubMed]
- Infante-Castañeda, C.; Peláez-Ballestas, I.; Murillo-López, S. Opiniones de los Universitarios Sobre la Epidemia de COVID-19 y sus Efectos Sociales; Instituto de Investigaciones Sociales, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2020. [Google Scholar]
- Connor, R. A Tale of Four Metrics. In Similarity Search and Applications; Amsaleg, L., Houle, M.E., Schubert, E., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 210–217. [Google Scholar]
- Mair, P. Gifi Methods. Mod. Psychom. R 2018, 231–256. [Google Scholar] [CrossRef]
- Gifi, A. Nonlinear Multivariate Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Chiesi, A.M. Network Analysis. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N.J., Baltes, P.B., Eds.; Pergamon: Oxford, UK, 2001; pp. 10499–10502. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks; ICWSM: Paris, France, 2009. [Google Scholar]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- PAHO. Ethics Guidance on Issues Raised by the Novel Coronavirus Disease (COVID-19) Pandemic, March 2020—PAHO/WHO; Pan American Health Organization: Washington, DC, USA, 2020; Available online: https://www.paho.org/en/documents/ethics-guidance-issues-raised-novel-coronavirus-disease-covid-19-pandemic-march-2020 (accessed on 3 August 2021).
- Giddens, A. Central Problems in Social Theory: Action, Structure, and Contradiction in Social Analysis; University of California Press: Berkeley, CA, USA, 1979. [Google Scholar]
- Pérez-Gay Juárez, F.; Reynoso-Alcántara, V.; Contreras-Ibáñez, C.; González, R.; Castro-López, C.; Martínez, L. Evaluación Del Estrés Frente a La Pandemia Del COVID-19 En Población Mexicana—Proyecto Internacional COVIDiSTRESS. 2020. Available online: https://www.uv.mx/centrodeopinion/files/2020/05/Reporte-Descriptivo-para-OSF2.pdf (accessed on 16 October 2021).
- Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; Spiegelhalter, D.; van der Linden, S. COVID-19 Risk Perception: A Longitudinal Analysis of Its Predictors and Associations with Health Protective Behaviours in the United Kingdom. J. Risk Res. 2021, 24, 294–313. [Google Scholar] [CrossRef]
- Figueroa, J.G. El Derecho a La Salud En La Experiencia de Los Varones: Un Concepto Ambivalente En Los Modelos de Masculinidad Vigentes? COEDUCANDO 2007, 77–97. [Google Scholar]
- Barker, G.T. Dying to Be Men: Youth, Masculinity and Social Exclusion; Psychology Press: Abingdon, UK, 2005. [Google Scholar]
- Whitehead, A. Man to Man Violence: How Masculinity May Work as a Dynamic Risk Factor. Howard J. Crim. Justice 2005, 44, 411–422. [Google Scholar] [CrossRef]
- De Keijzer, B. Hasta donde el cuerpo aguante: Género, cuerpo y salud masculina. In La Salud Como un Derecho Ciudadano. Perspectivas y Propuestas desde América Latina; Cáceres, C., Cueto, M., Ramos, M., Vallenas, S., Eds.; International Forum for Social Sciences in Health y Universidad Peruana Cayetano Heredia: Lima, Perú, 2003; pp. 137–152. [Google Scholar]
- White, A.K. Chapter 4—Men and the Problem of Help Seeking. In Clinical Men’s Health; Heidelbaugh, J.J., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2008; pp. 31–43. [Google Scholar]
- Kruger, D.J.; Nesse, R.M. Sexual Selection and the Male:Female Mortality Ratio. Evol. Psychol. 2004, 2, 66–85. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R. Men’s Health and Illness: The Relationship between Masculinities and Health. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2006. Available online: https://eleanor.lib.gla.ac.uk/record=b2500631 (accessed on 3 August 2021).
- Sabo, D. The Study of Masculinities and Men’s Health: An Overview. In Handbook of Studies on Men & Masculinities; Michael, S.K., Hearn, J., Connell, W., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2005; pp. 326–352. [Google Scholar]
- Figueroa-Perea, J.G. El Ser Hombre Desde El Cuidado de Sí: Algunas Reflexiones. Rev. Latinoam. De Estud. De Fam. 2015, 7, 121–138. [Google Scholar]
- Muñoz, F.; Nora, E. Representaciones Sociales del Cuidado de Sí en Salud en Adultos Jóvenes Universitarios; Universidad de Antioquia: Medellín, Colombia, 2006; Available online: http://bibliotecadigital.udea.edu.co/handle/10495/166 (accessed on 3 August 2021).
- Bernales, M.; Figueroa, J.G. Vulnerabilidades sociales y consecuencias en salud en hombres chilenos: La fragilidad de los “invulnerables”. In Vulnerabilidad Social y su Efecto en Salud en Chile desde la Comprensión del Fenómeno Hacia la Implementación de Soluciones; Cabieses, B., Bernales, M., Obach, A., Pedrero, V., Eds.; Universidad del Desarrollo: Santiago de Chile, Chile, 2015; pp. 141–155. [Google Scholar]
- PNUD—México. Desarrollo Humano y COVID-19 En México: Desafíos Para Una Recuperación Sostenible; Programa de las Naciones Unidas para el Desarrollo: Mexico City, Mexico, 2020; Available online: https://www.mx.undp.org/content/mexico/es/home/library/poverty/desarrollo-humano-y-covid-19-en-mexico-.html (accessed on 8 March 2021).
- Rhodes, T.; Lancaster, K.; Rosengarten, M. A Model Society: Maths, Models and Expertise in Viral Outbreaks. Crit. Public Health 2020, 30, 253–256. [Google Scholar] [CrossRef]
- DeSteno, D. Opinion—How Fear Distorts Our Thinking About the Coronavirus. The New York Times. 11 February 2020. Available online: https://www.nytimes.com/2020/02/11/opinion/international-world/coronavirus-fear.html (accessed on 3 August 2021).
- Gigerenzer, G. Why What Does Not Kill Us Makes Us Panic. Project Syndicate. 12 March 2020. Available online: https://www.project-syndicate.org/commentary/greater-risk-literacy-can-reduce-coronavirus-fear-by-gerd-gigerenzer-2020-03 (accessed on 17 October 2021).
- Karnitschnig, M. The Incompetence Pandemic. POLITICO. 16 March 2020. Available online: https://www.politico.com/news/2020/03/16/coronavirus-pandemic-leadership-131540 (accessed on 3 August 2021).
- Schoenfeld, J. The Invisible Risk: Pandemics and the Financial Markets; Social Science Research Network: Rochester, NY, USA, 2020; Available online: https://papers.ssrn.com/abstract=3567249 (accessed on 3 August 2021).
- Sieroń, A. Does the COVID-19 Pandemic Refute Probability Neglect? J. Risk Res. 2020, 23, 855–861. [Google Scholar] [CrossRef]
- Peters, O. The Ergodicity Problem in Economics. Nat. Phys. 2019, 15, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Hitt, M.A.; Arregle, J.; Holmes, R.M. Strategic Management Theory in a Post-Pandemic and Non-Ergodic World. J. Manag. Stud. 2020. [Google Scholar] [CrossRef]
- Van, D.; McLaws, M.-L.; Crimmins, J.; MacIntyre, C.R.; Seale, H. University Life and Pandemic Influenza: Attitudes and Intended Behaviour of Staff and Students towards Pandemic (H1N1) 2009. BMC Public Health 2010, 10, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gender/Risk Quartile | 1 n (%) | 2 n (%) | 3 n (%) | 4 n (%) | Total n (%) | p ** |
Male | 1395 (11.0) | 1422 (11.0) | 1015 (8.0) | 976 (8.0) | 4808 (38.0) | p < 0.01 |
Female | 1785 (14.0) | 1992 (16.0) | 1932 (15.0) | 2132 (17.0) | 7841 (62.0) | |
Total | 3180 (25.0) | 3414 (27.0) | 2947 (23.0) | 3108 (25.0) | 12649 (100.0) | |
Age/Risk Quartile | 1 n (%) | 2 n (%) | 3 n (%) | 4 n (%) | Total n (%) | p ** |
15 to 24 | 1438 (11.0) | 1603 (13.0) | 1296 (10.0) | 1100 (9.0) | 5437 (43.0) | p < 0.01 |
25 to 34 | 646 (5.0) | 723 (6.0) | 647 (5.0) | 585 (5.0) | 2601 (21.0) | |
35 to 44 | 416 (3.0) | 385 (3.0) | 366 (3.0) | 528 (4.0) | 1695 (13.0) | |
45 to 54 | 339 (3.0) | 329 (3.0) | 309 (2.0) | 428 (3.0) | 1405 (11.0) | |
55 to 64 | 225 (2.0) | 242 (2.0) | 222 (2.0) | 322 (3.0) | 1011 (8.0) | |
65 to 74 | 96 (1.0) | 113 (1.0) | 96 (1.0) | 132 (1.0) | 437 (3.0) | |
75 to 84 | 17 (0.0) | 19 (0.0) | 9 (0.0) | 12 (0.0) | 57 (0.0) | |
85 and over | 3 (0.0) | 0 (0.0) | 2 (0.0) | 1 (0.0) | 6 (0.0) | |
Total | 3180 (25.0) | 3414 (27.0) | 2947 (23.0) | 3108 (25.0) | 12649 (100.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastelum-Strozzi, A.; Infante-Castañeda, C.; Figueroa-Perea, J.G.; Peláez-Ballestas, I. Heterogeneity of COVID-19 Risk Perception: A Socio-Mathematical Model. Int. J. Environ. Res. Public Health 2021, 18, 11007. https://doi.org/10.3390/ijerph182111007
Gastelum-Strozzi A, Infante-Castañeda C, Figueroa-Perea JG, Peláez-Ballestas I. Heterogeneity of COVID-19 Risk Perception: A Socio-Mathematical Model. International Journal of Environmental Research and Public Health. 2021; 18(21):11007. https://doi.org/10.3390/ijerph182111007
Chicago/Turabian StyleGastelum-Strozzi, Alfonso, Claudia Infante-Castañeda, Juan Guillermo Figueroa-Perea, and Ingris Peláez-Ballestas. 2021. "Heterogeneity of COVID-19 Risk Perception: A Socio-Mathematical Model" International Journal of Environmental Research and Public Health 18, no. 21: 11007. https://doi.org/10.3390/ijerph182111007
APA StyleGastelum-Strozzi, A., Infante-Castañeda, C., Figueroa-Perea, J. G., & Peláez-Ballestas, I. (2021). Heterogeneity of COVID-19 Risk Perception: A Socio-Mathematical Model. International Journal of Environmental Research and Public Health, 18(21), 11007. https://doi.org/10.3390/ijerph182111007