Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants and Settings
2.2. Clinical Assessment
2.3. Laboratory Assays
2.4. DNA Assays
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newcomer, J.W. Antipsychotic medications: Metabolic and cardiovascular risk. J. Clin. Psychiatry 2007, 68 (Suppl. 4), 8–13. [Google Scholar] [PubMed]
- Huang, M.-C.; Lu, M.-L.; Tsai, C.-J.; Chen, P.-Y.; Chiu, C.-C.; Jian, D.-L.; Lin, K.-M.; Chen, C.-H. Prevalence of metabolic syndrome among patients with schizophrenia or schizoaffective disorder in Taiwan. Acta Psychiatr. Scand. 2009, 120, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Collins, P.; Thakore, J.H. Impaired Fasting Glucose Tolerance in First-Episode, Drug-Naive Patients with Schizophrenia. Am. J. Psychiatry 2003, 160, 284–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakore, J.; Mann, J.; Vlahos, I.; Martin, A.; Reznek, R. Increased visceral fat distribution in drug-naive and drug-free patients with schizophrenia. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Lett, T.; Wallace, T.J.M.; Chowdhury, N.I.; Tiwari, A.K.; Kennedy, J.L.; Müller, D.J. Pharmacogenetics of antipsychotic-induced weight gain: Review and clinical implications. Mol. Psychiatry 2012, 17, 242–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grajales, D.; Ferreira, V.; Valverde, A.M. Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019, 8, 1336. [Google Scholar] [CrossRef] [Green Version]
- Carl, G.F.; Crews, E.L.; Carmichael, S.M.; Benesh, F.C.; Smythies, J.R. Four enzymes of one-carbon metabolism in blood cells of schizophrenics. Biol. Psychiatry 1978, 13, 773–776. [Google Scholar]
- Kelsoe, J.R., Jr.; Tolbert, L.C.; Crews, E.L.; Smythies, J.R. Kinetic evidence for decreased methionine adenosyltransferase activity in erythrocytes from schizophrenics. J. Neurosci. Res. 1982, 8, 99–103. [Google Scholar] [CrossRef]
- Frosst, P.; Blom, H.; Milos, R.; Goyette, P.; Sheppard, C.; Matthews, R.; Boers, G.; den Heijer, M.; Kluijtmans, L.; van den Heuve, L.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef] [PubMed]
- van der Put, N.M.; Gabreëls, F.; Stevens, E.M.; Smeitink, J.A.; Trijbels, F.J.; Eskes, T.K.; van den Heuvel, L.P.; Blom, H. A Second Common Mutation in the Methylenetetrahydrofolate Reductase Gene: An Additional Risk Factor for Neural-Tube Defects? Am. J. Hum. Genet. 1998, 62, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.; Rivera, I.; Ravasco, P.; Camilo, M.E.; Jakobs, C.; Blom, H.; De Almeida, I.T. 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C->T and 1298A->C mutations are associated with DNA hypomethylation. J. Med. Genet. 2004, 41, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friso, S.; Choi, S.-W.; Girelli, D.; Mason, J.B.; Dolnikowski, G.; Bagley, P.; Olivieri, O.; Jacques, P.F.; Rosenberg, I.H.; Corrocher, R.; et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA 2002, 99, 5606–5611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luttmer, R.; Spijkerman, A.M.; Kok, R.M.; Jakobs, C.; Blom, H.J.; Serne, E.H.; Dekker, J.M.; Smulders, Y.M. Metabolic syndrome components are associated with DNA hypomethylation. Obes. Res. Clin. Pract. 2013, 7, e106–e115. [Google Scholar] [CrossRef] [PubMed]
- Klerk, M.; Verhoef, P.; Clarke, R.; Blom, H.J.; Kok, F.J.; Schouten, E.G.; Group, M.S.C. MTHFR 677C-->T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 2002, 288, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Mizuki, Y.; Sakamoto, S.; Okahisa, Y.; Yada, Y.; Hashimoto, N.; Takaki, M.; Yamada, N. Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. Int. J. Neuropsychopharmacol. 2021, 24, 367–382. [Google Scholar] [CrossRef]
- Ellingrod, V.L.; Miller, D.D.; Taylor, S.F.; Moline, J.; Holman, T.; Kerr, J. Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr. Res. 2008, 98, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roffeei, S.N.; Mohamed, Z.; Reynolds, G.P.; Said, M.A.; Hatim, A.; Mohamed, E.H.M.; Aida, S.A.; Zainal, N.Z. Association of FTO, LEPR and MTHFR gene polymorphisms with metabolic syndrome in schizophrenia patients receiving antipsychotics. Pharmacogenomics 2014, 15, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.A.; Rees, D.C.; Liu, Y.-T.; Clegg, J.B. Worldwide Distribution of a Common Methylenetetrahydrofolate Reductase Mutation. Am. J. Hum. Genet. 1998, 62, 1258–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, R.; Bennett, D.A.; Parish, S.; Verhoef, P.; Dötsch-Klerk, M.; Lathrop, M.; Xu, P.; Nordestgaard, B.G.; Holm, H.; Hopewell, J.C.; et al. Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias. PLoS Med. 2012, 9, e1001177. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-J.; Pan, W.-H.; Lin, Y.-C.; Lin, B.-F. Trends in folate status in the Taiwanese population aged 19 years and older from the Nutrition and Health Survey in Taiwan 1993–1996 to 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 275–282. [Google Scholar] [PubMed]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Winkel, R.; Rutten, B.P.; Peerbooms, O.; Peuskens, J.; van Os, J.; De Hert, M. MTHFR and risk of metabolic syndrome in patients with schizophrenia. Schizophr. Res. 2010, 121, 193–198. [Google Scholar] [CrossRef]
- Ward, K.M.; Burghardt, K.; Kraal, A.Z.; Jaeger, A.; Yeomans, L.; McHugh, C.; Karnovsky, A.; Stringer, K.A.; Ellingrod, V.L. Genetic and Metabolite Variability in One-Carbon Metabolism Applied to an Insulin Resistance Model in Patients with Schizophrenia Receiving Atypical Antipsychotics. Front. Psychiatry 2021, 12, 623143. [Google Scholar] [CrossRef] [PubMed]
- Srisawat, U.; Reynolds, G.P.; Zhang, Z.J.; Zhang, X.R.; Arranz, B.; San, L.; Dalton, C.F. Methylenetetrahydrofolate reductase (MTHFR) 677C/T polymorphism is associated with antipsychotic-induced weight gain in first-episode schizophrenia. Int. J. Neuropsychopharmacol. 2014, 17, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misiak, B.; Laczmanski, L.; Słoka, N.K.; Szmida, E.; Ślęzak, R.; Piotrowski, P.; Kiejna, A.; Frydecka, D. Genetic Variation in One-Carbon Metabolism and Changes in Metabolic Parameters in First-Episode Schizophrenia Patients. Int. J. Neuropsychopharmacol. 2017, 20, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-X.; Lv, W.-W.; Dai, S.-X.; Pan, M.-L.; Huang, J.-F. Joint associations of folate, homocysteine and MTHFR, MTR and MTRR gene polymorphisms with dyslipidemia in a Chinese hypertensive population: A cross-sectional study. Lipids Health Dis. 2015, 14, 101. [Google Scholar] [CrossRef] [Green Version]
- Roffman, J.L.; Brohawn, D.G.; Nitenson, A.Z.; Macklin, E.A.; Smoller, J.W.; Goff, D.C. Genetic Variation Throughout the Folate Metabolic Pathway Influences Negative Symptom Severity in Schizophrenia. Schizophr. Bull. 2013, 39, 330–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, A.; Kuzman, M.R.; Tiwari, A.; Zivkovic, M.; Chowdhury, N.; Medved, V.; Kekin, I.; Zai, C.; Lieberman, J.; Meltzer, H.; et al. Methylenetetrahydrofolate reductase gene variants and antipsychotic-induced weight gain and metabolic disturbances. J. Psychiatry Res. 2014, 54, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Łaczmański, L.; Słoka, N.K.; Szmida, E.; Piotrowski, P.; Loska, O.; Ślęzak, R.; Kiejna, A.; Frydecka, D. Metabolic dysregulation in first-episode schizophrenia patients with respect to genetic variation in one-carbon metabolism. Psychiatry Res. 2016, 238, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yan, H.; Guo, L.; Lu, T.; Zhang, D.; Yue, W. Capoc Association of MTHFR C677T Polymorphism with Antipsychotic-Induced Change of Weight and Metabolism Index. Front. Psychiatry 2021, 12, 673715. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, K.J.; Pilsner, J.R.; Bly, M.J.; Ellingrod, V.L. DNA methylation in schizophrenia subjects: Gender and MTHFR 677C/T genotype differences. Epigenomics 2012, 4, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellingrod, V.L.; Grove, T.B.; Burghardt, K.J.; Taylor, S.F.; Dalack, G. The effect of folate supplementation and genotype on cardiovascular and epigenetic measures in schizophrenia subjects. NPJ Schizophr. 2015, 1, 15046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dijk, S.J.; Peters, T.J.; Buckley, M.; Zhou, J.; Jones, P.A.; Gibson, R.A.; Makrides, M.; Muhlhausler, B.S.; Molloy, P.L. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int. J. Obes. 2018, 42, 28–35. [Google Scholar] [CrossRef]
- Burghardt, K.J.; Goodrich, J.; Dolinoy, D.C.; Ellingrod, V.L. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord. 2016, 18, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delacrétaz, A.; Glatard, A.; Dubath, C.; Gholam-Rezaee, M.; Sanchez-Mut, J.V.; Gräff, J.; von Gunten, A.; Conus, P.; Eap, C.B. Psychotropic drug-induced genetic-epigenetic modulation of CRTC1 gene is associated with early weight gain in a prospective study of psychiatric patients. Clin. Epigenetics 2019, 11, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | |
---|---|
Age a (years), mean ± SD | 44.3 ± 10.7 |
Sex, male/female, n (%) | 115/117 (49.6/50.4) |
Onset age b (years), mean ± SD | 24.1 ± 8.9 |
Duration of illness c (years), mean ± SD | 19.8 ± 10.5 |
Antipsychotic use, n (%) | |
Clozapine | 83 (35.8) |
Olanzapine | 31 (13.4) |
Risperidone | 25 (10.8) |
Haloperidol | 22 (9.5) |
Aripiprazole | 14 (6.0) |
Others | 57 (24.5) |
MTHFR C677T (rs1801133) | |
C/C, n (%) | 116 (50.0) |
C/T, n (%) | 97 (41.8) |
T/T, n (%) | 19 (8.2) |
MTHFR A1298C (rs1801131) | |
A/A, n (%) | 152 (65.5) |
A/C, n (%) | 66 (28.4) |
C/C, n (%) | 14 (6.0) |
BMI d (kg/m2), mean ± SD | 26.7 ± 5.1 |
Antipsychotic use, olanzapine/clozapine, n (%) | 116 (50) |
WC d (cm), mean ± SD | 91.0 ± 12.5 |
SBP d (mmHg), mean ± SD | 124.2 ± 18.3 |
DBP d (mmHg), mean ± SD | 77.3 ± 12.0 |
TG (mg/dL), mean ± SD | 148.1 ± 87.0 |
Total cholesterol (mg/dL), mean ± SD | 189.6 ± 38.8 |
HDL-C (mg/dL), mean ± SD | 51.3 ± 16.7 |
LDL-C (mg/dL), mean ± SD | 119.6 ± 35.6 |
FPG (mg/dL), mean ± SD | 108.5 ± 39.3 |
Folate (ng/mL), mean ± SD | 8.6 ± 3.9 |
Homocysteine (μmol/mL), mean ± SD | 16.4 ± 14.3 |
Vitamin B12 (pg/mL), mean ± SD | 432.1 ± 266.6 |
MTHFR C677T | MTHFR A1298C | |||||
---|---|---|---|---|---|---|
C/C | C/T + T/T | p | A/A | A/C + C/C | p | |
n = 116 | n = 116 | n = 152 | n = 80 | |||
Age a (years), mean ± SD | 44.3 ± 10.0 | 44.4 ± 11.4 | 0.92 | 44.5 ± 10.5 | 43.9 ± 11.0 | 0.61 |
Sex, male/female, n (%) | 54/62 (46.6/53.4) | 61/55 (52.6/47.4) | 0.36 | 74/78 (48.7/51.3) | 41/39 (51.2/48.8) | 0.71 |
Onset age b (years), mean ± SD | 23.9 ± 8.7 | 24.3 ± 9.1 | 0.84 | 24.1 ± 8.8 | 24.1 ± 9.0 | 0.98 |
Duration of illness c, years, mean ± SD | 20.3 ± 9.9 | 19.3 ± 11.1 | 0.51 | 19.9 ± 10.6 | 19.7 ± 10.4 | 0.93 |
Olanzapine/clozapine, n (%) | 59 (50.9) | 55 (47.4) | 0.60 | 78 (51.3) | 36 (45.0) | 0.36 |
BMI d (kg/m2), mean ± SD | 27.0 ± 5.1 | 26.3 ± 5.2 | 0.35 | 26.4 ± 4.9 | 27.1 ± 5.7 | 0.35 |
WC d (cm), mean ± SD | 91.3 ± 13.3 | 90.7 ± 11.7 | 0.70 | 90.6 ± 11.7 | 91.8 ± 13.9 | 0.48 |
SBP d (mmHg), mean ± SD | 123.6 ± 18.3 | 124.8 ± 18.5 | 0.62 | 124.8 ± 18.4 | 123.1 ± 18.3 | 0.50 |
DBP d (mmHg), mean ± SD | 77.4 ± 11.8 | 77.2 ± 12.2 | 0.92 | 77.1 ± 12.1 | 77.6 ± 11.9 | 0.79 |
TG (mg/dL), mean ± SD | 149.0 ± 85.7 | 147.1 ± 88.6 | 0.87 | 150.7 ± 90.0 | 143.2 ± 81.3 | 0.53 |
Total cholesterol (mg/dL), mean ± SD | 194.8 ± 40.8 | 184.4 ± 36.1 | 0.04 | 188.6 ± 35.9 | 191.5 ± 43.9 | 0.60 |
HDL-C (mg/dL), mean ± SD | 50.7 ± 16.2 | 51.9 ± 17.2 | 0.58 | 51.5 ± 15.7 | 50.9 ± 18.6 | 0.79 |
LDL-C (mg/dL), mean ± SD | 125.2 ± 38.4 | 114.1 ± 31.9 | 0.02 | 118.0 ± 34.0 | 122.8 ± 38.6 | 0.33 |
FPG (mg/dL), mean ± SD | 109.0 ± 42.4 | 108.0 ± 36.1 | 0.85 | 110.3 ± 44.9 | 105.0 ± 25.5 | 0.32 |
Folate (ng/mL), mean ± SD | 9.5 ± 3.9 | 7.7 ± 3.7 | <0.001 | 8.5 ± 3.9 | 8.8 ± 3.9 | 0.49 |
Low folate, n (%) | 19 (16.4) | 46 (39.7) | <0.001 | 42 (27.6) | 23 (28.7) | 0.86 |
Homocysteine (μmol/mL), mean ± SD | 13.3 ± 5.1 | 19.4 ± 19.0 | 0.001 | 17.8 ± 17.0 | 13.6 ± 5.4 | 0.03 |
Vitamin B12 (pg/mL), mean ± SD | 480.5 ± 307.5 | 383.4 ± 207.9 | 0.005 | 422.8 ± 265.3 | 449.8 ± 269.8 | 0.47 |
Patients with Low Folate Level (≤6 ng/mL) | Patients with Normal Folate Level (>6 ng/mL) | p | |
---|---|---|---|
n = 65 | n = 167 | ||
Age a (years), mean ± SD | 41.8 ± 11.1 | 45.3 ± 10.4 | 0.03 |
Sex, male/female, n (%) | 40/25 (61.5/38.5) | 75/92 (44.9/55.1) | 0.02 |
Onset age b (years), mean ± SD | 23.5 ± 8.5 | 24.3 ± 9.0 | 0.53 |
Duration of illness c (years), mean ± SD | 17.9 ± 10.1 | 20.6 ± 10.6 | 0.09 |
Olanzapine/clozapine, n (%) | 90 (53.9) | 24 (36.9) | 0.02 |
BMI d (kg/m2), mean ± SD | 27.7 ± 5.7 | 26.3 ± 4.9 | 0.054 |
WC d (cm), mean ± SD | 92.9 ± 11.9 | 90.2 ± 12.7 | 0.15 |
SBP d (mmHg), mean ± SD | 123.7 ± 19.9 | 124.4 ± 17.8 | 0.80 |
DBP d (mmHg), mean ± SD | 78.0 ± 12.4 | 77.0 ± 11.8 | 0.57 |
TG (mg/dL), mean ± SD | 149.6 ± 77.8 | 147.5 ± 90.5 | 0.87 |
Total cholesterol (mg/dL), mean ± SD | 188.2 ± 41.3 | 190.1 ± 37.9 | 0.74 |
HDL-C (mg/dL), mean ± SD | 47.6 ± 12.3 | 52.7 ± 18.0 | 0.037 |
LDL-C (mg/dL), mean ± SD | 121.8 ± 36.2 | 118.8 ± 35.5 | 0.57 |
FPG (mg/dL), mean ± SD | 107.1 ± 33.1 | 109.0 ± 41.5 | 0.73 |
Homocysteine (μmol/mL), mean ± SD | 25.1 ± 23.5 | 13.0 ± 5.3 | <0.001 |
Vitamin B12 (pg/mL), mean ± SD | 351.6 ± 208.2 | 463.0 ± 280.3 | 0.004 |
MTHFR 1298AA | MTHFR 1298 AC + CC | p a | |
---|---|---|---|
BMI (kg/m2), mean ± SD | 0.01 | ||
Low folate level | 25.9 ± 4.6 (n = 38) | 30.0 ± 6.7 (n = 20) | |
Normal folate level | 26.4 ± 5.0 (n = 97) | 26.1 ± 5.0 (n = 56) | |
WC (cm), mean ± SD | 0.01 | ||
Low folate level | 89.4 ± 10.9 (n = 38) | 98.7 ± 12.4 (n = 20) | |
Normal folate level | 90.7 ± 12.1 (n = 97) | 89.3 ± 13.4 (n = 56) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Chen, P.-Y.; Chen, C.Y.-A.; Chiu, C.-C.; Lu, M.-L.; Huang, M.-C.; Lin, Y.-K.; Chen, Y.-H. Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. Int. J. Environ. Res. Public Health 2021, 18, 11333. https://doi.org/10.3390/ijerph182111333
Chen C-H, Chen P-Y, Chen CY-A, Chiu C-C, Lu M-L, Huang M-C, Lin Y-K, Chen Y-H. Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. International Journal of Environmental Research and Public Health. 2021; 18(21):11333. https://doi.org/10.3390/ijerph182111333
Chicago/Turabian StyleChen, Chun-Hsin, Po-Yu Chen, Cynthia Yi-An Chen, Chih-Chiang Chiu, Mong-Liang Lu, Ming-Chyi Huang, Yen-Kuang Lin, and Yi-Hua Chen. 2021. "Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia" International Journal of Environmental Research and Public Health 18, no. 21: 11333. https://doi.org/10.3390/ijerph182111333
APA StyleChen, C. -H., Chen, P. -Y., Chen, C. Y. -A., Chiu, C. -C., Lu, M. -L., Huang, M. -C., Lin, Y. -K., & Chen, Y. -H. (2021). Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. International Journal of Environmental Research and Public Health, 18(21), 11333. https://doi.org/10.3390/ijerph182111333