Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Toxicity Endpoint
2.1.2. Population-Specific Estimated Daily Intakes (EDI) of TPHP and TDCPP through Dust Ingestion
2.2. PBTK Model
2.3. Estimation the Steady-State Concentration with PBTK Model
2.4. Estimation of Human Equivalent Doses Using IVIVE
2.5. Risk Assessment
3. Results
3.1. Hepatocyte-Based Css in Liver, AC50 and HEDs for TPHP and TDCPP
3.2. Population-Specific EDIs of TPHP and TDCPP via Dust Ingestion
3.3. Risk Assessment of TPHP and TDCPP
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cristale, J.; Aragao Bele, T.G.; Lacorte, S.; Rodrigues de Marchi, M.R. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. Environ. Pollut. 2018, 237, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marklund, A.; Andersson, B.; Haglund, P. Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef]
- He, M.J.; Lu, J.F.; Ma, J.Y.; Wang, H.; Du, X.F. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust. Environ. Pollut. 2018, 237, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, H.M.; Sharma, S.; Getzinger, G.; Ferguson, P.L.; Gabriel, M.; Webster, T.F.; Blum, A. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out. Environ. Sci. Technol. 2012, 46, 13432–13439. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.-L.; Li, D.-Q.; Zhuo, M.-N.; Liao, Y.-S.; Xie, Z.-Y.; Guo, T.-L.; Li, J.-J.; Zhang, S.-Y.; Liang, Z.-Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef]
- Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Poma, G.; Glynn, A.; Malarvannan, G.; Covaci, A.; Darnerud, P.O. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations. Food Chem. Toxicol. 2017, 100, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wang, Y.; Kannan, K. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States. Environ. Int. 2019, 131, 105054. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Xu, Y.; Wang, Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016, 153, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Kamrin, M.A. Phthalate risks, phthalate regulation, and public health: A review. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 157–174. [Google Scholar] [CrossRef]
- Pasecnaja, E.; Perkons, I.; Bartkevics, V.; Zacs, D. Legacy and alternative brominated, chlorinated, and organophosphorus flame retardants in indoor dust-levels, composition profiles, and human exposure in Latvia. Environ. Sci. Pollut. Res. Int. 2021, 28, 25493–25502. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Y.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Moon, H.B.; Nakata, H.; et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure. Environ. Int. 2019, 133 Pt A, 105178. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Liang, K.; Liu, J.; Zhou, B.; Zhang, X.; Liu, H.; Giesy, J.P.; Yu, H. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae. Aquat. Toxicol. 2013, 128–129, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Su, G.; Giesy, J.P.; Letcher, R.J.; Li, G.; Agrawal, I.; Li, J.; Yu, L.; Wang, J.; Gong, Z. Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish. Sci. Rep. 2016, 6, 19045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Wang, G.; Gao, S.; Wang, Z. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat. Toxicol. 2015, 161, 25–32. [Google Scholar] [CrossRef] [PubMed]
- McGee, S.P.; Konstantinov, A.; Stapleton, H.M.; Volz, D.C. Aryl phosphate esters within a major PentaBDE replacement product induce cardiotoxicity in developing zebrafish embryos: Potential role of the aryl hydrocarbon receptor. Toxicol. Sci. 2013, 133, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Moser, V.C.; Phillips, P.M.; Hedge, J.M.; McDaniel, K.L. Neurotoxicological and thyroid evaluations of rats developmentally exposed to tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris(2-chloro-2-ethyl)phosphate (TCEP). Neurotoxicol. Teratol. 2015, 52 Pt B, 236–247. [Google Scholar] [CrossRef]
- Li, F.; Cao, L.; Li, X.; Li, N.; Wang, Z.; Wu, H. Affinities of organophosphate flame retardants to tumor suppressor gene p53: An integrated in vitro and in silico study. Toxicol. Lett. 2015, 232, 533–541. [Google Scholar] [CrossRef]
- Kanazawa, A.; Saito, I.; Araki, A.; Takeda, M.; Ma, M.; Saijo, Y.; Kishi, R. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air 2010, 20, 72–84. [Google Scholar] [CrossRef]
- Fang, H.; Tong, W.; Branham, W.S.; Moland, C.L.; Dial, S.L.; Hong, H.; Xie, Q.; Perkins, R.; Owens, W.; Sheehan, D.M. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem. Res. Toxicol. 2003, 16, 1338–1358. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, K.; Garantziotis, S.; Birnbaum, L.S.; Stapleton, H.M. Monitoring indoor exposure to organophosphate flame retardants: Hand wipes and house dust. Environ. Health Perspect. 2015, 123, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacaloni, A.; Cavaliere, C.; Foglia, P.; Nazzari, M.; Samperi, R.; Lagana, A. Liquid chromatography/tandem mass spectrometry determination of organophosphorus flame retardants and plasticizers in drinking and surface waters. Rapid Commun. Mass Spectrom. 2007, 21, 1123–1130. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, J.; Ren, L.; Fan, R.; Zhang, J.; Liu, G.; Zhou, L.; Chen, D.; Yu, Y.; Lu, S. Urinary metabolites of organophosphate esters in children in South China: Concentrations, profiles and estimated daily intake. Environ. Pollut. 2018, 235, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.; Covaci, A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, X.; Thai, P.; Baduel, C.; Gallen, C.; Banks, A.; Bainton, P.; English, K.; Mueller, J.F. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure. Environ. Pollut. 2018, 235, 670–679. [Google Scholar] [CrossRef]
- Ali, N.; Ali, L.; Mehdi, T.; Dirtu, A.C.; Al-Shammari, F.; Neels, H.; Covaci, A. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion. Environ. Int. 2013, 55, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Mercier, F.; Glorennec, P.; Thomas, O.; Le Bot, B. Organic contamination of settled house dust, a review for exposure assessment purposes. Environ. Sci. Technol. 2011, 45, 6716–6727. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Alhakamy, N.A.; Ismail, I.M.I.; Nazar, E.; Summan, A.S.; Shah Eqani, S.; Malarvannan, G. Exposure to Phthalate and Organophosphate Esters via Indoor Dust and PM10 Is a Cause of Concern for the Exposed Saudi Population. Int. J. Environ. Res. Public. Health 2021, 18, 2125. [Google Scholar] [CrossRef]
- Ali, N.; Dirtu, A.C.; Van den Eede, N.; Goosey, E.; Harrad, S.; Neels, H.; t Mannetje, A.; Coakley, J.; Douwes, J.; Covaci, A. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 2012, 88, 1276–1282. [Google Scholar] [CrossRef]
- Brommer, S.; Harrad, S. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices. Environ. Int. 2015, 83, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Brommer, S.; Harrad, S.; Van den Eede, N.; Covaci, A. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J. Environ. Monit. 2012, 14, 2482–2487. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.D.; Sousa, A.C.A.; Isobe, T.; Kim, J.W.; Kunisue, T.; Nogueira, A.J.A.; Tanabe, S. Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal. Sci. Total Environ. 2016, 569–570, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, L.Y.; Sverko, E.; Li, Y.F.; Li, H.L.; Huo, C.Y.; Ma, W.L.; Song, W.W.; Zhang, Z.F. Organophosphate flame retardants in college dormitory dust of northern Chinese cities: Occurrence, human exposure and risk assessment. Sci. Total Environ. 2019, 665, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Deng, T.; Xu, M.; Wang, S.; Yang, F. Residuals of organophosphate esters in foodstuffs and implication for human exposure. Environ. Pollut. 2018, 233, 986–991. [Google Scholar] [CrossRef]
- Ali, N.; Eqani, S.; Ismail, I.M.I.; Malarvannan, G.; Kadi, M.W.; Albar, H.M.S.; Rehan, M.; Covaci, A. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure. Sci. Total Environ. 2016, 569–570, 269–277. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Measurement of legacy and emerging flame retardants in indoor dust from a rural village (Kopawa) in Nepal: Implication for source apportionment and health risk assessment. Ecotoxicol. Environ. Saf. 2019, 168, 304–314. [Google Scholar] [CrossRef]
- Bell, S.M.; Chang, X.; Wambaugh, J.F.; Allen, D.G.; Bartels, M.; Brouwer, K.L.R.; Casey, W.M.; Choksi, N.; Ferguson, S.S.; Fraczkiewicz, G.; et al. In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol. Vitro 2018, 47, 213–227. [Google Scholar] [CrossRef]
- Lin, Y.J.; Lin, Z. In vitro-in silico-based probabilistic risk assessment of combined exposure to bisphenol A and its analogues by integrating ToxCast high-throughput in vitro assays with in vitro to in vivo extrapolation (IVIVE) via physiologically based pharmacokinetic (PBPK) modeling. J. Hazard Mater 2020, 399, 122856. [Google Scholar]
- Lin, Z.; Gehring, R.; Mochel, J.P.; Lave, T.; Riviere, J.E. Mathematical modeling and simulation in animal health-Part II: Principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J. Vet. Pharmacol. Ther. 2016, 39, 421–438. [Google Scholar] [CrossRef]
- Wetmore, B.A. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment. Toxicology 2015, 332, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Wetmore, B.A.; Wambaugh, J.F.; Ferguson, S.S.; Sochaski, M.A.; Rotroff, D.M.; Freeman, K.; Clewell, H.J., 3rd; Dix, D.J.; Andersen, M.E.; Houck, K.A.; et al. Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol. Sci. 2012, 125, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Grech, A.; Tebby, C.; Brochot, C.; Bois, F.Y.; Bado-Nilles, A.; Dorne, J.L.; Quignot, N.; Beaudouin, R. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability. Sci. Total Environ. 2019, 651 Pt 1, 516–531. [Google Scholar] [CrossRef]
- Pletz, J.; Blakeman, S.; Paini, A.; Parissis, N.; Worth, A.; Andersson, A.M.; Frederiksen, H.; Sakhi, A.K.; Thomsen, C.; Bopp, S.K. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment. Environ. Int. 2020, 143, 105978. [Google Scholar] [CrossRef]
- Rotroff, D.M.; Wetmore, B.A.; Dix, D.J.; Ferguson, S.S.; Clewell, H.J.; Houck, K.A.; Lecluyse, E.L.; Andersen, M.E.; Judson, R.S.; Smith, C.M.; et al. Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol. Sci. 2010, 117, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Kim, S.; Kim, I.; Chung, M.-S.; Moon, B.; Shin, S.; Lee, J. Risk assessment of ethyl carbamate in alcoholic beverages in Korea using the margin of exposure approach and cancer risk assessment. Food Control. 2021, 124, 107867. [Google Scholar] [CrossRef]
- Krewski, D.; Andersen, M.E.; Tyshenko, M.G.; Krishnan, K.; Hartung, T.; Boekelheide, K.; Wambaugh, J.F.; Jones, D.; Whelan, M.; Thomas, R.; et al. Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch. Toxicol. 2020, 94, 1–58. [Google Scholar] [CrossRef]
- Richard, A.M.; Judson, R.S.; Houck, K.A.; Grulke, C.M.; Volarath, P.; Thillainadarajah, I.; Yang, C.; Rathman, J.; Martin, M.T.; Wambaugh, J.F.; et al. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chem. Res. Toxicol. 2016, 29, 1225–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, R.G.; Setzer, R.W.; Strope, C.L.; Wambaugh, J.F.; Sipes, N.S. Httk: R Package for High-Throughput Toxicokinetics. J. Stat. Softw. 2017, 79, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Esposito, F.; Nardone, A.; Fasano, E.; Triassi, M.; Cirillo, T. Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a Margin of Exposure approach. Food Chem. Toxicol. 2017, 108 Pt A, 249–256. [Google Scholar] [CrossRef]
- Lee, J.G.; Lim, T.; Kim, S.H.; Kang, D.H.; Yoon, H.J. Determination and risk characterization of polycyclic aromatic hydrocarbons of tea by using the Margin of Exposure (MOE) approach. Food Sci. Biotechnol. 2018, 27, 1843–1856. [Google Scholar] [CrossRef]
- Committee, E.S.; More, S.J.; Bampidis, V.; Benford, D.; Bennekou, S.H.; Bragard, C.; Halldorsson, T.I.; Hernandez-Jerez, A.F.; Koutsoumanis, K.; Naegeli, H.; et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019, 17, e05634. [Google Scholar]
- Rowlands, J.C.; Sander, M.; Bus, J.S.; FutureTox Organizing, C. FutureTox: Building the road for 21st century toxicology and risk assessment practices. Toxicol. Sci. 2014, 137, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Li, Y.; Xiang, P.; Li, C.; Zhou, C.; Zhang, S.; Cui, X.; Ma, L.Q. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2016, 150, 528–535. [Google Scholar] [CrossRef]
- Wu, M.; Yu, G.; Cao, Z.; Wu, D.; Liu, K.; Deng, S.; Huang, J.; Wang, B.; Wang, Y. Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. Chemosphere 2016, 150, 465–471. [Google Scholar] [CrossRef]
- He, C.T.; Zheng, J.; Qiao, L.; Chen, S.J.; Yang, J.Z.; Yuan, J.G.; Yang, Z.Y.; Mai, B.X. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure. Chemosphere 2015, 133, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Peng, C.; Guo, Y.; Wang, X.; Wu, Y.; Chen, D. Organophosphate Flame Retardants in House Dust from South China and Related Human Exposure Risks. Bull. Environ. Contam. Toxicol. 2017, 99, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Gwon, H.R.; Oh, H.J.; Chang, K.H.; Isobe, T.; Lee, S.Y.; Kim, J.H.; You, S.J.; Kim, J.G.; Kim, J.W. Occurrence, distribution, and potential exposure risk of organophosphate flame retardants in house dust in South Korea. Sci. Total Environ. 2021, 770, 144571. [Google Scholar] [CrossRef]
- Tajima, S.; Araki, A.; Kawai, T.; Tsuboi, T.; Ait Bamai, Y.; Yoshioka, E.; Kanazawa, A.; Cong, S.; Kishi, R. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings. Sci. Total Environ. 2014, 478, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Isobe, T.; Sudaryanto, A.; Malarvannan, G.; Chang, K.H.; Muto, M.; Prudente, M.; Tanabe, S. Organophosphorus flame retardants in house dust from the Philippines: Occurrence and assessment of human exposure. Environ. Sci. Pollut. Res. Int. 2013, 20, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Van den Eede, N.; Dirtu, A.C.; Neels, H.; Covaci, A. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ. Int. 2011, 37, 454–461. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, A.; Navarro, I.; Sanz, P.; de Los Angeles Martinez, M. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure. J. Hazard Mater 2020, 382, 121009. [Google Scholar] [CrossRef]
- Shoeib, T.; Webster, G.M.; Hassan, Y.; Tepe, S.; Yalcin, M.; Turgut, C.; Kurt-Karakus, P.B.; Jantunen, L. Organophosphate esters in house dust: A comparative study between Canada, Turkey and Egypt. Sci Total Environ 2019, 650 Pt 1, 193–201. [Google Scholar] [CrossRef]
- Stubbings, W.A.; Schreder, E.D.; Thomas, M.B.; Romanak, K.; Venier, M.; Salamova, A. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels. Environ. Pollut. 2018, 238, 1056–1068. [Google Scholar] [CrossRef] [PubMed]
- Dirtu, A.C.; Ali, N.; Van den Eede, N.; Neels, H.; Covaci, A. Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010. Environ. Int. 2012, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abafe, O.A.; Martincigh, B.S. Concentrations, sources and human exposure implications of organophosphate esters in indoor dust from South Africa. Chemosphere 2019, 230, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Giovanoulis, G.; van Waes, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Magner, J.; Haug, L.S.; Neels, H.; Covaci, A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. Environ. Sci. Technol. 2016, 50, 7752–7760. [Google Scholar] [CrossRef] [PubMed]
- Van den Eede, N.; Heffernan, A.L.; Aylward, L.L.; Hobson, P.; Neels, H.; Mueller, J.F.; Covaci, A. Age as a determinant of phosphate flame retardant exposure of the Australian population and identification of novel urinary PFR metabolites. Environ. Int. 2015, 74, 1–8. [Google Scholar] [CrossRef]
Assay Name | TDCPPAC50 1 | Adult Population HED 2 | Child Population HED | TPHP AC50 | Adult Population HED | Child Population HED |
---|---|---|---|---|---|---|
LTEA_HepaRG_CYP2B6_up | 5.01 | 0.085 (0.01~0.343) | 0.198 (0.02~0.876) | 1.26 | 0.052 (0.005~0.327) | 0.154 (0.009~0.961) |
LTEA_HepaRG_CYP2C19_up | 4.62 | 0.079 (0.01~0.316) | 0.182 (0.019~0.808) | 5.43 | 0.225 (0.022~1.409) | 0.665 (0.039~4.140) |
ATG_PXRE_CIS_up | 0.39 | 0.007 (0~0.027) | 0.015 (0.002~0.068) | 5.44 | 0.0226 (0.022~1.411) | 0.667 (0.039~4.148) |
ATG_PXR_TRANS_up | 0.36 | 0.006 (0~0.025) | 0.014 (0.001~0.063) | 0.7 | 0.029 (0.003~0.182) | 0.086 (0.005~0.534) |
Overall liver assays | - | 0.018 (0.001~0.267) | 0.042 (0.003~0.679) | - | 0.096 (0.005~1.015) | 0.266 (0.01~2.913) |
Region | TPHP | TDCPP | Reference | ||
---|---|---|---|---|---|
Adults | Children | Adults | Children | ||
China (Nanjing) | 2.3 | 39 | 51 | 1396 | [54] |
China (Beijing) | 0.7 | 7.2 | 0.5 | 6.7 | [55] |
South China (rural area) | 0.87 | 15.8 | 0.12 | 2.23 | [56] |
South China (urban area) | 0.12 | 2.12 | 0.1 | 1.89 | [56] |
South China (college dormitory) | 0.09 | - | 0.11 | - | [56] |
China (Guangzhou) | 0.28 | 5.25 | 1.47 | 27.81 | [57] |
North China | 0.42 | - | 0.33 | - | [34] |
Korea (Suwon) | 0.77 | 29 | 0.18 | 6.8 | [58] |
Korea (Jeonju) | 0.3 | 12 | 0.18 | 6.7 | [58] |
Korea (Kunsan) | 0.48 | 18 | 0.14 | 5.2 | [58] |
Australia | 0.37 | 2.9 | 0.15 | 3.6 | [26] |
Japan | - | 1.89 | - | 0.27 | [59] |
Pakistan | 0.13 | 2.97 | 0.03 | 0.06 | [27] |
Philippines (Payatas) | 2.3 | 12 | - | - | [60] |
Philippines (Malate) | 2.8 | 15 | - | - | [60] |
Egypt | 4.8 | 19.3 | 4 | 16.1 | [25] |
Belgium (Flemish) | 0.4 | 2 | 0.7 | 1.5 | [61] |
Belgium, Italy and Spain | 0.1 | 1.96 | 0.1 | 1.97 | [62] |
Turkey | 2.3 | 13 | 4.1 | 23 | [63] |
New Zealand | 0.26 | 5.99 | 0.13 | 2.93 | [30] |
Germany | 0.21 | 0.44 | 0.27 | 1.5 | [32] |
Columbia | 0.01 | 0.05 | 0.01 | 0.02 | [12] |
Nepal | 0.01 | 0.06 | 0.01 | 0.01 | [37] |
India | 0.01 | 0.04 | 0.01 | 0.06 | [12] |
Vietnam | 0.02 | 0.08 | 0.01 | 0.03 | [12] |
United States (New York) | 0.01 | 0.03 | 0.02 | 0.07 | [8] |
United States (Albany) | 0.21 | 1.04 | 0.66 | 3.28 | [12] |
United States (Seattle) | 1.4 | 17 | 1.4 | 17 | [64] |
UK | 0.13 | 7 | 0.07 | 4 | [31] |
Greece | 0.2 | 1.02 | 0.25 | 1.25 | [12] |
Kuwait | 0.35 | 8.1 | 0.48 | 11.09 | [27] |
Portugal | 0.95 | 11 | 0.03 | 0.37 | [33] |
Romania | 0.38 | 8.75 | 0.04 | 0.98 | [65] |
South Africa | 1.97 | 18.75 | 5.8 | 66.85 | [66] |
Latvia | 24 | 560 | 67.4 | 1570 | [11] |
Brazil | 56 | 3.4 | 310 | 14 | [1] |
Canada | 16.6 | 93 | 34 | 192 | [63] |
Saudi Arabia | 2 | 20 | 60 | 515 | [29] |
Norway | 1.36 | - | 1.3 | - | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Liu, W.; Zhang, H.; Zhu, L.; Zhu, L.; Feng, J. Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model. Int. J. Environ. Res. Public Health 2021, 18, 12469. https://doi.org/10.3390/ijerph182312469
Ding J, Liu W, Zhang H, Zhu L, Zhu L, Feng J. Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model. International Journal of Environmental Research and Public Health. 2021; 18(23):12469. https://doi.org/10.3390/ijerph182312469
Chicago/Turabian StyleDing, Jiaqi, Wenxin Liu, Hong Zhang, Lingyan Zhu, Lin Zhu, and Jianfeng Feng. 2021. "Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model" International Journal of Environmental Research and Public Health 18, no. 23: 12469. https://doi.org/10.3390/ijerph182312469
APA StyleDing, J., Liu, W., Zhang, H., Zhu, L., Zhu, L., & Feng, J. (2021). Liver-Based Probabilistic Risk Assessment of Exposure to Organophosphate Esters via Dust Ingestion Using a Physiologically Based Toxicokinetic (PBTK) Model. International Journal of Environmental Research and Public Health, 18(23), 12469. https://doi.org/10.3390/ijerph182312469