Efficiency and Productivity of Public Hospitals in Serbia Using DEA-Malmquist Model and Tobit Regression Model, 2015–2019
Abstract
:1. Introduction
2. Methodology
2.1. Data
2.2. The Applicability of Data Envelopment Analysis
2.3. DEA Models
- θo is the efficiency score of hospital under assessment,
- xri is the quantity of input s used by ith the hospital,
- yri is the quantity of output r produced by ith hospital,
- λ denotes the dual variables that identify the benchmarks for inefficient DMUs.
- , the inefficient hospital is operating under decreasing returns to scale (DRS),
- , the inefficient hospital is operating under increasing returns to scale (IRS),
- , the efficient hospital is operating at the most productive scale size.
TE = PTE × SE
2.4. Malmquist Total Factor Productivity Index
2.5. Econometric Model
3. Results
3.1. Descriptive Analysis
3.2. Results of DEA
Hospital Group | Group 1 Very Large Size | Group 2 Large Size | Group 3 Medium Size | Group 4 Small Size |
---|---|---|---|---|
Number of beds | ≥600 | 400 ≤ beds < 600 | 200 ≤ beds < 400 | <00 |
Number of hospitals in group | 8 | 10 | 12 | 9 |
Technical efficiency average | 0.6265 | 0.7713 | 0.7470 | 0.7325 |
Scale efficiency average | 0.9510 | 0.9581 | 0.9609 | 0.8224 |
3.3. Results of Malmquist Index
3.4. Results of Tobit Regression Model
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Frenk, J. A framework for assessing the performance of health systems. Bull. World Health Organ. 2000, 78, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Committee on Assessing Interactions Among Social Behavioral and Genetic Factors in Health. The Impact of Social and Cultural Environment on Health. In Genes, Behavior, and the Social Environment: Moving beyond the Nature/Nurture Debate; Hernandez, L.M., Blazer, D.G., Eds.; National Academies Press: Washington, DC, USA, 2006; pp. 25–43. [Google Scholar]
- Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014, 129, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The World Bank. World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 23 July 2021).
- Statistical Office of the Republic of Serbia. Demographic Yearbook 2019; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2020.
- Jakovljević, M. Population ageing alongside health care spending growth. Srp. Arh. Za Celok. Lek. 2017, 145, 534–539. [Google Scholar] [CrossRef]
- Republički Zavod za Statistiku. Bilten o Anketiranoj Radnoj Snazi u Republici Srbiji 2020 (Translated Title: Bulletin on the Surveyed Labor Force in the Republic of Serbia 2020); Republički Zavod za Statistiku: Belgrade, Serbia, 2021.
- Bjegovic-Mikanovic, V.; Vasic, M.; Vukovic, D.; Jankovic, J.; Jovic-Vranes, A.; Santric-Milicevic, M.; Terzic-Supic, Z.; Hernández-Quevedo, C.; W.H.O. Serbia: Health System Review; European Observatory on Health Systems and Policies: Brussels, Belgium, 2019. [Google Scholar]
- Ministarstvo zdravlja Vlade Republike Srbije. Pravilnik o Bližim Uslovima za Obavljanje Zdravstvene Delatnosti u Zdravstvenim Ustanovama i Drugim Oblicima Zdravstvene Službe (Translated Title: Rulebook on Detailed Conditions for Performing Health Care Activities in Health Care Institutions and Other Forms of Health Care Service); Ministarstvo zdravlja Vlade Republike Srbije: Belgrade, Serbia, 2018; 16/2018.
- Peng, Z.; Zhu, L.; Wan, G.; Coyte, P.C. Can integrated care improve the efficiency of hospitals? Research based on 200 Hospitals in China. Cost Eff. Resour. Alloc. 2021, 19, 61. [Google Scholar] [CrossRef]
- OECD/European Union. Health Expenditure by Provider. In Health at a Glance: Europe 2020: State of Health in the EU Cycle; OECD Publishing: Paris, France, 2020; pp. 168–170. [Google Scholar]
- Republički Fond za Zdravstveno Osiguranje. Izveštaj o Finansijskom Poslovanju Republičkog Fonda za Zdravstveno Osiguranje za 2018. Godinu (Translated Title: Report on the Financial Operations of the Republic Health Insurance Fund for 2018); Republički Fond za Zdravstveno Osiguranje: Belgrade, Serbia, 2019; pp. 12–30.
- Medarevic, A.P. Describing Serbian Hospital Activity Using Australian Refined Diagnosis Related Groups: A Case Study in Vojvodina Province. Zdr. Varst. 2020, 59, 18–26. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, L.; Rauner, M.; Heidenberger, K.; Kraus, M. A cross-national comparison and taxonomy of DEA-based hospital efficiency studies. Socio-Econ. Plan. Sci. 2008, 42, 158–189. [Google Scholar] [CrossRef]
- Kohl, S.; Schoenfelder, J.; Fugener, A.; Brunner, J.O. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag. Sci. 2019, 22, 245–286. [Google Scholar] [CrossRef]
- Ministarstvo zdravlja Vlade Republike Srbije. Plan Optimizacije Mreže Ustanova Zdravstvene Zaštite—Masterplan (Translated Title: Optimization Plan of the Network of Health Care Institutions—Master Plan); Ministarstvo zdravlja Vlade Republike Srbije: Belgrade, Serbia, 2020.
- Institute of Public Health of Serbia. Health Statistical Yearbook of the Republic of Serbia 2019; Institute of Public Health of Serbia: Belgrade, Serbia, 2020. [Google Scholar]
- Ozcan, Y.A. Health Care Benchmarking and Performance Evaluation; Springer: Boston, MA, USA, 2008; pp. 15–41. [Google Scholar]
- Chilingerian, J.A.; Sherman, H.D. Health Care Applications. In Handbook on Data Envelopment Analysis; Springer: Boston, MA, USA, 2004; pp. 481–537. [Google Scholar]
- Republički Fond za Zdravstveno Osiguranje. Pravilnik o Ugovaranju Zdravstvene Zaštite iz Obaveznog Zdravstvenog Osiguranja sa Davaocima Zdravstvenih Usluga za 2019. Godinu (Translated Title: Rulebook on Contracting Health Care from Compulsory Health Insurance with Health Care Providers for 2019); Republički Fond za Zdravstveno Osiguranje: Belgrade, Serbia, 2018.
- Weiss, A.J.; Elixhauser, A. Overview of Hospital Stays in the United States, 2012: Statistical Brief #180; Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2014; pp. 1–14. [Google Scholar]
- Giancotti, M.; Guglielmo, A.; Mauro, M. Efficiency and optimal size of hospitals: Results of a systematic search. PLoS ONE 2017, 12, e0174533. [Google Scholar] [CrossRef] [Green Version]
- Republički Zavod za Statistiku. Opštine i Regioni u Republici Srbiji 2020 (Translated Title: Municipalities and Regions in the Republic of Serbia 2020); Republički Zavod za Statistiku: Belgrade, Serbia, 2021.
- Maddala, G.S. Limited-Dependent and Qualitative Variables in Econometrics; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Chilingerian, J.A. Evaluating physician efficiency in hospitals: A multivariate analysis of best practices. Eur. J. Oper. Res. 1995, 80, 548–574. [Google Scholar] [CrossRef]
- Han, A.; Lee, K.H. The Impact of Public Reporting Schemes and Market Competition on Hospital Efficiency. Healthcare 2021, 9, 1031. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.H.; Choi, S.W. Multifaced Evidence of Hospital Performance in Pennsylvania. Healthcare 2021, 9, 670. [Google Scholar] [CrossRef]
- Sarabi Asiabar, A.; Sharifi, T.; Rezapour, A.; Khatami Firouzabadi, S.M.A.; Haghighat-Fard, P.; Mohammad-Pour, S. Technical efficiency and its affecting factors in Tehran’s public hospitals: DEA approach and Tobit regression. Med. J. Islam. Repub. Iran 2020, 34, 176. [Google Scholar] [CrossRef]
- Bagci, H.; Konca, M. Evaluating the Technical Efficiency of Hospitals Providing Tertiary Health Care in Turkey: An Application Based on Data Envelopment Analysis. Hosp. Top. 2021, 99, 49–63. [Google Scholar] [CrossRef]
- Ayiko, R.; Mujasi, P.N.; Abaliwano, J.; Turyareeba, D.; Enyaku, R.; Anguyo, R.; Odoch, W.; Bakibinga, P.; Aliti, T. Levels, trends and determinants of technical efficiency of general hospitals in Uganda: Data envelopment analysis and Tobit regression analysis. BMC Health Serv. Res. 2020, 20, 916. [Google Scholar] [CrossRef]
- Jing, R.; Xu, T.; Lai, X.; Mahmoudi, E.; Fang, H. Technical Efficiency of Public and Private Hospitals in Beijing, China: A Comparative Study. Int. J. Environ. Res. Public Health 2019, 17, 82. [Google Scholar] [CrossRef] [Green Version]
- Kakemam, E.; Dargahi, H. The Health Sector Evolution Plan and the Technical Efficiency of Public Hospitals in Iran. Iran J. Public Health 2019, 48, 1681–1689. [Google Scholar]
- Ahmed, S.; Hasan, M.Z.; Laokri, S.; Jannat, Z.; Ahmed, M.W.; Dorin, F.; Vargas, V.; Khan, J.A.M. Technical efficiency of public district hospitals in Bangladesh: A data envelopment analysis. Cost Eff. Resour. Alloc. 2019, 17, 15. [Google Scholar] [CrossRef] [Green Version]
- Jing, R.Z.; Zhang, H.Y.; Xu, T.T.; Zhang, L.Y.; Fang, H. Study on the efficiency of tertiary public hospitals and its influencing factors in Beijing. Beijing Da Xue Xue Bao Yi Xue Ban 2018, 50, 408–415. [Google Scholar]
- Sultan, W.I.M.; Crispim, J. Measuring the efficiency of Palestinian public hospitals during 2010–2015: An application of a two-stage DEA method. BMC Health Serv. Res. 2018, 18, 381. [Google Scholar] [CrossRef]
- Jiang, S.; Min, R.; Fang, P.Q. The impact of healthcare reform on the efficiency of public county hospitals in China. BMC Health Serv. Res. 2017, 17, 838. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Debela, M.; Bamud, T. Technical efficiency of selected hospitals in Eastern Ethiopia. Health Econ. Rev. 2017, 7, 24. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Niu, T.; Tsui, K.L. Hong Kong Hospital Authority resource efficiency evaluation: Via a novel DEA-Malmquist model and Tobit regression model. PLoS ONE 2017, 12, e0184211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sielskas, A. Determinants of hospital inefficiency. The case of Polish county hospitals. PLoS ONE 2021, 16, e0256267. [Google Scholar] [CrossRef]
- Hsiao, B.; Chen, L.H.; Wu, H.T. Assessing performance of Taiwan hospitals using data envelopment analysis: In view of ownership. Int. J. Health Plan. Manag. 2019, 34, e602–e616. [Google Scholar] [CrossRef] [Green Version]
- Ozgen Narci, H.; Ozcan, Y.A.; Sahin, I.; Tarcan, M.; Narci, M. An examination of competition and efficiency for hospital industry in Turkey. Health Care Manag. Sci. 2015, 18, 407–418. [Google Scholar] [CrossRef]
- Pilyavsky, A.I.; Aaronson, W.E.; Bernet, P.M.; Rosko, M.D.; Valdmanis, V.G.; Golubchikov, M.V. East-west: Does it make a difference to hospital efficiencies in Ukraine? Health Econ. 2006, 15, 1173–1186. [Google Scholar] [CrossRef]
- Dimas, G.; Goula, A.; Soulis, S. Productive performance and its components in Greek public hospitals. Oper. Res. 2012, 12, 15–27. [Google Scholar] [CrossRef]
- Blank, J.L.; Valdmanis, V.G. Environmental factors and productivity on Dutch hospitals: A semi-parametric approach. Health Care Manag. Sci. 2010, 13, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Jones, R. Hospital bed occupancy demystified. Br. J. Healthc. Manag. 2011, 17, 242–248. [Google Scholar] [CrossRef]
- Madsen, F.; Ladelund, S.; Linneberg, A. High levels of bed occupancy associated with increased inpatient and thirty-day hospital mortality in Denmark. Health Aff. 2014, 33, 1236–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopson, C.; Marx, C. High Bed Occupancy Rates Increasing Inefficiency; Nhs Providers: London, UK, 2017. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Diewert, E.W.; Fox, K.J. The Difference Approach to Productivity Measurement and Exact Indicators. In Advances in Efficiency and Productivity Analysis; Parmeter, C.F., Sickles, R.C., Eds.; Springer: Cham, Switzerland, 2020; pp. 9–40. [Google Scholar]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach. J. Product. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Färe, R.; Grosskopf, S.; Margaritis, D. Malmquist Productivity Indexes and DEA. In Handbook on Data Envelopment Analysis; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; Springer: New York, NY, USA, 2011; pp. 127–149. [Google Scholar]
- Mujasi, P.N.; Asbu, E.Z.; Puig-Junoy, J. How efficient are referral hospitals in Uganda? A data envelopment analysis and Tobit regression approach. BMC Health Serv. Res. 2016, 16, 230. [Google Scholar] [CrossRef] [Green Version]
- Hoff, A. Second stage DEA: Comparison of approaches for modelling the DEA score. Eur. J. Oper. Res. 2007, 181, 425–435. [Google Scholar] [CrossRef]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Ryan, T.P. Detecting Multicollinearity. In Modern Regression Methods; Applied Probability and Statistics; John Wiley & Sons: New York, NY, USA, 1997; pp. 132–136. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Multicollinearity Diagnostics—Variance Inflation Factor. In Applied Linear Statistical Models; McGraw Hill/Irwin: New York, NY, USA, 2004; pp. 406–410. [Google Scholar]
- Coll-Serrano, V.; Bolos, V.; Benitez Suarez, R. Data Envelopment Analysis with deaR.; University of Valencia: Valencia, Spain, 2018. [Google Scholar]
- StataCorp, L. Stata: Release 15. Statistical Software; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- Microsoft Corporation. Microsoft Excel; Microsoft Corporation: Washington, DC, USA, 2016. [Google Scholar]
- Hollingsworth, B. Non-parametric and parametric applications measuring efficiency in health care. Health Care Manag. Sci. 2003, 6, 203–218. [Google Scholar] [CrossRef]
- Blatnik, P.; Bojnec, S.; Tusak, M. Measuring Efficiency of Secondary Healthcare Providers in Slovenia. Open Med. 2017, 12, 214–225. [Google Scholar] [CrossRef]
- Stefko, R.; Gavurova, B.; Kocisova, K. Healthcare efficiency assessment using DEA analysis in the Slovak Republic. Health Econ. Rev. 2018, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Kucuk, A.; Ozsoy, V.S.; Balkan, D. Assessment of technical efficiency of public hospitals in Turkey. Eur. J. Public Health 2020, 30, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Vrabkova, I.; Vankova, I. Efficiency of Human Resources in Public Hospitals: An Example from the Czech Republic. Int. J. Environ. Res. Public Health 2021, 18, 4711. [Google Scholar] [CrossRef]
- Van Ineveld, M.; van Oostrum, J.; Vermeulen, R.; Steenhoek, A.; van de Klundert, J. Productivity and quality of Dutch hospitals during system reform. Health Care Manag. Sci. 2016, 19, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Flokou, A.; Aletras, V.; Niakas, D. A window-DEA based efficiency evaluation of the public hospital sector in Greece during the 5-year economic crisis. PLoS ONE 2017, 12, e0177946. [Google Scholar] [CrossRef]
- Czypionka, T.; Kraus, M.; Mayer, S.; Rohrling, G. Efficiency, ownership, and financing of hospitals: The case of Austria. Health Care Manag. Sci. 2014, 17, 331–347. [Google Scholar] [CrossRef]
- Institute of Medicine Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Koppel, A.; Kahur, K.; Habicht, T.; Saar, P.; Habicht, J.; van Ginneken, E. Estonia: Health System Review; Health Systems in Transition; European Observatory on Health Systems and Policies: Brussels, Belgium, 2008; Volume 10, pp. 1–230. [Google Scholar]
- Ngobeni, V.; Breitenbach, M.C.; Aye, G.C. Technical efficiency of provincial public healthcare in South Africa. Cost Eff. Resour. Alloc. 2020, 18, 3. [Google Scholar] [CrossRef]
- Cheng, Z.; Tao, H.; Cai, M.; Lin, H.; Lin, X.; Shu, Q.; Zhang, R.N. Technical efficiency and productivity of Chinese county hospitals: An exploratory study in Henan province, China. BMJ Open 2015, 5, e007267. [Google Scholar] [CrossRef] [Green Version]
- Tlotlego, N.; Nonvignon, J.; Sambo, L.G.; Asbu, E.Z.; Kirigia, J.M. Assessment of productivity of hospitals in Botswana: A DEA application. Int. Arch. Med. 2010, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tone, K.; Lu, Y. Impact of the Local Public Hospital Reform on the Efficiency of Medium-Sized Hospitals in Japan: An Improved Slacks-Based Measure Data Envelopment Analysis Approach. Health Serv. Res. 2018, 53, 896–918. [Google Scholar] [CrossRef]
- Avdeev, A.; Eremenko, T.; Festy, P.; Gaymu, J.; Le Bouteillec, N.; Springer, S.; Depledge, R.; Grieve, M.; Jacobs-Colas, A.; Wiles-Portier, E. Populations and demographic trends of European countries, 1980–2010. Population 2011, 66, 9–129. [Google Scholar] [CrossRef]
- Judah, T. Southeast Europe’s Looming Demographic Crisis. Available online: https://www.helvetas.org/en/eastern-europe/about-us/follow-us/helvetas-mosaic/article/March2021/demographic-decline-southeast-europe (accessed on 23 July 2021).
- Cooper, Z.; Gibbons, S.; Jones, S.; McGuire, A. Does Competition Improve Public Hospitals’ Efficiency?: Evidence from a Quasi-Experiment in the English National Health Service; Centre for Economic Performance, LSE: London, UK, 2012. [Google Scholar]
- Friesner, D.L.; Rosenman, R. Do hospitals practice cream skimming? Health Serv. Manag. Res. 2009, 22, 39–49. [Google Scholar] [CrossRef]
- Berta, P.; Callea, G.; Martini, G.; Vittadini, G. The effects of upcoding, cream skimming and readmissions on the Italian hospitals efficiency: A population-based investigation. Econ. Model. 2010, 27, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Martinussen, P.E.; Hagen, T.P. Reimbursement systems, organisational forms and patient selection: Evidence from day surgery in Norway. Health Econ. Policy Law 2009, 4, 139–158. [Google Scholar] [CrossRef] [Green Version]
- Yong, K.; Harris, A.H. Efficiency of Hospitals in Victoria under Casemix Funding: A Stochastic Frontier Approach; Centre for Health Program Evaluation Australia: Melbourne, VIC, Australia, 1999; pp. 1–21. [Google Scholar]
- Kirigia, J.M.; Asbu, E.Z. Technical and scale efficiency of public community hospitals in Eritrea: An exploratory study. Health Econ. Rev. 2013, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Adamson, E.; Pow, J.; Houston, F.; Redpath, P. Exploring the experiences of patients attending day hospitals in the rural Scotland: Capturing the patient’s voice. J. Clin. Nurs. 2017, 26, 3044–3055. [Google Scholar] [CrossRef]
- Hollingsworth, B. The measurement of efficiency and productivity of health care delivery. Health Econ. 2008, 17, 1107–1128. [Google Scholar] [CrossRef]
- Cao, P.; Toyabe, S.; Abe, T.; Akazawa, K. Profit and loss analysis for an intensive care unit (ICU) in Japan: A tool for strategic management. BMC Health Serv. Res. 2006, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Tierney, L.T.; Conroy, K.M. Optimal occupancy in the ICU: A literature review. Aust. Crit. Care 2014, 27, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Data Envelopment Analysis: History, Models, and Interpretations. In Handbook on Data Envelopment Analysis; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; Springer: Boston, MA, USA, 2011; p. 3. [Google Scholar]
- Kjekshus, L.; Hagen, T. Do hospital mergers increase hospital efficiency? Evidence from a National Health Service country. J. Health Serv. Res. Policy 2007, 12, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Cylus, J.; Papanicolas, I.; Smith, P.C. How to Make Sense of Health System Efficiency Comparisons? World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Hibbard, J.H.; Greene, J.; Sofaer, S.; Firminger, K.; Hirsh, J. An experiment shows that a well-designed report on costs and quality can help consumers choose high-value health care. Health Aff. 2012, 31, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inputs Variables | Description |
---|---|
I1 | Total number of beds |
I2 | Total number of health workers without physicians |
I3 | Total number of physicians |
Output Variables | |
O1 | Number of inpatient episodes weighed with DRG coefficient |
O2 | Number of outpatient Episodes |
External Factors | Description | Coding |
---|---|---|
Z1 | The ratio of outpatient episodes to inpatient days | |
Z2 | No other hospital in the region | 1 = if it is the sole hospital in the district |
0 = if there are other hospitals in the district | ||
Z3 | The proportion of people older than 65 in the catchment area | |
Z4 | Proportion of infants in the catchment area | |
Z5 | The bed turnover rate | |
Z6 | The bed occupation rate | |
Z7 | The average length of stay | |
D1 | Very large hospitals (>600 beds) | 1 = if the hospital has a number of beds greater than 600 |
0 = otherwise | ||
D2 | Large hospitals (400 ≤ beds < 600) | 1 = if the hospital has a number of beds between 400 and 600 |
0 = otherwise | ||
D3 | Medium size hospitals (200 ≤ beds < 400) | 1 = if the hospital has a number of beds between 200 and 400 |
0 = otherwise |
Input/ Output | Mean | Median | Maximum | Minimum | Standard Deviation |
---|---|---|---|---|---|
2015 | |||||
Physicians | 121 | 113 | 253 | 21 | 62.44 |
Workers | 400 | 382 | 922 | 65 | 215.38 |
Beds | 387 | 354 | 887 | 55 | 222.31 |
Inpatients with DRG | 12,763 | 10,995 | 28,012 | 1276 | 7184.84 |
Outpatient | 179,943 | 14,6346 | 380,024 | 16,112 | 101,458 |
Physicians | 119 | 109 | 250 | 22 | 61.46 |
Workers | 396 | 379 | 921 | 56 | 214.33 |
Beds | 390 | 342 | 868 | 55 | 221.64 |
Inpatients with DRG | 12,664 | 10,090 | 29,132 | 963 | 7789.70 |
Outpatient | 186,816 | 161,406 | 371,341 | 17,842 | 105,865.20 |
Physicians | 121 | 110 | 261 | 20 | 62.78 |
Workers | 399 | 375 | 945 | 49 | 218.46 |
Beds | 392 | 353 | 880 | 55 | 222.26 |
Inpatients with DRG | 16,355 | 14,206 | 37,330 | 1517 | 10,450.44 |
Outpatient | 173,836 | 148,995 | 328,275 | 16,285 | 94,588.07 |
Physicians | 122 | 113 | 260 | 20 | 64.09 |
Workers | 399 | 376 | 934 | 48 | 220.12 |
Beds | 393 | 357 | 845 | 55 | 220.13 |
Inpatients with DRG | 14,139 | 11,871 | 29,634 | 1368 | 8157.57 |
Outpatient | 176,813 | 156,134 | 344,580 | 15,591 | 97,053.67 |
Physicians | 120 | 110 | 255 | 16 | 63.07 |
Workers | 393 | 369 | 921 | 45 | 216.10 |
Beds | 409 | 365 | 868 | 64 | 217.43 |
Inpatients with DRG | 16,950 | 16,894 | 44,186.00 | 1680 | 10,877.01 |
Outpatient | 179,889 | 150,738 | 376,322.0 | 21,107 | 101,057.30 |
DMU | Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | D1 | D2 | D3 |
---|---|---|---|---|---|---|---|---|---|---|
H01 | 3.007 | 0 | 0.236 | 0.009 | 52.358 | 74.825 | 5.216 | 0 | 0 | 0 |
H02 | 2.333 | 0 | 0.212 | 0.005 | 51.553 | 76.480 | 5.415 | 0 | 0 | 0 |
H03 | 1.684 | 0 | 0.206 | 0.008 | 30.408 | 66.133 | 7.938 | 0 | 0 | 1 |
H04 | 2.829 | 0 | 0.226 | 0.009 | 46.499 | 59.338 | 4.658 | 0 | 1 | 0 |
H05 | 1.505 | 0 | 0.267 | 0.006 | 40.110 | 89.797 | 8.171 | 0 | 1 | 0 |
H06 | 2.890 | 0 | 0.233 | 0.009 | 43.147 | 78.426 | 6.634 | 0 | 0 | 0 |
H07 | 3.381 | 0 | 0.220 | 0.009 | 29.169 | 46.589 | 5.830 | 0 | 0 | 1 |
H08 | 1.593 | 0 | 0.206 | 0.008 | 58.652 | 58.667 | 3.651 | 0 | 0 | 1 |
H09 | 1.099 | 0 | 0.283 | 0.007 | 35.038 | 77.193 | 8.041 | 0 | 0 | 0 |
H10 | 3.589 | 0 | 0.312 | 0.006 | 30.440 | 44.220 | 5.302 | 0 | 0 | 0 |
H11 | 2.730 | 0 | 0.203 | 0.010 | 62.265 | 66.368 | 3.891 | 0 | 1 | 0 |
H12 | 1.756 | 1 | 0.239 | 0.007 | 44.046 | 70.901 | 5.875 | 1 | 0 | 0 |
H13 | 1.931 | 1 | 0.214 | 0.008 | 30.409 | 46.185 | 5.544 | 1 | 0 | 0 |
H14 | 2.338 | 0 | 0.203 | 0.009 | 51.453 | 58.712 | 4.165 | 0 | 1 | 0 |
H15 | 2.231 | 0 | 0.229 | 0.007 | 26.250 | 44.435 | 6.179 | 0 | 0 | 0 |
H16 | 2.280 | 0 | 0.298 | 0.006 | 27.962 | 51.014 | 6.659 | 0 | 0 | 1 |
H17 | 2.471 | 0 | 0.203 | 0.008 | 66.948 | 50.595 | 2.758 | 1 | 0 | 0 |
H18 | 3.968 | 0 | 0.223 | 0.007 | 43.168 | 48.638 | 4.112 | 0 | 0 | 1 |
H19 | 2.432 | 0 | 0.263 | 0.007 | 59.587 | 46.589 | 2.854 | 0 | 0 | 0 |
H20 | 1.616 | 1 | 0.258 | 0.007 | 64.705 | 63.834 | 3.601 | 0 | 0 | 1 |
H21 | 2.131 | 0 | 0.243 | 0.008 | 33.879 | 49.890 | 5.375 | 0 | 1 | 0 |
H22 | 1.972 | 0 | 0.242 | 0.007 | 31.600 | 59.487 | 6.871 | 0 | 0 | 0 |
H23 | 1.467 | 0 | 0.195 | 0.010 | 36.227 | 73.496 | 7.405 | 0 | 0 | 0 |
H24 | 1.845 | 1 | 0.230 | 0.009 | 34.946 | 64.599 | 6.747 | 0 | 0 | 1 |
H25 | 1.066 | 0 | 0.206 | 0.009 | 36.228 | 116.666 | 11.754 | 0 | 1 | 0 |
H26 | 1.386 | 0 | 0.211 | 0.008 | 38.796 | 55.184 | 5.192 | 0 | 0 | 1 |
H27 | 3.925 | 0 | 0.204 | 0.009 | 31.115 | 55.346 | 6.492 | 0 | 0 | 1 |
H28 | 1.606 | 0 | 0.235 | 0.006 | 38.880 | 84.011 | 7.887 | 0 | 0 | 1 |
H29 | 2.258 | 1 | 0.201 | 0.009 | 75.647 | 65.982 | 3.184 | 0 | 1 | 0 |
H30 | 1.342 | 1 | 0.221 | 0.008 | 23.079 | 56.569 | 8.946 | 1 | 0 | 0 |
H31 | 1.774 | 1 | 0.198 | 0.009 | 41.531 | 57.691 | 5.070 | 1 | 0 | 0 |
H32 | 3.842 | 0 | 0.195 | 0.009 | 5.930 | 8.383 | 5.160 | 1 | 0 | 0 |
H33 | 1.663 | 0 | 0.219 | 0.009 | 32.767 | 54.227 | 6.040 | 1 | 0 | 0 |
H34 | 1.803 | 1 | 0.220 | 0.008 | 34.837 | 68.048 | 7.130 | 1 | 0 | 0 |
H35 | 2.418 | 0 | 0.153 | 0.010 | 35.580 | 67.276 | 6.901 | 0 | 1 | 0 |
H36 | 1.995 | 0 | 0.190 | 0.010 | 67.119 | 61.997 | 3.371 | 0 | 0 | 1 |
H37 | 1.669 | 0 | 0.204 | 0.009 | 41.545 | 80.282 | 7.053 | 0 | 0 | 1 |
H38 | 0.337 | 0 | 0.275 | 0.006 | 35.637 | 35.361 | 3.622 | 0 | 1 | 0 |
H39 | 3.078 | 1 | 0.206 | 0.009 | 61.937 | 48.620 | 2.865 | 0 | 1 | 0 |
DMU | Efficiency Scores | Σλ | Return to Scale | Reference Set (Benchmarks) | |||||
---|---|---|---|---|---|---|---|---|---|
CRS | VRS | SE | |||||||
H01 | 1.0000 | 1.0000 | 1.0000 | 1.000 | Constant | ||||
H02 | 0.8757 | 0.9355 | 0.9361 | 0.757 | Increasing | H1 | H29 | ||
H03 | 0.5788 | 0.5809 | 0.9964 | 1.066 | Decreasing | H1 | H6 | H17 | |
H04 | 0.8335 | 0.9008 | 0.9253 | 2.606 | Decreasing | H1 | H6 | H17 | |
H05 | 0.6937 | 0.7193 | 0.9644 | 1.784 | Decreasing | H1 | H17 | H29 | |
H06 | 1.0000 | 1.0000 | 1.0000 | 1.000 | Constant | H6 | |||
H07 | 0.7610 | 0.7611 | 0.9999 | 0.899 | Increasing | H6 | H17 | H27 | |
H08 | 0.7998 | 0.8616 | 0.9284 | 0.488 | Increasing | H17 | H29 | ||
H09 | 0.5032 | 0.6916 | 0.7276 | 0.257 | Increasing | H1 | H29 | ||
H10 | 0.7005 | 0.8097 | 0.8651 | 0.628 | Increasing | H1 | H6 | ||
H11 | 0.9711 | 1.0000 | 0.9711 | 2.503 | Decreasing | H1 | H29 | ||
H12 | 0.6841 | 0.7041 | 0.9717 | 1.853 | Decreasing | H1 | H17 | H29 | |
H13 | 0.4919 | 0.5164 | 0.9526 | 1.704 | Decreasing | H1 | H17 | H29 | |
H14 | 0.8044 | 0.8316 | 0.9674 | 1.543 | Decreasing | H1 | H17 | H29 | |
H15 | 0.5978 | 1.0000 | 0.5978 | 0.148 | Increasing | H1 | H17 | ||
H16 | 0.6116 | 0.6566 | 0.9316 | 0.424 | Increasing | H1 | H6 | H17 | H27 |
H17 | 1.0000 | 1.0000 | 1.0000 | 1.000 | Constant | H17 | |||
H18 | 0.9283 | 0.9284 | 0.9999 | 0.952 | Increasing | H1 | H6 | H17 | H27 |
H19 | 0.7877 | 1.0000 | 0.7877 | 0.198 | Increasing | H29 | |||
H20 | 0.8554 | 0.9130 | 0.9368 | 0.496 | Increasing | H29 | |||
H21 | 0.5859 | 0.6049 | 0.9686 | 1.625 | Decreasing | H1 | H6 | H17 | |
H22 | 0.5568 | 0.7902 | 0.7046 | 0.384 | Increasing | H1 | H29 | ||
H23 | 0.5710 | 0.7293 | 0.7830 | 0.402 | Increasing | H1 | H29 | ||
H24 | 0.6150 | 0.6200 | 0.9920 | 1.192 | Decreasing | H1 | H6 | H17 | |
H25 | 0.6449 | 0.6773 | 0.9522 | 1.992 | Decreasing | H1 | H6 | H17 | |
H26 | 0.5402 | 0.6522 | 0.8283 | 0.271 | Increasing | H1 | H17 | H29 | |
H27 | 1.0000 | 1.0000 | 1.0000 | 1.000 | Constant | H27 | |||
H28 | 0.6864 | 0.6904 | 0.9942 | 1.162 | Decreasing | H1 | H17 | H29 | |
H29 | 1.0000 | 1.0000 | 1.0000 | 1.000 | Constant | H29 | |||
H30 | 0.4230 | 0.4347 | 0.9732 | 1.326 | Decreasing | H1 | H6 | H17 | H27 |
H31 | 0.6190 | 0.6268 | 0.9876 | 1.374 | Decreasing | H1 | H17 | H29 | |
H32 | 0.6528 | 0.8069 | 0.8090 | 0.262 | Increasing | H17 | |||
H33 | 0.5172 | 0.5314 | 0.9733 | 1.819 | Decreasing | H1 | H17 | H29 | |
H34 | 0.6240 | 0.6634 | 0.9406 | 2.401 | Decreasing | H1 | H6 | H17 | |
H35 | 0.7885 | 0.8321 | 0.9476 | 2.195 | Decreasing | H1 | H17 | H27 | |
H36 | 0.8954 | 0.9664 | 0.9266 | 0.474 | Increasing | H17 | H29 | ||
H37 | 0.6928 | 0.6945 | 0.9975 | 1.045 | Decreasing | H1 | H17 | H29 | |
H38 | 0.4905 | 0.5426 | 0.9039 | 0.408 | Increasing | H17 | H29 | ||
H39 | 0.9009 | 0.9189 | 0.9804 | 1.692 | Decreasing | H1 | H17 | H29 | |
Mean | 0.7252 | 0.7844 | 0.9262 | ||||||
Median | 0.6928 | 0.7902 | 0.9644 | ||||||
Maximum | 1.0000 | 1.0000 | 1.0000 | ||||||
Minimum | 0.4230 | 0.4347 | 0.5978 | ||||||
Standard Deviation | 0.1711 | 0.1662 | 0.0950 |
DMU | Efficiency Scores (CRS) | Number of Times on the Frontier | ||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | ||
H01 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 5 |
H02 | 0.8609 † | 0.8171 † | 0.9483 † | 0.8566 † | 0.8757 † | |
H03 | 0.6710 ‡ | 0.5200 † | 0.6061 † | 0.6387 † | 0.5788 ‡ | |
H04 | 0.9892 ‡ | 0.9467 ‡ | 1.0000 | 0.8697 ‡ | 0.8335 ‡ | 1 |
H05 | 0.8847 ‡ | 0.9104 ‡ | 0.7989 ‡ | 0.6869 † | 0.6937 ‡ | |
H06 | 1.0000 | 1.0000 | 1.0000 | 0.9949 | 1.0000 | 4 |
H07 | 0.8937 ‡ | 0.8655 ‡ | 1.0000 | 0.7976 ‡ | 0.7610 † | 1 |
H08 | 0.8387 † | 0.7920 † | 0.8342 † | 1.0000 | 0.7998 † | 1 |
H09 | 0.6207 † | 0.5978 † | 0.4597 † | 0.5405 † | 0.5032 † | |
H10 | 0.8094 † | 0.5673 † | 0.7193 † | 0.6834 † | 0.7005 † | |
H11 | 0.9636 ‡ | 0.9703 ‡ | 0.8758 ‡ | 0.8404 ‡ | 0.9711 ‡ | |
H12 | 0.8590 ‡ | 1.0000 | 0.8286 ‡ | 0.8046 ‡ | 0.6841 ‡ | 1 |
H13 | 0.6788 ‡ | 0.7282 ‡ | 0.8021 ‡ | 0.6283 ‡ | 0.4919 ‡ | |
H14 | 0.8924 ‡ | 0.9118 ‡ | 0.8571 ‡ | 0.8816 † | 0.8044 ‡ | |
H15 | 0.4250 † | 0.4168 † | 0.5696 † | 0.5120 † | 0.5978 † | |
H16 | 0.6529 † | 0.5120 † | 0.6622 † | 0.6916 † | 0.6117 † | |
H17 | 0.7614 ‡ | 0.8100 ‡ | 0.7845 ‡ | 0.7383 ‡ | 1.0000 | 1 |
H18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9283 † | 4 |
H19 | 0.6506 † | 0.5587 † | 0.5787 † | 0.8754 † | 0.7877 † | |
H20 | 0.6372 † | 0.6950 † | 0.6883 † | 0.6357 ‡ | 0.8554 † | |
H21 | 0.7878 ‡ | 0.8121 ‡ | 0.8194 ‡ | 0.6458 † | 0.5859 ‡ | |
H22 | 0.5813 † | 0.5952 † | 0.5410 † | 0.5941 † | 0.5568 † | |
H23 | 0.7324 † | 0.7477 † | 0.7354 † | 0.6090 † | 0.5710 † | |
H24 | 0.7942 ‡ | 0.7042 ‡ | 0.7619 ‡ | 0.6534 † | 0.6150 ‡ | |
H25 | 0.8819 ‡ | 0.8364 ‡ | 0.8639 ‡ | 0.7498 ‡ | 0.6449 ‡ | |
H26 | 0.8947 † | 0.9689 † | 0.9546 † | 0.7677 † | 0.5402 † | |
H27 | 1.0000 | 0.8351 ‡ | 1.0000 | 1.0000 | 1.0000 | 4 |
H28 | 0.7522 ‡ | 1.0000 | 0.7759 ‡ | 0.7087 † | 0.6864 ‡ | 1 |
H29 | 0.9149 ‡ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 4 |
H30 | 0.7576 † | 0.7841 † | 0.8742 ‡ | 0.6742 ‡ | 0.4230 ‡ | |
H31 | 1.0000 | 1.0000 | 0.9858 ‡ | 0.7607 ‡ | 0.6190 ‡ | 2 |
H32 | 1.0000 | 0.9215 † | 0.9002 † | 0.7568 † | 0.6528 † | 1 |
H33 | 0.5627 ‡ | 0.6035 ‡ | 0.6748 ‡ | 0.6207 ‡ | 0.5172 ‡ | |
H34 | 0.7433 ‡ | 0.7831 ‡ | 0.8782 ‡ | 0.6837 ‡ | 0.6240 ‡ | |
H35 | 0.9633 ‡ | 0.8248 ‡ | 0.9432 ‡ | 0.8768 ‡ | 0.7885 ‡ | |
H36 | 0.5815 † | 0.6057 † | 1.0000 | 1.0000 | 0.8954 † | 2 |
H37 | 0.7305 † | 0.7879 † | 0.6297 † | 0.7137 † | 0.6928 ‡ | |
H38 | 0.7414 ‡ | 0.7510 † | 0.6762 † | 0.6281 † | 0.4905 † | |
H39 | 0.8460 ‡ | 0.8598 ‡ | 0.8752 ‡ | 0.7652 † | 0.9009 ‡ | |
Mean | 0.8040 | 0.7959 | 0.8180 | 0.7663 | 0.7252 | |
Median | 0.8094 | 0.8121 | 0.8342 | 0.7498 | 0.6928 | |
Maximum | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
Minimum | 0.4250 | 0.4168 | 0.4597 | 0.5120 | 0.4230 | |
Standard Deviation | 0.1469 | 0.1618 | 0.1500 | 0.1410 | 0.1689 |
DMU | Malmquist Index [TFPCH] | Frontier Shift (TECH) | Efficiency Change [ECH] | Pure Efficiency Change [PECH] | Scale Efficiency Change [SECH] |
---|---|---|---|---|---|
H01 | 1.027 | 1.027 | 1.000 | 1.000 | 1.000 |
H02 | 1.044 | 1.040 | 1.004 | 1.013 | 0.991 |
H03 | 0.989 | 1.027 | 0.964 | 0.964 | 1.000 |
H04 | 1.011 | 1.056 | 0.958 | 0.974 | 0.983 |
H05 | 1.000 | 1.063 | 0.941 | 0.933 | 1.009 |
H06 | 1.030 | 1.030 | 1.000 | 1.000 | 1.000 |
H07 | 0.978 | 1.018 | 0.961 | 0.956 | 1.004 |
H08 | 1.126 | 1.140 | 0.988 | 1.003 | 0.985 |
H09 | 1.034 | 1.089 | 0.949 | 0.959 | 0.989 |
H10 | 0.956 | 0.991 | 0.965 | 0.967 | 0.998 |
H11 | 1.065 | 1.062 | 1.002 | 1.000 | 1.002 |
H12 | 1.043 | 1.104 | 0.945 | 0.916 | 1.031 |
H13 | 0.988 | 1.071 | 0.923 | 0.881 | 1.047 |
H14 | 1.050 | 1.078 | 0.974 | 0.975 | 1.000 |
H15 | 1.180 | 1.083 | 1.089 | 1.000 | 1.089 |
H16 | 1.040 | 1.057 | 0.984 | 0.980 | 1.004 |
H17 | 1.244 | 1.162 | 1.071 | 1.055 | 1.015 |
H18 | 0.951 | 0.969 | 0.982 | 0.982 | 1.000 |
H19 | 1.111 | 1.059 | 1.049 | 1.051 | 0.998 |
H20 | 1.157 | 1.075 | 1.076 | 1.093 | 0.984 |
H21 | 1.020 | 1.098 | 0.929 | 0.922 | 1.007 |
H22 | 1.003 | 1.014 | 0.989 | 0.990 | 0.999 |
H23 | 0.988 | 1.051 | 0.940 | 0.974 | 0.964 |
H24 | 0.992 | 1.057 | 0.938 | 0.935 | 1.003 |
H25 | 0.983 | 1.063 | 0.925 | 0.920 | 1.005 |
H26 | 1.023 | 1.161 | 0.882 | 0.910 | 0.968 |
H27 | 1.015 | 1.015 | 1.000 | 1.000 | 1.000 |
H28 | 1.028 | 1.052 | 0.977 | 0.977 | 1.000 |
H29 | 1.009 | 1.167 | 0.864 | 0.870 | 0.993 |
H30 | 1.140 | 1.115 | 1.022 | 1.000 | 1.022 |
H31 | 1.023 | 1.153 | 0.887 | 0.890 | 0.997 |
H32 | 0.946 | 1.052 | 0.899 | 0.948 | 0.948 |
H33 | 1.065 | 1.088 | 0.979 | 0.967 | 1.012 |
H34 | 1.027 | 1.073 | 0.957 | 0.950 | 1.008 |
H35 | 0.988 | 1.038 | 0.951 | 0.957 | 0.994 |
H36 | 1.221 | 1.096 | 1.114 | 1.119 | 0.996 |
H37 | 1.048 | 1.062 | 0.987 | 0.981 | 1.006 |
H38 | 1.013 | 1.124 | 0.902 | 0.919 | 0.982 |
H39 | 1.099 | 1.082 | 1.016 | 1.004 | 1.011 |
2015–2016 | 1.015 | 1.030 | 0.985 | 0.989 | 0.997 |
2016–2017 | 1.099 | 1.065 | 1.032 | 1.013 | 1.019 |
2017–2018 | 0.952 | 1.014 | 0.939 | 0.950 | 0.988 |
2018–2019 | 1.103 | 1.178 | 0.936 | 0.936 | 1.001 |
2015–2019 | 1.042 | 1.072 | 0.973 | 0.972 | 1.001 |
Variable | Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | D1 | D2 | D3 |
---|---|---|---|---|---|---|---|---|---|---|
Mean VIF † | 1.42 | 1.77 | 1.85 | 1.92 | 1.40 | 1.80 | 1.85 | 1.61 | 1.64 | 1.71 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
Z1 | −0.0185 *** | 0.0184 *** | −0.0215 *** | −0.0218 *** | −0.0219 *** | −0.0185 *** |
Z2 | 0.0308 | 0.0332 | ….. | 0.0369 | 0.0336 | 0.0346 |
Z3 | 2.7140 *** | 2.9427 *** | 2.6519 *** | 2.5945 *** | 2.4396 *** | 2.4384 *** |
Z4 | −5.3141 | ….. | ….. | −4.0363 | −4.1911 | |
D1 | ….. | ….. | −0.0097 | −0.0353 | −0.0312 | −0.0298 |
D2 | ….. | ….. | −0.1155 ** | −0.1231 *** | −0.1154 ** | −0.1141 ** |
D3 | ….. | ….. | −0.0495 | −0.05844 | −0.0577 | −0.0596 |
Z5 | −0.0135 *** | −0.0135 *** | −0.0164 *** | −0.0167 *** | −0.0168 *** | −0.0135 *** |
Z6 | −0.0026 ** | −0.0025 * | …. | …. | −0.0025 ** | |
Z7 | …. | ….. | −0.0215 | −0.0225 | −0.02316 * | …. |
Constant | 0.4995 *** | 0.3959 *** | 0.6067 *** | 0.6372 *** | 0.7129 *** | 0.5857 *** |
Observations | 195 | 195 | 195 | 195 | 195 | 195 |
Number of groups | 39 | 39 | 39 | 39 | 39 | 39 |
Obs. per group | 5 | 5 | 5 | 5 | 5 | 5 |
Wald X2 | 157.78 | 153.72 | 163.97 | 165.12 | 167.55 | 169.50 |
Prob. > X2 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Log Likelihood | 13.4347 | 12.3064 | 15.1307 | 15.4441 | 16.0987 | 16.6212 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medarević, A.; Vuković, D. Efficiency and Productivity of Public Hospitals in Serbia Using DEA-Malmquist Model and Tobit Regression Model, 2015–2019. Int. J. Environ. Res. Public Health 2021, 18, 12475. https://doi.org/10.3390/ijerph182312475
Medarević A, Vuković D. Efficiency and Productivity of Public Hospitals in Serbia Using DEA-Malmquist Model and Tobit Regression Model, 2015–2019. International Journal of Environmental Research and Public Health. 2021; 18(23):12475. https://doi.org/10.3390/ijerph182312475
Chicago/Turabian StyleMedarević, Aleksandar, and Dejana Vuković. 2021. "Efficiency and Productivity of Public Hospitals in Serbia Using DEA-Malmquist Model and Tobit Regression Model, 2015–2019" International Journal of Environmental Research and Public Health 18, no. 23: 12475. https://doi.org/10.3390/ijerph182312475
APA StyleMedarević, A., & Vuković, D. (2021). Efficiency and Productivity of Public Hospitals in Serbia Using DEA-Malmquist Model and Tobit Regression Model, 2015–2019. International Journal of Environmental Research and Public Health, 18(23), 12475. https://doi.org/10.3390/ijerph182312475