Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media
Abstract
:1. Introduction
2. Theory of Planned Behavior
3. Regression Tree Algorithms
4. Materials and Methods
4.1. Study and Sample
4.2. Measures
4.2.1. Sharing of and Exposure to Drunk References on Social Media
4.2.2. Injunctive Norms towards Alcohol Consumption
4.2.3. Descriptive Norms towards Alcohol Consumption
4.2.4. Willingness to Consume Alcohol
4.2.5. Social Media Use, Further Norms, Attitudes, Peer Influence and Sensation Seeking
4.3. Data Analysis
5. Results
6. Discussion
6.1. Theoretical Implications
6.2. Methodological Implications
6.3. Practical Implications
6.4. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nesi, J.; Rothenberg, W.A.; Hussong, A.M.; Jackson, K.M. Friends’ Alcohol-Related Social Networking Site Activity Predicts Escalations in Adolescent Drinking: Mediation by Peer Norms. J. Adolesc. Health 2017, 60, 641–647. [Google Scholar] [CrossRef]
- Jackson, K.M.; Janssen, T.; Cox, M.J.; Colby, S.M.; Barnett, N.P.; Sargent, J. Mechanisms Underlying Associations between Media Alcohol Exposure, Parenting, and Early Adolescent Drinking: A Moderated Sequential Mediation Model. J. Youth Adolesc. 2021, 1–15. [Google Scholar] [CrossRef]
- Geusens, F.; Beullens, K. The Association between Social Networking Sites and Alcohol Abuse among Belgian Adolescents. J. Media Psychol. 2018, 30, 207–216. [Google Scholar] [CrossRef]
- Curtis, B.L.; Lookatch, S.J.; Ramo, D.E.; McKay, J.R.; Feinn, R.S.; Kranzler, H.R. Meta-Analysis of the Association of Alcohol-Related Social Media Use with Alcohol Consumption and Alcohol-Related Problems in Adolescents and Young Adults. Alcohol. Clin. Exp. Res. 2018, 42, 978–986. [Google Scholar] [CrossRef]
- Zeigler, D.W.; Wang, C.C.; Yoast, R.A.; Dickinson, B.D.; McCaffree, M.A.; Robinowitz, C.B.; Sterling, M.L. The neurocognitive effects of alcohol on adolescents and college students. Prev. Med. 2005, 40, 23–32. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Hingson, R. The burden of alcohol use: Excessive alcohol consumption and related consequences among college students. Alcohol Res. 2013, 35, 201–218. [Google Scholar]
- Phan, T.-T.; Muralidhar, S.; Gatica-Perez, D. #Drink or #Drunk: Multimodal Signals and Drinking Practices on Instagram. In Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare—Pervasive Health’19, Trento, Italy, 20–23 May 2019; Mayora, O., Forti, S., Eds.; ACM Press: New York, NY, USA, 2019; pp. 71–80, ISBN 9781450361262. [Google Scholar]
- Niland, P.; Lyons, A.C.; Goodwin, I.; Hutton, F. ‘See it doesn’t lo ok pretty does it?’ Young adults’ airbrushed drinking practices on Facebook. Psychol. Health 2014, 29, 877–895. [Google Scholar] [CrossRef]
- Atkinson, A.M.; Sumnall, H.R. ‘If I don’t look good, it just doesn’t go up’: A qualitative study of young women’s drinking cultures and practices on Social Network Sites. Int. J. Drug Policy 2016, 38, 50–62. [Google Scholar] [CrossRef]
- Litt, D.M.; Lewis, M.A.; Spiro, E.S.; Aulck, L.; Waldron, K.A.; Head-Corliss, M.K.; Swanson, A. #drunktwitter: Examining the relations between alcohol-related Twitter content and alcohol willingness and use among underage young adults. Drug Alcohol Depend. 2018, 193, 75–82. [Google Scholar] [CrossRef]
- Hendriks, H.; van den Putte, B.; Gebhardt, W.A. Alcoholposts on Social Networking Sites: The Alcoholpost-Typology. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 463–467. [Google Scholar] [CrossRef]
- Erevik, E.K.; Torsheim, T.; Vedaa, Ø.; Andreassen, C.S.; Pallesen, S. Sharing of Alcohol-Related Content on Social Networking Sites: Frequency, Content, and Correlates. J. Stud. Alcohol Drugs 2017, 78, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Geusens, F.; Beullens, K. The reciprocal associations between sharing alcohol references on social networking sites and binge drinking: A longitudinal study among late adolescents. Comput. Hum. Behav. 2017, 73, 499–506. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Kern, C.; Klausch, T.; Kreuter, F. Tree-based Machine Learning Methods for Survey Research. Surv. Res. Methods 2019, 13, 73–93. [Google Scholar] [PubMed]
- Rosiers, J. VAD-Leerlingenbevraging: In het Kader van een Drugbeleid op School Syntheserapport Schooljaar 2017–2018. 2019. Available online: https://www.vad.be/assets/syntheserapport_leerlingenbevraging_2018-2019 (accessed on 12 October 2021).
- Vandendriessche, K.; De Marez, L. Digimeter 2019: Digitale Mediatrends in Vlaanderen; Imec: Leuven, Belgium, 2019; Available online: http://www.imec.be/digimeter (accessed on 24 May 2021).
- Geber, S.; Baumann, E.; Czerwinski, F.; Klimmt, C. The Effects of Social Norms among Peer Groups on Risk Behavior: A Multilevel Approach to Differentiate Perceived and Collective Norms. Commun. Res. 2019, 4, 009365021882421. [Google Scholar] [CrossRef] [Green Version]
- Borsari, B.; Carey, K.B. Descriptive and injunctive norms in college drinking: A meta-analytic integration. J. Stud. Alcohol 2003, 64, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geusens, F.; Beullens, K. A Longitudinal Examination of the Moderating Influence of Peer and Parental Socialization on Alcohol-Related Social Media Self-Effects Among Late Adolescents. Media Psychol. 2019, 22, 273–297. [Google Scholar] [CrossRef]
- Beullens, K.; Vandenbosch, L. A Conditional Process Analysis on the Relationship between the Use of Social Networking Sites, Attitudes, Peer Norms, and Adolescents’ Intentions to Consume Alcohol. Media Psychol. 2016, 19, 310–333. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, H.; Gebhardt, W.A.; van den Putte, B. Alcohol-Related Posts from Young People on Social Networking Sites: Content and Motivations. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 428–435. [Google Scholar] [CrossRef]
- Gannon-Loew, K.E.; Eickhoff, J.C.; Moreno, M.A. The Relationship between Attitude, Social Norms and Alcohol Use: A Longitudinal Analysis Using Facebook. J. Adolesc. Health 2016, 58, S108–S109. [Google Scholar] [CrossRef]
- Teunissen, H.A.; Kuntsche, E.; Scholte, R.H.J.; Spijkerman, R.; Prinstein, M.J.; Engels, R.C.M.E. Friends’ drinking norms and male adolescents’ alcohol consumption: The moderating role of performance-based peer influence susceptibility. J. Adolesc. 2016, 53, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Geusens, F.; Bigman-Galimore, C.A.; Beullens, K. Identifying At-Risk Youth. EJHC 2020, 1, 7–29. [Google Scholar] [CrossRef]
- Vogel, E.A.; Rose, J.P.; Okdie, B.M.; Eckles, K.; Franz, B. Who compares and despairs? The effect of social comparison orientation on social media use and its outcomes. Personal. Individ. Differ. 2015, 86, 249–256. [Google Scholar] [CrossRef]
- Reer, F.; Tang, W.Y.; Quandt, T. Psychosocial well-being and social media engagement: The mediating roles of social comparison orientation and fear of missing out. New Media Soc. 2019, 21, 1486–1505. [Google Scholar] [CrossRef]
- Khurana, A.; Bleakley, A.; Ellithorpe, M.E.; Hennessy, M.; Jamieson, P.E.; Weitz, I. Sensation Seeking and Impulsivity Can Increase Exposure to Risky Media and Moderate Its Effects on Adolescent Risk Behaviors. Prev. Sci. 2019, 20, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.L.; Martin, J.; Foxcroft, D.R. Age differences in alcohol prototype perceptions and willingness to drink in U.K. adolescents. Psychol. Health Med. 2016, 21, 317–329. [Google Scholar] [CrossRef]
- Anderson, K.G.; Garcia, T.A.; Dash, G.F. Drinking Motives and Willingness to Drink Alcohol in Peer Drinking Contexts. Emerging Adulthood 2017, 5, 16–26. [Google Scholar] [CrossRef]
- Geusens, F.; Beullens, K. Strategic Self-Presentation or Authentic Communication? Predicting Adolescents’ Alcohol References on Social Media. J. Stud. Alcohol Drugs 2017, 78, 124–133. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone Charles, J.; Olshen, R.A. Classification and Regression Trees; Chapman & Hal/CRCl: Boca Raton, FL, USA, 1984; ISBN 978-0412048418. [Google Scholar]
- Tin Kam, H. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282, ISBN 0-8186-7128-9. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’16, San Francisco, CA, USA, 13–17 August 2016; Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D., Rastogi, R., Eds.; ACM Press: New York, NY, USA, 2016; pp. 785–794, ISBN 9781450342322. [Google Scholar]
- Gray, R.M. Entropy and Information Theory, 2nd ed.; Springer: New York, NY, USA, 2011; ISBN 9781441979698. [Google Scholar]
- Norman, P.; Armitage, C.J.; Quigley, C. The theory of planned behavior and binge drinking: Assessing the impact of binge drinker prototypes. Addict. Behav. 2007, 32, 1753–1768. [Google Scholar] [CrossRef] [PubMed]
- Marks Woolfson, L.; Maguire, L. Binge drinking in a sample of Scottish undergraduate students. J. Youth Stud. 2010, 13, 647–659. [Google Scholar] [CrossRef]
- Elliott, M.A.; Ainsworth, K. Predicting university undergraduates’ binge-drinking behavior: A comparative test of the one- and two-component theories of planned behavior. Addict. Behav. 2012, 37, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Raykov, T. Estimation of congeneric scale reliability using covariance structure analysis with nonlinear constraints. Br. J. Math. Stat. Psychol. 2001, 54, 315–323. [Google Scholar] [CrossRef]
- Gerrard, M.; Gibbons, F.X.; Houlihan, A.E.; Stock, M.L.; Pomery, E.A. A dual-process approach to health risk decision making: The prototype willingness model. Dev. Rev. 2008, 28, 29–61. [Google Scholar] [CrossRef]
- Santor, D.A.; Messervey, D.; Kusumakar, V. Measuring Peer Pressure, Popularity, and Conformity in Adolescent Boys and Girls: Predicting School Performance, Sexual Attitudes, and Substance Abuse. J. Youth Adolesc. 2000, 29, 163–182. [Google Scholar] [CrossRef]
- Leary, M.R. A Brief Version of the Fear of Negative Evaluation Scale. Pers. Soc. Psychol. Bull. 1983, 9, 371–375. [Google Scholar] [CrossRef]
- Buunk, A.P.; Gibbons, F.X. Social Comparison Orientation: A New Perspective on Those Who Do and Those Who Don’t Compare with Others. In Social Comparison and Social Psychology: Understanding Cognition, Intergroup, Relationship, and Culture; Guimond, S., Ed.; Cambridge University Press: New York, NY, USA, 2006; pp. 15–32. [Google Scholar]
- Hoyle, R.H.; Stephenson, M.T.; Palmgreen, P.; Lorch, E.P.; Donohew, R.L. Reliability and validity of a brief measure of sensation seeking. Personal. Individ. Differ. 2002, 32, 401–414. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Ripley, B. Tree: Classification and Regression Trees. 2019. Available online: https://CRAN.R-project.org/package=tree (accessed on 10 November 2020).
- Therneau, T.; Athkinson, B.; Ripley, B. rpart: Recursive Partitioning and Regression Trees. 2019. Available online: https://CRAN.R-project.org/package=rpart (accessed on 10 November 2020).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Landry, M. Machine Learning with R and H2O, Mountain View. 2018. Available online: https://www.h2o.ai/wp-content/uploads/2018/01/RBooklet.pdf (accessed on 10 November 2020).
- LeDell, E.; Gill, N.; Aiello, S.; Fu, A.; Candel, A.; Click, C.; Kraljevic, T.; Nykodym, T.; Aboyoun, P.; Kurka, M.; et al. H2O: R Interface for the ‘H2O’ Scalable Machine Learning Platform. 2020. Available online: https://CRAN.R-project.org/package=h2o (accessed on 10 November 2020).
- Rhodes, N.; Ewoldsen, D.R.; Shen, L.; Monahan, J.L.; Eno, C. The Accessibility of Family and Peer Norms in Young Adolescent Risk Behavior. Commun. Res. 2014, 41, 3–26. [Google Scholar] [CrossRef]
- Stockdale, L.A.; Coyne, S.M. Bored and online: Reasons for using social media, problematic social networking site use, and behavioral outcomes across the transition from adolescence to emerging adulthood. J. Adolesc. 2020, 79, 173–183. [Google Scholar] [CrossRef]
- Elam, K.K.; Sternberg, A.; Waddell, J.T.; Blake, A.J.; Chassin, L. Mother and Father Prescription Opioid Misuse, Alcohol Use Disorder, and Parent Knowledge in Pathways to Adolescent Alcohol Use. J Youth Adolesc. 2020, 49, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Hastings, P.D.; McShane, K.E.; Parker, R.; Ladha, F. Ready to make nice: Parental socialization of young sons’ and daughters’ prosocial behaviors with peers. J. Genet. Psychol. 2007, 168, 177–200. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D. Peer-relationship patterns and their association with types of child abuse and adolescent risk behaviors among youth at-risk of maltreatment. J. Adolesc. 2020, 80, 125–135. [Google Scholar] [CrossRef]
- Ridout, B.; Campbell, A.; Ellis, L. ‘Off your Face(book)’: Alcohol in online social identity construction and its relation to problem drinking in university students. Drug Alcohol Rev. 2012, 31, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, R.C.; McAlaney, J.; Bewick, B.M. A Critical Appraisal of the Social Norms Approach as an Interventional Strategy for Health-Related Behavior and Attitude Change. Front. Psychol. 2018, 9, 2180. [Google Scholar] [CrossRef] [Green Version]
- Vanassche, S.; Sodermans, A.K.; Matthijs, K.; Swicegood, G. The Effects of Family Type, Family Relationships and Parental Role Models on Delinquency and Alcohol Use among Flemish Adolescents. J. Child Fam. Stud. 2014, 23, 128–143. [Google Scholar] [CrossRef]
- Xie, X.; Gai, X.; Zhou, Y. A meta-analysis of media literacy interventions for deviant behaviors. Comput. Educ. 2019, 139, 146–156. [Google Scholar] [CrossRef]
- Pinkleton, B.E.; Austin, E.W. Media Literacy and Alcohol Abuse Reduction. In The International Encyclopedia of Media Literacy; Hobbs, R., Mihailidis, P., Eds.; Wiley: New York, NY, USA, 2019; pp. 1–12. ISBN 9781118978245. [Google Scholar]
- Bronfenbrenner, U. Ecological systems theory. In Six Theories of Child Development: Revised Formulations and Current Issues; Jessica Kingsley Publishers: London, UK, 1992; pp. 187–249. ISBN 978-1-85302-137-4. [Google Scholar]
- Flisher, A.J.; Evans, J.; Muller, M.; Lombard, C. Brief report: Test-retest reliability of self-reported adolescent risk behaviour. J. Adolesc. 2004, 27, 207–212. [Google Scholar] [CrossRef]
- Pedersen, W.; von Soest, T. Socialization to binge drinking: A population-based, longitudinal study with emphasis on parental influences. Drug Alcohol Depend. 2013, 133, 587–592. [Google Scholar] [CrossRef] [Green Version]
Latent Variable | α | ω1 | AVE | Low. Loading |
---|---|---|---|---|
Attitude towards Alcohol | 0.84 | 0.84 | 0.44 | 0.49 |
Peers’ injunctive Norms | 0.87 | 0.87 | 0.54 | 0.56 |
Best Friends’ injunctive Norms | 0.88 | 0.90 | 0.61 | 0.50 |
Exposure to Drunk References | 0.90 | 0.92 | 0.55 | 0.44 |
Father’s injunctive Norms | 0.81 | 0.85 | 0.55 | 0.36 |
Mother’s injunctive Norms | 0.78 | 0.84 | 0.54 | 0.32 |
Peers’ descriptive Norms | 0.93 | 0.93 | 0.67 | 0.75 |
Best Friends’ descriptive Norms | 0.95 | 0.95 | 0.72 | 0.80 |
Sensation Seeking | 0.74 | 0.75 | 0.28 | 0.25 |
Sharing Drunk References | 0.88 | 0.91 | 0.54 | 0.27 |
Sensitivity to Peer Pressure | 0.79 | 0.80 | 0.29 | 0.39 |
Social Comparison Orientation | 0.80 | 0.80 | 0.28 | 0.29 |
Fear of negative Evaluation | 0.91 | 0.91 | 0.48 | 0.39 |
Willingness to drink Alcohol | 0.91 | 0.92 | 0.68 | 0.31 |
Variable | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. age | 15.14 | 2.38 | ||||||||||||||||||||
2. sex | 0.59 | 0.49 | −0.01 | |||||||||||||||||||
3. religion | 0.57 | 0.49 | 0.03 | 0.02 | ||||||||||||||||||
4. sharing drunk ref. | 0.22 | 0.43 | 0.11 * | −0.01 | −0.04 | |||||||||||||||||
5. exposure to drunk ref | 0.76 | 0.78 | 0.14 * | −0.04 | −0.02 | 0.53 * | ||||||||||||||||
6. willingness to drink | 0.00 | 0.98 | 0.22 * | 0.01 | −0.02 | 0.41 * | 0.49 * | |||||||||||||||
7. descriptive norms best friends | 0.00 | 0.98 | 0.28 * | −0.00 | 0.00 | 0.42 * | 0.53 * | 0.69 * | ||||||||||||||
8. descriptive norms peers | 0.00 | 0.97 | 0.30 * | 0.14 * | 0.03 | 0.28 * | 0.38 * | 0.51 * | 0.69 * | |||||||||||||
9. injunctive norms best friends | 0.00 | 0.95 | 0.19 * | −0.11 * | −0.05 * | 0.33 * | 0.47 * | 0.63 * | 0.74 * | 0.52 * | ||||||||||||
10. injunctive norms peers | 0.00 | 0.94 | 0.15 * | −0.02 | 0.01 | 0.16 * | 0.25 * | 0.33 * | 0.38 * | 0.58 * | 0.56 * | |||||||||||
11. injunctive norms mother | 0.00 | 0.92 | 0.20 * | 0.00 | −0.08 * | 0.36 * | 0.39 * | 0.53 * | 0.52 * | 0.40 * | 0.55 * | 0.35 * | ||||||||||
12. injunctive norms father | 0.00 | 0.93 | 0.19 * | −0.04 | −0.06 * | 0.32 * | 0.37 * | 0.50 * | 0.52 * | 0.40 * | 0.54 * | 0.36 * | 0.78 * | |||||||||
13. attitude towards alcohol | 0.00 | 0.92 | 0.10 * | −0.04 | −0.00 | 0.33 * | 0.37 * | 0.67 * | 0.52 * | 0.38 * | 0.55 * | 0.31 * | 0.44 * | 0.44 * | ||||||||
14. sensation seeking | 0.00 | 0.89 | 0.06 * | −0.06 * | −0.06 * | 0.29 * | 0.37 * | 0.46 * | 0.35 * | 0.19 * | 0.37 * | 0.15 * | 0.21 * | 0.21 * | 0.38 * | |||||||
15. Facebook use | 3.44 | 2.26 | 0.23 * | 0.07 * | 0.07 * | 0.26 * | 0.36 * | 0.42 * | 0.46 * | 0.43 * | 0.36 * | 0.27 * | 0.36 * | 0.33 * | 0.34 * | 0.15 * | ||||||
16. Instagram use | 5.19 | 1.76 | 0.03 | 0.15 * | −0.02 | 0.14 * | 0.24 * | 0.24 * | 0.23 * | 0.18 * | 0.19 * | 0.07 * | 0.14 * | 0.10 * | 0.22 * | 0.27 * | 0.23 * | |||||
17. Snapchat use | 4.99 | 2.01 | 0.06 * | 0.15 * | 0.04 | 0.20 * | 0.30 * | 0.34 * | 0.32 * | 0.25 * | 0.26 * | 0.10 * | 0.19 * | 0.16 * | 0.29 * | 0.27 * | 0.29 * | 0.48 * | ||||
18. Whatsapp use | 3.68 | 2.12 | −0.07 * | 0.04 | −0.01 | −0.06 * | −0.02 | −0.21 * | −0.19 * | −0.19 * | −0.19 * | −0.13 * | −0.06 * | −0.06 * | −0.12 * | −0.10 * | −0.11 * | 0.04 | 0.05 * | |||
19. sensitivity to peer pressure | 0.00 | 0.90 | 0.02 | −0.07 * | 0.00 | 0.26 * | 0.24 * | 0.31 * | 0.22 * | 0.13 * | 0.27 * | 0.15 * | 0.14 * | 0.17 * | 0.33 * | 0.34 * | 0.16 * | 0.09 * | 0.13 * | −0.06 * | ||
20. fear of negative evaluation | 0.00 | 0.96 | −0.00 | 0.31 * | 0.01 | −0.01 | −0.04 | 0.04 | 0.03 | 0.11 * | 0.00 | 0.08 * | −0.04 | −0.04 | 0.04 | −0.07 * | 0.12 * | 0.05 | 0.05 * | −0.04 | 0.28 * | |
21. social comparison orientation | 0.00 | 0.91 | −0.01 | 0.12 * | 0.01 | 0.04 | 0.04 | 0.07 * | 0.07 * | 0.09 * | 0.07 * | 0.08 * | −0.01 | 0.01 | 0.12 * | 0.07 * | 0.09 * | 0.05 * | 0.03 | −0.04 | 0.35 * | 0.59 * |
Accuracy Metrics by Approach | Full Dataset | Pruned Dataset |
---|---|---|
Pruned Tree MSE | 0.170 | 0.170 |
Pruned Tree R2 | 0.517 | 0.517 |
Bagged Tree MSE | 0.156 | 0.159 |
Bagged Tree R2 | 0.411 | 0.369 |
Random Forest MSE | 0.154 | 0.155 |
Random Forest R2 | 0.444 | 0.396 |
Extreme Gradient Boosting MSE | 0.076 | 0.061 |
Extreme Gradient Boosting R2 | 0.841 | 0.576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurten, S.; Winant, D.; Beullens, K. Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media. Int. J. Environ. Res. Public Health 2021, 18, 11338. https://doi.org/10.3390/ijerph182111338
Kurten S, Winant D, Beullens K. Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media. International Journal of Environmental Research and Public Health. 2021; 18(21):11338. https://doi.org/10.3390/ijerph182111338
Chicago/Turabian StyleKurten, Sebastian, David Winant, and Kathleen Beullens. 2021. "Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media" International Journal of Environmental Research and Public Health 18, no. 21: 11338. https://doi.org/10.3390/ijerph182111338
APA StyleKurten, S., Winant, D., & Beullens, K. (2021). Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media. International Journal of Environmental Research and Public Health, 18(21), 11338. https://doi.org/10.3390/ijerph182111338