Investigation of Critical Geotechnical, Petrological and Mineralogical Parameters for Landslides in Deeply Weathered Dunite Rock (Medellín, Colombia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Landslide Inventory and Geological Investigation
3.1.1. Landslide Map
3.1.2. Geological Map
3.2. Evaluation of the Drillings
3.2.1. Detailed Description, Drilling A1
3.2.2. Detailed Description, Drilling A2
3.2.3. Detailed Description, Drilling B1
3.3. Laboratory Tests
3.3.1. Uniaxial Compressive Strength
3.3.2. Brazilian Test
3.3.3. Grain Size Distribution
3.3.4. Atterberg Limits
3.3.5. Direct Shear Test
3.4. Mineralogical Investigations
3.4.1. Petrographic Thin Section Microscopy
3.4.2. X-ray Diffraction Analysis
4. Discussion
4.1. Discontinuity Sets
4.2. Weathering Processes–Serpentinization and “Pseudokarst” Structures
4.3. Thin Section Analysis and X-ray Diffraction Analysis
4.4. Consequences in the Context of Landslide Hazard Assessment
5. Conclusions
- The Medellín Dunite shows variations in its primary mineralogical composition and, therefore, its alteration by serpentinization over short distances and depths.
- Three joint sets could be observed in the drillings that can be correlated with surface structures and known fault and joint systems in the region.
- Both above mentioned predispositions influence the deep weathering of the dunite along fractures. Olivine usually is the most unstable mineral in ultramafic rocks and is the first one to be weathered, as observed in this investigation. When looking at the rock and the soil samples, the olivine is mostly already decomposed or heavily altered by serpentinization and weathering. Therefore, the parts of the Medellín Dunite containing more olivine are weathered faster.
- One weathering characteristic of the Medellín Dunite might be a secondary serpentinization caused by water circulation, primarily creating lizardite and brucite. Indications of this process have been observed in the drilling cores and by comparing the minerals of the rock and the soil samples.
- The pseudokarst observed in the region of the Medellín Dunite and in the current drilling cores might be created by this secondary serpentinization. This phenomenon forms along existing fractures and causes a large number of cavities of different sizes up to 1 m width. The pseudokarst features promote the high water conductivity in the rock mass and, therefore, the high weathering degree in the whole dunite body, reaching a depth of at least 60 m.
- Created by weathering, former landslides and pseudokarst processes, the block-in-matrix structure is the main landslide prone unit at the study site. Its soil content is not as high as expected, but the soil material exists even with increasing depth, is very fine and is therefore suggested to act as a shear surface for landslides, especially when water saturated, even with a low thickness of only a few centimeters.
- A critical friction angle of 20–25°, as most of the former landslides in the SIMMA database, is also to be expected at the study site, as the results from the shear test suggest.
- The transfer of the early warning system created on the basis of the geological findings to other geologically similar study sites is possible. However, a profound investigation of the subsurface in every further area, where the early warning system is to be installed, is indispensable.
- The approach of establishing detailed base data for a Low Cost Early Warning System (LEWS) in deeply weathered ultramafic rock masses is suggested to be applicable to further landslide prone areas.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Thuro, K.; Singer, J.; Menschik, B.; Breuninger, T.; Gamperl, M. Development of an early warning system for landslides in the tropical Andes (Medellín; Colombia). Geomech. Tunn. 2020, 13, 103–115. [Google Scholar] [CrossRef]
- Botero, G. Contribución al conocimiento de la geología de la zona central de Antioquia. Univ. Nac. Colomb. An. Fac. Minas 1963, 57, 101. [Google Scholar]
- Álvarez, A.J. Tectonitas dunitas de Medellín, departamento de Antioquia, Colombia (Informe1896). Ingeominas Intern. Rep. 1982, 28, 13–44. [Google Scholar]
- Restrepo, J.J.; Toussaint, J.F. Unidades litológicas de los alrededores de Medellín. In Proceedings of the Primera Conferencia Sobre Riesgos Geológicos del Valle de Aburrá, Medellín, Colombia, 3–6 December 1984; Sociedad Colombiana de Geología: Bogotá, Colombia, 1984; pp. 1–26. [Google Scholar]
- Agudelo, J.Á. Tectonitas dunitas de Medellín, departamento de Antioquia, Colombia. Boletín Geológico 1987, 28, 9–44. [Google Scholar]
- Rodríguez, G.; González, H.; Zapata, G. Memoria explicativa: Geología de la plancha 147 Medellín Oriental. Scale: 1:100,000; Ingeomina: Bogotá, Colombia, 2005. [Google Scholar]
- Correa–Martínez, A.M. Petrogênese e evolução do Ofiolito de Aburrá, Cordilheira Central dos Andes Colombianos. Ph.D. Thesis, Universidade de Brasília, Brasilia, Brazil, 2007. [Google Scholar]
- Restrepo, J.J. Obducción y metamorfismo de ofiolitas triásicas en el flanco occidental del Terreno Tahamí, cordillera Central de Colombia. Boletín Cienc. Tierra 2008, 22, 49–100. [Google Scholar]
- Hernández-González, J.S. Mineralizaciones de Cr y elementos del grupo del platino (EGP) asociadas a las Metaperidotitas de Medellín, Colombia. Master’s Thesis, Universidad de Barcelona and Universidad Autónoma de Barcelona, Barcelona, Spain, 2014. [Google Scholar]
- Garcia-Casco, A.; Restrepo, J.J.; Correa–Martínez, A.M.; Blanco–Quintero, I.F.; Proenza, J.A.; Weber, M.; Butjosa, L. The petrologic nature of the “Medellín Dunite” revisited: An algebraic approach and proposal of a new definition of the geological body. In The Geology of Colombia—Publicaciones Geológicas Especiales 36; Gómez, J., Pinilla–Pachon, A.O., Eds.; Volume 2 Mesozoic; Servicio Geológico Colombiano: Bogotá, Colombia, 2020; pp. 45–75. [Google Scholar] [CrossRef]
- Breuninger, T.; Gamperl, M.; Menschik, B.; Thuro, K. First Field Findings and their Geological Interpretations at the Study Site Bello Oriente, Medellín, Colombia (Project Inform@Risk). In Proceedings of the 13th International Symposium on Landslides, Cartagena, Colombia, 22–26 February 2021. [Google Scholar]
- Tobón-Hincapié, M.P.; Joya-Camacho, A.M.; Marcías-Torres, C.E.; Gomez-Gallo, M.H.; Zapata-Wills, C.; Velásquez, A. Medidas de Mitigacíon de la Ladera Oriental del Valle de Aburrá entra las Quebradas La Poblada y La Sanín; Alcaldía de Medellín-Secretaria del Medio Ambiente: Medellín, Colombia, 2011; p. 218. [Google Scholar]
- Ündül, Ö.; Tuğrul, A.; Özyalın, Ş.; Zarif, İ.H. Identifying the changes of geo-engineering properties of dunites due to weathering utilizing electrical resistivity tomography (ERT). J. Geophys. Eng. 2015, 12, 273–281. [Google Scholar] [CrossRef]
- Ündül, Ö.; Tuğrul, A. On the variations of geo-engineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 2016, 75, 1326. [Google Scholar] [CrossRef]
- Rendón-Giraldo, D.A.; Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia. Personal Communication, 18 November 2020.
- Breuninger, T.; Garcia-Londoño, C.; Gamperl, M.; Thuro, K. Initial Experiences of Community Involvement in an Early Warning System in Informal Settlements in Medellín, Colombia. In Understanding and Reducing Landslide Disaster Risk—Volume 1 Sendai Landslide Partnership and Kyoto Landslide Commitment; Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 597–602. [Google Scholar] [CrossRef]
- Singer, J.; Thuro, K.; Gamperl, M.; Breuninger, T.; Menschik, T. Technical Concepts for an Early Warning System for Rainfall Induced Landslides in Informal Settlements. In Understanding and Reducing Landslide Disaster Risk—Volume 3 Monitoring and Early Warning; Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P.T., Takara, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 209–215. [Google Scholar]
- Deere, D.U. Technical description of rock cores for engineering purposes. In Rock Mechanics and Engineering Geology; Springer: Vienna, Austria, 1963; Volume 1, p. 18. [Google Scholar]
- ASTM International. ASTM D 7012—14e1 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Carrying States of Stress and Temperatures; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM International. ASTM D 3967 Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimen; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- INV E 123 Análisis Granulometrico de Suelos por Tamizado. 2013. Available online: https://www.invias.gov.co/index.php/archivo-y-documentos?task=doc_download&gid=2740 (accessed on 19 October 2021).
- INV E 125 Determinación del Limite Liquido de los Suelos. 2013. Available online: https://www.invias.gov.co/index.php/archivo-y-documentos?task=doc_download&gid=2740 (accessed on 19 October 2021).
- INV E 126 Límite Plastico e Índice de Plasticidad. 2013. Available online: https://www.invias.gov.co/index.php/archivo-y-documentos?task=doc_download&gid=2740 (accessed on 19 October 2021).
- INV E 154 Determinación de la Resisténcia al corte Metodo de Corte Directo (CD) (Consolidado Drenado). 2013. Available online: https://www.invias.gov.co/index.php/archivo-y-documentos?task=doc_download&gid=2740 (accessed on 19 October 2021).
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Bundesamt für Raumplanung BRP, Bundesamt für Wasserwirtschaft BWW, Bundesamt für Umwelt, Wald und Landschaft BUWAL. Empfehlungen 1997—Berücksichtigung der Massenbewegungsgefahren bei Raumwirksamen Tätigkeiten. Bern, Switzerland, 42. Available online: https://www.planat.ch/fileadmin/PLANAT/planat_pdf/alle_2012/1996-2000/Lateltin_1997_-_Beruecksichtigung_der_Massenbewegungsgefahren_bei_raumwirksamen.pdf (accessed on 19 October 2021).
- Demharter, A. Geologisch-geotechnische Charakterisierung des “Medellín-Dunits” am Osthang der Stadt Medellín, Kolumbien. Master’s Thesis, Technical University of Munich, Munich, German, 2021. Unpublished. [Google Scholar]
- IAEG—International Association of Engineering Geology. Rock and soil description and classification for engineering geological mapping—Report by the IAEG Commission on Engineering Geological Mapping. Bull. Int. Assoc. Eng. Geol. 1981, 24, 235–274. [Google Scholar] [CrossRef]
- Beuth. DIN EN ISO 14689 Geotechnische Erkundung und Untersuchung; Benennung, Beschreibung und Klassifizierung von Fels; Teil 1: Benennung und Beschreibung; Beuth: Berlin, Germany, 2018. [Google Scholar]
- Beuth. DIN EN ISO 14688-1 Geotechnische Erkundung und Untersuchung; Benennung, Beschreibung und Klassifizierung von Boden; Teil 1: Benennung und Beschreibung; Beuth: Berlin, Germany, 2020. [Google Scholar]
- Beuth. DIN 18196 Erd-und Grundbau–Bodenklassifikation für Bautechnische Zwecke; Beuth: Berlin, Germany, 2011. [Google Scholar]
- ASTM International. ASTM D 2487—17e1 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Prinz, H.; Strauss, R. Ingenieurgeologie, 6th ed.; Springer International Publishing: Cham, Switzerland, 2018; p. 738. [Google Scholar]
- Ambos, P. Petrographische Analyse der Ultramafischen Gesteine am Osthang der Stadt Medellín. Bachelor’s Thesis, Technical University of Munich, Munich, Germany, 23 September 2020. Unpublished. [Google Scholar]
- Aillaud, J.C.; Proust, D.; Righi, D. Weathering Sequences of Rock-Forming Minerals in a Serpentinite: Influence of Microsystems on Clay Mineralogy. Clays Clay Miner. 2006, 54, 87–100. [Google Scholar] [CrossRef]
- Ziegler, J. XRD Analysis of the Weathered Material from the Igneous Rocks on the Eastern Slope of Medellín (Inform@Risk). Bachelor’s Thesis, Technical University of Munich, Munich, Germany, 5 October 2020. Unpublished. [Google Scholar]
- Werthmann, C.; Echeverri, A.; Vélez, A.E. Rehabitar La Ladera: Shifting Ground, 1st ed.; Universidad EAFIT: Medellín, Colombia, 2012; p. 135. [Google Scholar]
- Tokuhiro, H. Landslide in Villa Tina, Medellín City, Colombia. Jpn. Landslide Soc. Landslide News 1988, 2, 12–13. [Google Scholar]
- Ojeda, J.; Laurence, D. Landslides in Colombia and their impact on towns and cities. In Proceedings of the 10th Congress of the International Association for Engineering Geology and Environment, Engineering Geology for Tomorrow’s Cities, Nottingham, UK, 6–9 September 2006; London Geological Society: London, UK, 2009; Volume 112, p. 13. [Google Scholar]
- Hermelín, M. (Ed.) Desastres de Origen Natural en Colombia 1979–2004, 1st ed.; Universidad EAFIT Medellín: Medellín, Colombia, 2005; pp. 55–64. [Google Scholar]
- Colmenares, F.; García, L.R.; Sánchez, J.M.; Ramirez, J.C. Diagnostic structural features of NW South America: Structural Cross Sections based upon detailed field transects. In Geology and Tectonics of Northwestern South America, 1st ed.; Cediel, F., Shaw, R.P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 651–672. [Google Scholar] [CrossRef]
Test Performed | Standard | Number of Tests |
---|---|---|
Compressive Strength | ASTM D 7012-14e1 (2014) [19] | 18 |
Brazilian Test | ASTM D 3967 (2016) [20] | 18 |
Grain Size Analysis | INV E 123 (2013) [21] | 7 |
Atterberg Limits | INV E 125 and INV E 126 (2013) [22,23] | 7 |
Direct Shear Test (CD) | INV E 154 (2013) [24] | 1(2) |
Sample | Gravel [%] | Sand [%] | Silt/Clay [%] |
---|---|---|---|
A1, 19.40 m | 32 | 21 | 47 |
A1, 21.45 m | 19 | 14 | 67 |
A1, 25.30 m | 15 | 12 | 73 |
A1, 26.00 m | 48 | 15 | 37 |
A2, 3.40 m | 33 | 19 | 48 |
B1, 2.30 m | 2 | 17 | 81 |
B1, 5.25 m | 0 | 7 | 93 |
Sample | Plastic Limit [%] | Liquid Limit [%] | Plasticity Index [%] | USCS [32] | DIN 18196 [31] |
---|---|---|---|---|---|
A1, 19.40 m | 26 | 53 | 27 | SC | TA |
A1, 21.45 m | 20 | 31 | 11 | CL | TL |
A1, 25.30 m | 21 | 32 | 11 | CL | TL |
A1, 26.00 m | 27 | 45 | 18 | GM | GU * |
A2, 3.40 m | 31 | 49 | 18 | SM | UM |
B1, 2.30 m | 72 | 106 | 34 | MH | UA |
B1, 5.25 m | 56 | 77 | 21 | MH | UA |
Sample | D-01 | D-02 | D-03 | D-04 | D-05 | D-06 | D-07 | D-08.1 | D-08.2 | D-09 | D-10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | ||||||||||||
Olivine | X | X | X | X | X | X | X | X | X | X | X | |
Serpentine | X | X | X | X | X | X | X | X | X | X | X | |
Pyroxene | X | X | X | X | X | X | X | X | X | |||
Amphibole | X | X | X | X | X | |||||||
Chlorite | X | X | X | X | X | X | X | X | X | X | X | |
Opaque phase | X | X | X | X | X | X | X | X | X | X | X |
Sample | L-01 | L-02 | L-03 | L-04 | L-05 | L-06 | L-07 | L-08 | |
---|---|---|---|---|---|---|---|---|---|
Mineral | |||||||||
Chlorite | X | X | X | X | X | X | X | X | |
Amphibole (tremolite) | X | X | X | X | X | X | X | X | |
Serpentine (lizardite) | X | X | X | X | X | X | |||
Gibbsite | X | X | |||||||
Magnetite | X | ||||||||
Quartz | X | X | X | X | X | X | X | X | |
Goethite | X | X | X | X | X | X | X | ||
Hematite | X | X | X | X | X | X | X | X | |
Olivine (forsterite) | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breuninger, T.; Menschik, B.; Demharter, A.; Gamperl, M.; Thuro, K. Investigation of Critical Geotechnical, Petrological and Mineralogical Parameters for Landslides in Deeply Weathered Dunite Rock (Medellín, Colombia). Int. J. Environ. Res. Public Health 2021, 18, 11141. https://doi.org/10.3390/ijerph182111141
Breuninger T, Menschik B, Demharter A, Gamperl M, Thuro K. Investigation of Critical Geotechnical, Petrological and Mineralogical Parameters for Landslides in Deeply Weathered Dunite Rock (Medellín, Colombia). International Journal of Environmental Research and Public Health. 2021; 18(21):11141. https://doi.org/10.3390/ijerph182111141
Chicago/Turabian StyleBreuninger, Tamara, Bettina Menschik, Agnes Demharter, Moritz Gamperl, and Kurosch Thuro. 2021. "Investigation of Critical Geotechnical, Petrological and Mineralogical Parameters for Landslides in Deeply Weathered Dunite Rock (Medellín, Colombia)" International Journal of Environmental Research and Public Health 18, no. 21: 11141. https://doi.org/10.3390/ijerph182111141
APA StyleBreuninger, T., Menschik, B., Demharter, A., Gamperl, M., & Thuro, K. (2021). Investigation of Critical Geotechnical, Petrological and Mineralogical Parameters for Landslides in Deeply Weathered Dunite Rock (Medellín, Colombia). International Journal of Environmental Research and Public Health, 18(21), 11141. https://doi.org/10.3390/ijerph182111141